Skip to main content

Nanomedicine in Nucleic Acid Therapy

  • Chapter
  • First Online:
Patenting Nanomedicines

Abstract

Nucleic acids have relevance in the therapy of various disorders like cancer, stroke, trauma, myocardial infarction, autoimmune disorders, and pregnancy-associated complications. However, nucleic acid delivery is still a challenge, since the nucleic acid has to traverse both the endothelial and cellular barrier, combat the endolysosomal degradative pathway, as well as cross the nuclear barrier. To overcome these problems, advanced delivery strategies have been developed using nanovectors which could be viral, non-viral and hybrid, providing several advantages, not only traversing the cellular barrier but also modulating intracellular trafficking. The chapter would address the challenges in the delivery of nucleic acids by nanomedicine delivery strategies and therapeutic applications of nucleic acids, with a focus on relevant intellectual property rights on this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Del Rev 63:170–183

    Google Scholar 

  • Aikens D, Bunge S, Onasch F, Parker R, Hurwitz C, Clemans S (1983) The interactions between nucleic acids and polyamines: II. Protonation constants and 13C-NMR chemical shift assignments of spermidine, spermine, and homologs. Biophys Chem 17:67–74

    Google Scholar 

  • Aissaoui A, Chami M, Hussein M, Miller AD (2011) Efficient topical delivery of plasmid DNA to Lung in vivo mediated by putative triggered PEGylated pDNA nanoparticles. J Cotrol Rel. doi:10.1016/j.jconrel.2011.06.017

  • Akhtar S, Hughes MD, Khan A, Bibby M, Hussain M, Nawaz Q, Double J, Sayyed P (2000) The delivery of antisense therapeutics. Adv Drug Del Rev 44:3–21

    Google Scholar 

  • Akinc A, Anderson DG, Lynn DM, Langer R (2003) Synthesis of poly(beta-amino ester)s optimized for highly effective gene delivery. Bioconjug Chem 14:979–988

    Google Scholar 

  • Almeida JD, Brand CM, Edwards DC, Heath TD (1975) Formation of virosomes from influenza subunits and liposomes. Lancet 2:899–901

    Google Scholar 

  • Anderson MO, Lichawska A, Arpanaei A, Rask Jensen SM, Kaur H, Oupicky D, Besenbacher F, Kingshott P, Kjems J, Howard KA (2010) Surface functionalisation of PLGA nanoparticles for gene silencing. Biomaterials 31:5671–5677

    Google Scholar 

  • Audouy S, Hoekstra D (2001) Cationic lipid-mediated transfection in vitro and in vivo. Mol Membr Biol 18:129–143

    Google Scholar 

  • Audouy S, Molema G, de Leji L, Hoekstra D (2000) Serum as a modulator of lipoplex-mediated gene transfection: dependence of amphiphile, cell type and complex stability. J Gene Med 2:465–476

    Google Scholar 

  • Balakirev M, Schoehn G, Chroboczek J (2000) Lipoic acid-derived amphiphiles for redox-controlled DNA delivery. Chem Biol 7:813–819

    Google Scholar 

  • Bally MB, Harvie P, Wong FMP, Kong S, Wasan EK, Reimer DL (1999) Biological barriers to cellular delivery of lipid-based DNA carriers. Adv Drug Del Rev 38:291–315

    Google Scholar 

  • Belting M, Sandgren S, Wittrup A (2005) Nuclear delivery of macromolecules: barriers and carriers. Adv Drug Del Rev 57:505–527

    Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Google Scholar 

  • Bloquel C, Bourges JL, Touchard E, Berdugo M, BenEzraa D, Behar-Cohen F (2006) Non-viral ocular gene therapy: potential ocular therapeutic avenues. Adv Drug Del Rev 58:1224–1242

    Google Scholar 

  • Bolhassani A (2011) Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim Biophys Acta. doi:10.1016/j.bbcan.2011.07.006

