Skip to main content

Free Radicals in Aging – An Evolutionary Perspective

  • Reference work entry
  • First Online:
  • 422 Accesses

Abstract

Evidence supporting the role of oxidative stress in the aging process is presented in detail in this chapter. We also provide an overview of recent studies using novel animal models of successful aging, which have provided valuable additional information to support or counter the oxidative stress hypothesis of aging. We focus on comparative studies using three long-lived but mouse-sized mammalian species, the naked mole rat (Heterocephalus glaber), the white-footed mouse (Peromyscus leucopus), and the little brown bat (Myotis lucifugus), cells of long-lived and short-lived primates, and bivalve models of exceptional longevity to test predictions of the oxidative stress theory of aging. It is concluded that studies examining cellular and mitochondrial free radical generation and oxidative stress resistance in a broad array of successfully aging species seem to concur in general with predictions based upon the oxidative stress theory of aging. Further studies are evidently needed to investigate mechanisms related to ROS homeostasis, protein recycling, and DNA repair that might be informative about successful aging of these species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler A, Messina E, Sherman B, Wang Z, Huang H, Linke A, Hintze TH (2003) NAD(P)H oxidase-generated superoxide anion accounts for reduced control of myocardial O2 consumption by NO in old Fischer 344 rats. Am J Physiol Heart Circ Physiol 285(3):H1015–H1022

    CAS  PubMed  Google Scholar 

  • Andziak B, Buffenstein R (2006) Disparate patterns of age-related changes in lipid peroxidation in long-lived naked mole-rats and shorter-lived mice. Aging Cell 5(6):525–532

    Article  CAS  PubMed  Google Scholar 

  • Andziak B, O’Connor TP, Buffenstein R (2005) Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech Ageing Dev 126(11):1206–1212

    Article  CAS  PubMed  Google Scholar 

  • Andziak B, O’Connor TP, Qi W, DeWaal EM, Pierce A, Chaudhuri AR, Van Remmen H, Buffenstein R (2006) High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell 5(6):463–471

    Article  CAS  PubMed  Google Scholar 

  • Austad SN (1996) The uses of intraspecific variation in aging research. Exp Gerontol 31(4):453–463

    Article  CAS  PubMed  Google Scholar 

  • Austad SN (2009) Comparative biology of aging. J Gerontol A Biol Sci Med Sci 64(2):199–201

    Article  PubMed  Google Scholar 

  • Austad SN (2011) Candidate bird species for use in aging research. ILAR J 52(1):89–96

    Article  CAS  PubMed  Google Scholar 

  • Austad SN, Fischer KE (1992) Primate longevity: its place in the mammalian scheme. Am J Primatol 28:251–261

    Article  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495

    Article  CAS  PubMed  Google Scholar 

  • Barja G (1998) Mitochondrial free radical production and aging in mammals and birds. Ann N Y Acad Sci 854:224–238

    Article  CAS  PubMed  Google Scholar 

  • Barja G, Herrero A (1998) Localization at complex I and mechanism of the higher free radical production of brain nonsynaptic mitochondria in the short-lived rat than in the longevous pigeon. J Bioenerg Biomembr 30(3):235–243

    Article  CAS  PubMed  Google Scholar 

  • Bokov A, Chaudhuri A, Richardson A (2004) The role of oxidative damage and stress in aging. Mech Ageing Dev 125(10–11):811–826

    Article  CAS  PubMed  Google Scholar 

  • Brunet Rossinni AK (2004a) Testing the free radical theory of aging in bats. Ann NY Acad Sci 1019:506–508

    Article  PubMed  Google Scholar 

  • Brunet-Rossinni AK (2004b) Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals. Mech Ageing Dev 125(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Brunet-Rossinni AK, Austad SN (2004) Ageing studies on bats: a review. Biogerontology 5(4):211–222

    Article  CAS  PubMed  Google Scholar 

  • Buffenstein R (2005) The naked mole-rat: a new long-living model for human aging research. J Gerontol A Biol Sci Med Sci 60(11):1369–1377

    Article  PubMed  Google Scholar 

  • Buffenstein R, Jarvis JU (2002) The naked mole rat—a new record for the oldest living rodent. Sci Aging Knowledge Environ 2002(21):pe7

    Article  PubMed  Google Scholar 

  • Burger J, Gochfeld M (1992) Survival and reproduction in Peromyscus leucopus in the laboratory: viable model for aging studies. Growth Dev Aging 56(1):17–22