  • Boulanger C, Giorgio CD, Vierling P (2005) Synthesis of acridine-nuclear localization signal (NLS) conjugates and evaluation of their impact on lipoplex and polyplex-based transfection. Eur J Med Chem 40:1295–1306

    Google Scholar 

  • Braun CS, Jas GS, Choosakoonkriang S, Koe GS, Smith JG, Middaugh CR (2003) The structure of DNA within cationic lipid/DNA complexes. Biophys J 84:1114–1123

    Google Scholar 

  • Brignole C, Pagnan G, Marimpietri D, Cosimo E, Allen TM, Ponzoni M, Pastorino F (2003) Targeted delivery system for antisense oligonucleotides: a novel experimental strategy for neuroblastoma treatment. Cancer Lett 197:231–235

    Google Scholar 

  • Brooks H, Lebleu B, Vivès E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Del Rev 57:559–577

    Google Scholar 

  • Brown MD, Schatzlein AG, Uchegbu IF (2001) Gene delivery with synthetic (non viral) carriers. Int J Pharm 229:1–21

    Google Scholar 

  • Bui HT, Umakoshi H, Suga K, Tanabe T, Ngo KX, Shimanouchi T, Kuboi R (2010) Cationic liposome can interfere mRNA translation in an E.coli cell-free translation system. Biochem Eng J 52:38–43

    Google Scholar 

  • Cai X, Conley S, Naash M (2008) Nanoparticle applications in ocular gene therapy. Vision Res 48:319–324

    Google Scholar 

  • Cardoso ALC, Simões S, de Almeida LP, Plesnila N, de Lima MCP, Wagner E, Culmsee C (2008) Tf-lipoplexes for neuronal siRNA delivery: A promising system to mediate gene silencing in the CNS. J Contr Release 132:113–123

    Google Scholar 

  • Cartier R, Reszka R (2002) Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. Gene Ther 9:157–167

    Google Scholar 

  • Cerchia L, Franciscis V (2010) Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol 28:517–525

    Google Scholar 

  • Chen X, Kube DM, Cooper MJ, Davis PB (2007) Cell Surface Nucleolin Serves as Receptor for DNA nanoparticles Composed of Pegylated Polylysine and DNA. Mol Ther 16:333–342

    Google Scholar 

  • Chirila TV, Rakoczy PE, Garrett KL, Lou X, Constable IJ (2002) The use of synthetic polymers for delivery of therapeutic antisense oligodeoxynucleotides. Biomaterials 23:321–342

    Google Scholar 

  • Cusi MG, Fischer S, Sedlmeier R, Valassina M, Valensin PE, Donati M, Neubert WJ (2001) Localization of a new neutralizing epitope on the mumps virus hemagglutinin–neuraminidase protein. Virus Res 74:133–137

    Google Scholar 

  • David S, Pitard B, BenoĂ®t JP, Passirani C (2010) Non-viral nanosystems for systemic siRNA delivery. Pharmacol Res 62:100–114

    Google Scholar 

  • De Martimprey H, Vauthier C, Malvy C, Couvreur P (2009) Polymer nanocarriers for the delivery of small fragments of nucleic acids: oligonucleotides and siRNA. Eur J Pharm Biopharm 71:490–504

    Google Scholar 

  • Dean DA (2000) Peptide nucleic acids: versatile tools for gene therapy strategies. Adv Drug Del Rev 44:81–95

    Google Scholar 

  • Dean DA, Strong DD, Zimmer WE (2005) Nuclear entry of nonviral vectors. Gene Ther 12:881–890

    Google Scholar 

  • Deshayes S, Morris MC, Divita G, Heitz F (2005) Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol Life Sci 62:1839–1849

    Google Scholar 

  • Deshayes S, Morris M, Heitz F, Divita G (2008) Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv Drug Del Rev 60:537–547

    Google Scholar 

  • Dokka S, Rojanasakul Y (2000) Novel non-endocytic delivery of antisense oligonucleotides. Adv Drug Del Rev 44:35–49

    Google Scholar 

  • Dufes C, Uchegbu IF, Schatzlein AG (2005) Dendrimers in gene delivery. Adv Drug Del Rev 57:2177–2202

    Google Scholar 

  • During MJ, Ashenden LMA (1998) Towards gene therapy for the central nervous system. Mol Med Today 98:1370–1377

    Google Scholar 

  • Eastman SJ, Siegel C, Tousignant J, Smith AE, Cheng SH, Scheule RK (1997) Biophysical characterization of cationic lipid: DNA complexes. Biochim Biophys Acta Biomembr 1325:41–62

    Google Scholar 

  • Edelstein ML, Abedi MR, Wixon J (2007) Gene therapy clinical trials worldwide to 2007 – an update. J Gene Med 9:833–842

    Google Scholar 

  • Edinger D, Wagner E (2011) Bioresponsive polymers for the delivery of therapeutic nucleic acids. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:33–46

    Google Scholar 

  • El-Aneed A (2004) An overview of current delivery systems in cancer gene therapy. J Control Rel 94:1–14

    Google Scholar 

  • Even-Chen S, Barenholz Y (2000) DOTAP cationic liposomes prefer relaxed over supercoiled plasmids. Biochim Biophys Acta Biomembr 1509:176–188

    Google Scholar 

  • Faham A, Herringson T, Parish C, Suhrbier A, Khromykh AA, Altina JG (2011) pDNA-lipoplexes engrafted with flagellin-related peptide induce potent immunity and anti-tumour effects. Vaccine. doi:10.1016/j.vaccine.2011.07.045

  • Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factorsinvolved, and limitations and augmentation of the effect. Adv Drug Del Rev 63:136–151

    Google Scholar 

  • Farhood H, Serbina N, Huang L (1995) The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta Biomembr 1235:289–295

    Google Scholar 

  • Fattal E, Bochot A (2008) State of the art and perspectives for the delivery of antisense oligonucleotides and siRNA by polymeric nanocarriers. Int J Pharm 364:237–248

    Google Scholar 

  • Fattal E, Couvreur P, Dubernet C (2004) “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv Drug Del Rev 56:931–946

    Google Scholar 

  • Felnerova D, Viret JF, Gluck R, Moser C (2004) Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol 15:518–529

    Google Scholar 

  • Feng M, Lee D, Li P (2006) Intracellular uptake and release of poly(ethyleneimine)-co-poly(methyl methacrylate) nanoparticle/ pDNA complexes for gene delivery. Int J Pharm 311:209–214

    Google Scholar 

  • Fenske DB, Cullis PR (2005) Entrapment of small molecules and nucleic acid–based drugs in liposomes. Meth Enzymol 391:7–40

    Google Scholar 

  • Fenske DB, MacLachlan I, Cullis PR (2002) Stabilized plasmid-lipid particles: a systemic gene therapy vector. Meth Enzymol 346:36–71

    Google Scholar 

  • Ferrer-Miralles N, Vazquez E, Villaverde A (2008) Membrane-active peptides for non-viral gene therapy: making the safest easier. Trends Biotechnol 26:267–275

    Google Scholar 

  • Filion MC, Phillips NC (1997) Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta Biomembr 1329:345–356

    Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Google Scholar 

  • Fleischhacker M, Schmidt B (2007) Circulating nucleic acids (CNAs) and cancer—A survey. Biochim Biophys Acta – Reviews on. Cancer 1775:181–232

    Google Scholar 

  • Friend DS, Papahadjopoulos D, Debs RJ (1996) Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim Biophys Acta Biomembr 1278:41–50

    Google Scholar 

  • Funhoff AM, van Nostrum CF, Janssen APCA, Fens MHAM, Crommelin DJA, Hennink WE (2004) Polymer side-chain degradation as a tool to control the destabilization of polyplexes. Pharm Res 21:170–176