    CAS  PubMed  Google Scholar 

  • Csiszar A, Ungvari Z, Edwards JG, Kaminski PM, Wolin MS, Koller A, Kaley G (2002) Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ Res 90(11):1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Csiszar A, Labinskyy N, Orosz Z, Xiangmin Z, Buffenstein R, Ungvari Z (2007a) Vascular aging in the longest-living rodent, the naked mole-rat. Am J Physiol 293:H919–H927

    CAS  Google Scholar 

  • Csiszar A, Labinskyy N, Xiangmin Z, Hu F, Serpillon S, Huang Z, Ballabh P, Levy R, Hintze TH, Wolin MS, Austad SN, Podlutsky A, Ungvari Z (2007b) Vascular O2 •− and H2O2 production and oxidative stress resistance in two closely related rodent species with disparate longevity. Aging Cell 6(6):783–797, in press

    Article  CAS  PubMed  Google Scholar 

  • Csiszar A, Podlutsky A, Podlutskaya N, Sonntag WE, Merlin SZ, Philipp EER, Doyle K, Davila A, Recchia FA, Ballabh P, Pinto JT, Ungvari Z (2012a) Testing the oxidative stress hypothesis of aging in primate fibroblasts: is there a correlation between species longevity and cellular ROS production? J Gerontol A Biol Sci Med Sci 67(8):841–852, in press

    Article  PubMed Central  PubMed  Google Scholar 

  • Csiszar A, Sosnowska D, Wang M, Lakatta EG, Sonntag WE, Ungvari Z (2012b) Age-associated proinflammatory secretory phenotype in vascular smooth muscle cells from the non-human primate macaca mulatta: reversal by resveratrol treatment. J Gerontol A Biol Sci Med Sci 67(8):811–820

    Article  PubMed Central  PubMed  Google Scholar 

  • Guo Z, Wang M, Tian G, Burger J, Gochfeld M, Yang CS (1993) Age- and gender-related variations in the activities of drug-metabolizing and antioxidant enzymes in the white-footed mouse (Peromyscus leucopus). Growth Dev Aging 57(2):85–100

    CAS  PubMed  Google Scholar 

  • Guo ZM, Yang H, Hamilton ML, VanRemmen H, Richardson A (2001) Effects of age and food restriction on oxidative DNA damage and antioxidant enzyme activities in the mouse aorta. Mech Ageing Dev 122(15):1771–1786

    Article  CAS  PubMed  Google Scholar 

  • Hamilton CA, Brosnan MJ, McIntyre M, Graham D, Dominiczak AF (2001a) Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction. Hypertension 37(2):529–534

    Article  CAS  PubMed  Google Scholar 

  • Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A (2001b) Does oxidative damage to DNA increase with age? Proc Natl Acad Sci USA 98(18):10469–10474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20(4):145–147

    CAS  PubMed  Google Scholar 

  • Harper JM, Durkee SJ, Dysko RC, Austad SN, Miller RA (2006) Genetic modulation of hormone levels and life span in hybrids between laboratory and wild-derived mice. J Gerontol A Biol Sci Med Sci 61(10):1019–1029

    Article  PubMed Central  PubMed  Google Scholar 

  • Harper JM, Salmon AB, Leiser SF, Galecki AT, Miller RA (2007) Skin-derived fibroblasts from long-lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone. Aging cell 6(1):1–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harper JM, Wang M, Galecki AT, Ro J, Williams JB, Miller RA (2011) Fibroblasts from long-lived bird species are resistant to multiple forms of stress. J Exp Biol 214(Pt 11):1902–1910

    Article  PubMed Central  PubMed  Google Scholar 

  • Herrero A, Barja G (1998) H2O2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved. Mech Ageing Dev 103(2):133–146

    Article  CAS  PubMed  Google Scholar 

  • Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. Faseb J 13(11):1385–1393

    CAS  PubMed  Google Scholar 

  • Huang TT, Carlson EJ, Gillespie AM, Shi Y, Epstein CJ (2000) Ubiquitous overexpression of CuZn superoxide dismutase does not extend life span in mice. J Gerontol 55(1):B5–B9

    Article  CAS  Google Scholar 

  • Jang YC, Perez VI, Song W, Lustgarten MS, Salmon AB, Mele J, Qi W, Liu Y, Liang H, Chaudhuri A, Ikeno Y, Epstein CJ, Van Remmen H, Richardson A (2009) Overexpression of mn superoxide dismutase does not increase life span in mice. J Gerontol A Biol Sci Med Sci 64(11):1114–1125

    Article  PubMed  Google Scholar 

  • Kasaikina MV, Lobanov AV, Malinouski MY, Lee BC, Seravalli J, Fomenko DE, Turanov AA, Finney L, Vogt S, Park TJ, Miller RA, Hatfield DL, Gladyshev VN (2011) Reduced utilization of selenium by naked mole rats due to a specific defect in GPx1 expression. J Biol Chem 286(19):17005–17014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419(6904):316–321

    Article  CAS  PubMed  Google Scholar 

  • Ku HH, Sohal RS (1993) Comparison of mitochondrial pro-oxidant generation and anti-oxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mech Ageing Dev 72(1):67–76

    Article  CAS  PubMed  Google Scholar 

  • Labinskyy N, Csiszar A, Orosz Z, Smith K, Rivera A, Buffenstein R, Ungvari Z (2006) Comparison of endothelial function, O2 •− and H2O2 production, and vascular oxidative stress resistance between the longest-living rodent, the naked mole rat, and mice. Am J Physiol 291(6):H2698–H2704

    CAS  Google Scholar 

  • Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Kunz TH, Buffenstein R, Brand MD (2007) Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 6(5):607–618

    Article  CAS  PubMed  Google Scholar 

  • Lambert AJ, Buckingham JA, Boysen HM, Brand MD (2010) Low complex I content explains the low hydrogen peroxide production rate of heart mitochondria from the long-lived pigeon, Columba livia. Aging Cell 9(1):78–91

    Article  CAS  PubMed  Google Scholar 

  • Lewis KN, Mele J, Hayes JD, Buffenstein R (2010) Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integr Comp Biol 50(5):829–843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis KN, Mele J, Hornsby PJ, Buffenstein R (2012) Stress resistance in the naked mole-rat: the bare essentials—a mini-review. Gerontology 58(5):453–462

    Article  PubMed  Google Scholar 

  • Lithgow GJ, Walker GA (2002) Stress resistance as a determinate of C. elegans lifespan. Mech Ageing Dev 123(7):765–771

    Article  PubMed  Google Scholar 

  • Mansouri A, Muller FL, Liu Y, Ng R, Faulkner J, Hamilton M, Richardson A, Huang TT, Epstein CJ, Van Remmen H (2006) Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging. Mech Ageing Dev 127(3):298–306

    Article  CAS  PubMed  Google Scholar 

  • Mele J, Van Remmen H, Vijg J, Richardson A (2006) Characterization of transgenic mice that overexpress both copper zinc superoxide dismutase and catalase. Antioxid Redox Signaling 8(3–4):628–638

    Article  CAS  Google Scholar 

  • Miller RA, Harper JM, Dysko RC, Durkee SJ, Austad SN (2002) Longer life spans and delayed maturation in wild-derived mice. Exp Biol Med (Maywood) 227(7):500–508

    CAS  Google Scholar 

  • Montgomery MK, Buttemer WA, Hulbert AJ (2012) Does the oxidative stress theory of aging explain longevity differences in birds? II. Antioxidant systems and oxidative damage. Exp Gerontol 47(3):211–222

    Article  CAS  PubMed  Google Scholar 

  • Ogburn CE, Austad SN, Holmes DJ, Kiklevich JV, Gollahon K, Rabinovitch PS, Martin GM (1998) Cultured renal epithelial cells from birds and mice: enhanced resistance of avian cells to oxidative stress and DNA damage. J Gerontol A Biol Sci Med Sci 53(4):B287–B292

    Article  CAS  PubMed  Google Scholar 

  • Ogburn CE, Carlberg K, Ottinger MA, Holmes DJ, Martin GM, Austad SN (2001) Exceptional cellular resistance to oxidative damage in long-lived birds requires active gene expression. J Gerontol A Biol Sci Med Sci 56(11):B468–B474