    Google Scholar 

  • Funhoff AM, van Nostrum CF, Lok MC, Kruijtzer JAW, Crommelin DJA, Hennink WE (2005a) Cationic polymethacrylates with covalently linked membrane destabilizing peptides as gene delivery vectors. J Control Rel 101:233–246

    Google Scholar 

  • Funhoff AF, Mongeb S, Teeuwena R, Koninga GA, Schuurmans-Nieuwenbroeka NME, Crommelina DJA, Haddletonb DM, Henninka WE, van Nostrum CF (2005b) PEG shielded polymeric double-layered micelles for gene delivery. J Control Rel 102:711–724

    Google Scholar 

  • Galetich I, Kosevich M, Shelkovsky V, Stepanian SG, Blagoi YP, Adamowicz L (1999) Structure and energy of nucleic acid base–amino acid complexes: 1. 1-methyl-uracil-acrylamide. J Mol Struct 478:155–162

    Google Scholar 

  • Gao Yu XuZ, Chen S, Gu W, Chen L, Li Y (2008) Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery: In vitro characteristics and transfection efficiency. Int J Pharm 359:241–246

    Google Scholar 

  • Garcia-Chaumont C, Seksek O, Grzybowska J, Borowski E, Bolard J (2000) Delivery systems for antisense oligonucleotides. Pharmacol Ther 87:255–277

    Google Scholar 

  • Gaughan DJ, Whitehead AS (1999) Function and biological applications of catalytic nucleic acids. Biochim Biophys Acta Gene Struct Expr 1445:1–20

    Google Scholar 

  • Geusens B, Lambert J, Smedt SC, Buyens K, Sanders NN, Gele MV (2009) Ultradeformable cationic liposomes for delivery of small interfering RNA (siRNA) into human primary melanocytes. J Control Rel 133:214–220

    Google Scholar 

  • Godbey WT, Mikos AG (2001) Recent progress in gene delivery using non-viral transfer complexes. J Control Rel 72:115–125

    Google Scholar 

  • Godbey WT, Wu KK, Mikos AG (1999) Poly(ethylenimine) and its role in gene delivery. J Control Rel 60:149–160

    Google Scholar 

  • Goldfarb DS (1988) Karyophilic Peptides: Applications to the study of Nuclear Transport. Cell Biol Int Rep 12:809–832

    Google Scholar 

  • Goncalves C, Mennesson E, Fuchs R, Gorvel JP, Midoux P, Pichon C (2004) Macropinocytosis of polyplexes and recycling of plasmid via the clathrin-dependent pathway impair the transfection efficiency of human hepatocarcinoma cells. Mol Ther 10:373–385

    Google Scholar 

  • Gong H, Liu CM, Liu DP, Liang CC (2005) The role of small RNAs in human diseases: potential troublemaker and therapeutic tools. Med Res Rev 25:361–381

    Google Scholar 

  • Grimm D (2009) Small silencing RNAs: State-of-the-art. Adv Drug Del Rev 61:672–703

    Google Scholar 

  • Grosse S, Aron Y, Thevenot G, Monsigny M, Fajac I (2007) Cytoskeletal involvement in the cellular trafficking of plasmid/PEI derivative complexes. J Control Rel 122:111–117

    Google Scholar 

  • Guo ZS, Li Q, Bartlett DL, Yang JY, Fang B (2008) Gene transfer: the challenge of regulated gene expression. Trends Mol Med 14:410–418

    Google Scholar 

  • Guo J, Bourre L, Soden DM, O’Sullivan GC, O’Driscoll C (2011) Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? Biotechnol Adv 29:402–417

    Google Scholar 

  • Gutierrez-Puente Y, Tari AM, Ford RJ, Tamez-Guerra R, Mercado-Hernandez R, Santoyo-Stephano M, Lopez-Berestein G (2003) Cellular pharmacology of P-ethoxy antisense oligonucleotides targeted to Bcl-2 in a follicular lymphoma cell line. Leuk Lymphoma 44:1979–1985

    Google Scholar 

  • Hagigit T, Nassar T, Behar-Cohen F, Lambert G, Benita S (2008) The influence of cationic lipid type on in-vitro release kinetic profiles of antisense oligonucleotide from cationic nanoemulsions. Eur J Pharm Biopharm 70:248–259

    Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Google Scholar 

  • Hammond SM (2006) MicroRNA therapeutics: a new niche for antisense nucleic acids. Trends Mol Med 12:99–101

    Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–295

    Google Scholar 

  • Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute 2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150

    Google Scholar 

  • Han SE, Kang HK, Shim GY, Suh MS, Kim SJ, Kim JS, Oh YK (2008) Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA. Int J Pharm 353:260–269

    Google Scholar 

  • Han Y, Liu S, Ho J, Danquah MK, Forde GM (2009) Using DNA as a drug—Bioprocessing and delivery strategies. Chem Eng Res Des 87:343–348

    Google Scholar 

  • He CX, Tabata Y, Gao JQ (2010) Non-viral gene delivery carrier and its three-dimensional transfection system. Int J Pharm 386:232–242

    Google Scholar 

  • Henderson A, Propst K, Kedl R, Dow S (2011) Mucosal immunization with liposome-nucleic acid adjuvants generates effective humoral and cellular immunity. Vaccine 29:5304–5312

    Google Scholar 

  • Herringson TP, Altin JG (2009) Convenient targeting of stealth siRNA-lipoplexes to cells with chelator lipid-anchored molecules. J Control Rel 139:229–238

    Google Scholar 

  • Heyes J, Palmer L, Bremner K, MacLachlan I (2005) Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Rel 107:276–287

    Google Scholar 

  • Heyes J, Hall K, Tailor V, Lenz R, MacLachlan I (2006) Synthesis and characterization of novel poly(ethylene glycol)-lipid conjugates suitable for use in drug delivery. J Control Rel 112:280–290

    Google Scholar 

  • Higgins MK, McMahon HT (2002) Snap-shots of clathrin-mediated Endocytosis. Trends Biochem Sci 27:257–263

    Google Scholar 

  • Hirsch-Lerner D, Zhang M, Eliyahu H, Ferrari ME, Wheeler CJ, Barenholz Y (2005) Effect of “helper lipid” on lipoplex electrostatics. Biochim Biophys Acta Biomembr 1714:71–84

    Google Scholar 

  • Hoekstra D, Rejman J, Wasungu L, Shi F, Zuhorn I (2007) Gene delivery by cationic lipids: in and out of an endosome. Biochem Soc Trans 35:68–71

    Google Scholar 

  • Horgan C, Johnson RJ, Gauthier J, Mannik M, Emlen W (1989) Binding of double-stranded DNA to glomeruli of rats in vivo. Arthritis Rheum 32:298–305

    Google Scholar 

  • Hufnagel H, Hakim P, Lima A, Hollfelder F (2009) Fluid phase endocytosis contributes to transfection of DNA by PEI-25. Mol Ther 17:1411–1417

    Google Scholar 

  • Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Analy Chem 83:4440–4452

    Google Scholar 

  • Ishii N, Nakanishi A, Yamada M, Macalalad MH, Kasamatsu H (1994) Functional complementation of nuclear targeting-defective mutants of simian virus 40 structural proteins. J Virol 68:8209–8216

    Google Scholar 

  • Ito A, Matsuoka F, Honda H, Kobayashi T (2004) Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Immunol Immunother 53:26–32

    Google Scholar 

  • Iwata K, Hozumi K, Itoh T, Sakairi N, Tokura S, Katagiri C, Nishi N (1997) Conformation of nucleoplasmin and its interaction with DNA-protamine complex as a simple model of fish sperm nuclei. Int J Biol Macromol 20:171–178