    Article  CAS  PubMed  Google Scholar 

  • Pearson KJ, Lewis KN, Price NL, Chang JW, Perez E, Cascajo MV, Tamashiro KL, Poosala S, Csiszar A, Ungvari Z, Kensler TW, Yamamoto M, Egan JM, Longo DL, Ingram DK, Navas P, de Cabo R (2008) Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci USA 105(7):2325–2330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Richardson A (2009a) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790(10):1005–1014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perez VI, Van Remmen H, Bokov A, Epstein CJ, Vijg J, Richardson A (2009b) The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell 8(1):73–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perez VI, Cortez LA, Lew CM, Rodriguez M, Webb CR, Van Remmen H, Chaudhuri A, Qi W, Lee S, Bokov A, Fok W, Jones D, Richardson A, Yodoi J, Zhang Y, Tominaga K, Hubbard GB, Ikeno Y (2011) Thioredoxin 1 overexpression extends mainly the earlier part of life span in mice. J Gerontol A Biol Sci Med Sci 66(12):1286–1299

    Article  PubMed  Google Scholar 

  • Perez-Campo R, Lopez-Torres M, Cadenas S, Rojas C, Barja G (1998) The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol [B] 168(3):149–158

    Article  CAS  Google Scholar 

  • Pickering A M, T A Staab, J Tower, D S Sieburth and K J Davies (2012) A conserved role for the 20S proteasome and Nrf2 transcription factor in oxidative-stress adaptation in mammals, C. elegans and D. melanogaster. J Exp Biol

    Google Scholar 

  • Podlutsky AJ, Khritankov AM, Ovodov ND, Austad SN (2005) A new field record for bat longevity. J Gerontol A Biol Sci Med Sci 60(11):1366–1368

    Article  PubMed  Google Scholar 

  • Potter M (1978) Comments on the relationship of inbred strains to the genus mus. In: Morse HC (ed) Origins of inbred mice. Academic Press, San Diego

    Google Scholar 

  • Ran Q, Liang H, Ikeno Y, Qi W, Prolla TA, Roberts LJ 2nd, Wolf N, Van Remmen H, Richardson A (2007) Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J Gerontol A Biol Sci Med Sci 62(9):932–942

    Article  PubMed  Google Scholar 

  • Ridgway ID, Richardson AC, Enos E, Ungvari Z, Austad SN, Philipp EER, Csiszar A (2011) New species longevity record for the Northern Quahog (=Hard Clam), mercenaria mercenaria. J Shellfish Res 30(1):35–38

    Article  Google Scholar 

  • Rodriguez KA, Edrey YH, Osmulski P, Gaczynska M, Buffenstein R (2012) Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat. PLoS One 7(5):e35890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salmon AB, Leonard S, Masamsetti V, Pierce A, Podlutsky AJ, Podlutskaya N, Richardson A, Austad SN, Chaudhuri AR (2009) The long lifespan of two bat species is correlated with resistance to protein oxidation and enhanced protein homeostasis. FASEB J 23(7):2317–2326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salmon AB, Richardson A, Perez VI (2010) Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 48(5):642–655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sampayo JN, Olsen A, Lithgow GJ (2003) Oxidative stress in Caenorhabditis elegans: protective effects of superoxide dismutase/catalase mimetics. Aging cell 2(6):319–326

    Article  CAS  PubMed  Google Scholar 

  • Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308(5730):1909–1911

    Article  CAS  PubMed  Google Scholar 

  • Sentman ML, Granstrom M, Jakobson H, Reaume A, Basu S, Marklund SL (2006) Phenotypes of mice lacking extracellular superoxide dismutase and copper- and zinc-containing superoxide dismutase. J Biol Chem 281(11):6904–6909

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Ku HH, Agarwal S (1993) Biochemical correlates of longevity in two closely related rodent species. Biochem Biophys Res Commun 196(1):7–11

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Mockett RJ, Orr WC (2002) Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med 33(5):575–586

    Article  CAS  PubMed  Google Scholar 

  • Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132(6):1025–1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ungvari Z, Philipp EE (2011) Comparative gerontology–from mussels to man. J Gerontol A Biol Sci Med Sci 66(3):295–297

    Article  PubMed  Google Scholar 

  • Ungvari Z, Buffenstein R, Austad SN, Podlutsky A, Kaley G, Csiszar A (2008a) Oxidative stress in vascular senescence: lessons from successfully aging species. Front Biosci 13:5056–5070

    Article  CAS  PubMed  Google Scholar 

  • Ungvari Z, Krasnikov BF, Csiszar A, Labinskyy N, Mukhopadhyay P, Pacher P, Cooper AJL, Podlutskaya N, Austad SN, Podlutsky A (2008b) Testing hypotheses of aging in long-lived mice of the genus Peromyscus: association between longevity and mitochondrial stress resistance, ROS detoxification pathways and DNA repair efficiency. AGE 30(2–3):121–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ungvari Z, Bailey-Downs L, Gautam T, Sosnowska D, Wang M, Monticone RE, Telljohann R, Pinto JT, de Cabo R, Sonntag WE, Lakatta E, Csiszar A (2011a) Age-associated vascular oxidative stress, Nrf2 dysfunction and NF-kB activation in the non-human primate Macaca mulatta. J Gerontol Biol Med Sci 66(8):866–875