    Google Scholar 

  • Jääskeläinen I, Sternberg B, Mönkkönen J, Urtti A (1998) Physicochemical and morphological properties of complexes made of cationic liposomes and oligonucleotides. Int J Pharm 167:191–203

    Google Scholar 

  • Jabs DA, Griffiths PD (2002) Fomivirsen for the treatment of cytomegalovirusretinitis. Am J Ophthalmol 133:552–556

    Google Scholar 

  • Jain RK (1999) Transport of molecules, particles and cells in solid tumors. Annu Rev Biomed 1:241–263

    Google Scholar 

  • Jarver P, Langel U (2004) The use of cell-penetrating peptides as a tool for gene regulation. Drug Discov Today 9:395–402

    Google Scholar 

  • Jeong JH, Kim SW, Park TG (2003) A new antisense oligonucleotide delivery system based on self-assembled ODN–PEG hybrid conjugate micelles. J Control Rel 93:183–191

    Google Scholar 

  • Jiang J, Yang S, Wang JC, Yang LJ, Xu ZZ, Yang T, Liu XY, Zhang Q (2010) Sequential treatment of drug-resistant tumors with RGD-modified liposomes containing siRNA or doxorubicin. Eur J Pharm Biopharm 76:170–178

    Google Scholar 

  • Johnstone SA, Masin D, Mayer L, Bally MB (2001) Surface-associated serum proteins inhibit the uptake of phosphatidylserine and poly(ethylene glycol) liposomes by mouse macrophages. Biochim Biophys Acta Biomembr 1513:25–37

    Google Scholar 

  • Juliano R, Alam MR, Dixit V, Kang H (2008) Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res 36:4158–4417

    Google Scholar 

  • Jung SS, Suh J, Choy K, Lai SK, Fu J, Hanes J (2006) Gene delivery to differentiated neurotypic cells with RGD and HIV Tatpeptide functionalized polymeric nanoparticle. Biomaterials 27:5143–5150

    Google Scholar 

  • Kakizawa Y, Kataoka K (2002) Block copolymer micelles for delivery of gene and related compounds. Adv Drug Del Rev 54:203–222

    Google Scholar 

  • Kamiya H, Tsuchiya H, Yamazaki J, Harashima H (2001) Intracellular trafficking and transgene expression of viral and non-viral gene vectors. Adva Drug Del Rev 52:153–164

    Google Scholar 

  • Kanatani I, Ikai T, Okazaki A, Jo J, Yamamoto M, Imamura M, Kanematsu A, Yamamoto S, Ito N, Ogawa O, Tabata Y (2006) Efficient gene transfer by pullulan–spermine occurs through both clathrin- and raft/caveolae-dependent mechanisms. J Control Rel 116:75–82

    Google Scholar 

  • KarikĂł K, Kuo A, Barnathan ES, Langer DJ (1998) Phosphate-enhanced transfection of cationic lipid-complexed mRNA and plasmid DNA. Biochim Biophys Acta Biomembr 1369:320–334

    Google Scholar 

  • Kasper FK, Mikos AG (2004) Biomaterials and gene therapy. Adv Chem Eng 29:131–168

    Google Scholar 

  • Kawakami S, Harada A, Sakanaka K, Nishida K, Nakamura J, Sakaeda T, Ichikawa N, Nakashima M, Sasaki H (2004) In vivo gene transfection via intravitreal injection of cationic liposome/plasmid DNA complexes in rabbits. Int J Pharm 278:255–262

    Google Scholar 

  • Kawakami S, Higuchi Y, Hashida M (2008) Nonviral approaches for targeted delivery of plasmid dna and oligonucleotide. J Pharm Sci 97:726–745

    Google Scholar 

  • Keiji I, Kataoka K (2009) Recent development of nonviral gene delivery systems with virus-like structures and mechanisms. Eur J Pharm Biopharm 71:475–483