    Article  Google Scholar 

  • Ungvari Z, Ridgway I, Philipp EE, Campbell C, McQuary P, Chow T, Coelho M, Didier ES, Gelino S, Holmbeck MA, Kim I, Levy E, Sosnowska D, Sonntag WE, Austad SN, Csiszar A (2011b) Extreme longevity is associated with increased resistance to oxidative stress in Arctica islandica, the longest-living non-colonial animal. J Gerontol A Biol Sci Med Sci 66(7):741–750

    Article  PubMed  Google Scholar 

  • Ungvari Z, Csiszar A, Sosnowska D, Philipp EE, Campbell CM, McQuary PR, Chow TT, Coelho M, Didier ES, Gelino S, Holmbeck MA, Kim I, Levy E, Sonntag WE, Whitby PW, Austad SN, Ridgway I (2012) Testing predictions of the oxidative stress hypothesis of aging using a novel invertebrate model of longevity: the giant clam (Tridacna derasa). J Gerontol A Biol Sci Med Sci, in press

    Google Scholar 

  • Van Remmen H, Jones DP (2009) Current thoughts on the role of mitochondria and free radicals in the biology of aging. J Gerontol A Biol Sci Med Sci 64(2):171–174

    Article  PubMed  Google Scholar 

  • Van Remmen H, Richardson A (2001) Oxidative damage to mitochondria and aging. Exp Gerontol 36(7):957–968

    Article  CAS  PubMed  Google Scholar 

  • Van Remmen H, Hamilton ML, Richardson A (2003a) Oxidative damage to DNA and aging. Exerc Sport Sci Rev 31(3):149–153

    Article  PubMed  Google Scholar 

  • Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang TT, Nelson J, Strong R, Richardson A (2003b) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16(1):29–37

    Article  PubMed  Google Scholar 

  • Wheeler JC, Bieschke ET, Tower J (1995) Muscle-specific expression of Drosophila hsp70 in response to aging and oxidative stress. Proc Natl Acad Sci USA 92(22):10408–10412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilhelm Filho D, Althoff SL, Dafre AL, Boveris A (2007) Antioxidant defenses, longevity and ecophysiology of South American bats. Comp Bioche Physiol Toxicol Pharmacol 146(1–2):214–220

    Article  Google Scholar 

  • Williams JB, Miller RA, Harper JM, Wiersma P (2010) Functional linkages for the pace of life, life-history, and environment in birds. Integr Comp Biol 50(5):855–868

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu S, Li Q, Du M, Li SY, Ren J (2007) Cardiac-specific overexpression of catalase prolongs lifespan and attenuates ageing-induced cardiomyocyte contractile dysfunction and protein damage. Clin Exp Pharmacol Physiol 34(1–2):81–87

    Article  PubMed  Google Scholar 

  • Yang J, Tower J (2009) Expression of hsp22 and hsp70 transgenes is partially predictive of drosophila survival under normal and stress conditions. J Gerontol A Biol Sci Med Sci 64(8):828–838

    Article  PubMed  Google Scholar 

  • Zhang Y, Ikeno Y, Qi W, Chaudhuri A, Li Y, Bokov A, Thorpe SR, Baynes JW, Epstein C, Richardson A, Van Remmen H (2009) Mice deficient in both Mn superoxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity. J Gerontol A Biol Sci Med Sci 64(12):1212–1220

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the American Heart Association (to ZU, PT, and AC), American Federation for Aging Research (to AC), the Oklahoma Center for the Advancement of Science and Technology (to AC and ZU), the NIH (AG031085 to AC; AT006526 to ZU), and the Arkansas Claude Pepper Older Americans Independence Center at University of Arkansas Medical Center (to AC). The authors would like to express their gratitude for the support of the Donald W. Reynolds Foundation, which funds aging research at the University of Oklahoma Health Sciences Center under its Aging and Quality of Life Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Csiszar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Csiszar, A., Ungvari, Z. (2014). Free Radicals in Aging – An Evolutionary Perspective. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_14

Download citation

Publish with us

Policies and ethics