    Google Scholar 

  • Kim MS, Diamond SL (2006) Controlled release of DNA/polyamine complex by photoirradiation of a solid phase presenting o-nitrobenzyl ether tethered spermine or polyethyleneimine. Bioorg Med Chem Letters 16:5572–5575

    Google Scholar 

  • Kim HK, Davaa E, Myung CS, Park JS (2010) Enhanced siRNA delivery using cationic liposomes with new polyarginine-conjugated PEG-lipid. Int J Pharm 392:141–147

    Google Scholar 

  • Kirkham M, Parton RG (2005) Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim Biophys Acta – Mol. Cell Res 1745:273–286

    Google Scholar 

  • Kita J, Kobayashi E, Hishinuma A, Kaneda Y (2003) Genetic modification of cold-preserved renal grafts using HSP70 or bcl-2 HVJ-liposome method. Transpl Immunol 11:7–14

    Google Scholar 

  • Ko YT, Bhattacharya R, Bickel U (2009) Liposome encapsulated polyethylenimine/ODN polyplexes for brain targeting. J Control Rel 133:230–237

    Google Scholar 

  • Konopka K, Rossi JJ, Swiderski P, Slepushkin VA, DĂĽzgĂĽne N (1998) Delivery of an anti-HIV-1 ribozyme into HIV-infected cells via cationic liposomes. Biochim Biophys Acta Biomembr 1372:55–68

    Google Scholar 

  • Kumar P, Ban HS, Sang-Soo Kim SS, Wu H, Pearson T, Greiner DL, Laouar A, Yao J, Haridas V, Habiro K, Yang YG, Jeong JH, Lee KY, Kim YH, Kim SW, Peipp M, Fey GH, Manjunath N, Shultz LD, Lee SK, Shankar P (2008) T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134:577–586

    Google Scholar 

  • Kurosaki T, Kishikawa R, Matsumoto M, Kodama Y, Hamamoto T, To H, Niidome T, Takayama K, Kitahara TY, Sasaki H (2009) Pulmonary gene delivery of hybrid vector, lipopolyplex containing N-lauroylsarcosine, via the systemic route. J Control Rel 136:213–219

    Google Scholar 

  • Lai WF, Lin MCM (2009) Nucleic acid delivery with chitosan and its derivatives. J Control Rel 134:158–168

    Google Scholar 

  • Lai TC, Kataoka K, Kwon GS (2011) Pluronic-based cationic block copolymer for forming pDNA polyplexes with enhanced cellular uptake and improved transfection efficiency. Biomaterials 32:4594–4603

    Google Scholar 

  • Lares MR, Rossi JJ, Ouellet DL (2010) RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol 28:570–579

    Google Scholar 

  • Lechardeur D, Verkman AS, Lukacs GL (2005) Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Del Rev 57:755–767

    Google Scholar 

  • Ledley FD, Ledley TS (1998) Pharmacokinetic considerations in somatic gene therapy. Adv Drug Del Rev 30:133–150

    Google Scholar 

  • Lee H, Jeong JH, Park TG (2002) PEG grafted polylysine with fusogenic peptide for gene delivery: high transfection efficiency with low cytotoxicity. J Control Rel 79:283–291

    Google Scholar 

  • Lee CH, Ni YH, Chen CC, Chou CK, Chang FH (2003) Synergistic effect of polyethylenimine and cationic liposomes in nucleic acid delivery to human cancer cells. Biochim Biophys Acta Biomembr 1611:55–62

    Google Scholar 

  • Lee SH, Choi SH, Kim SH, Park TG (2008) Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: swelling induced physical disruption of endosome by cold shock. J Control Rel 125:25–32

    Google Scholar 

  • Lee SH, Mok H, Lee Y, Park TG (2011) Self-assembled siRNA–PLGA conjugate micelles for gene silencing. J Control Rel 152:152–158

    Google Scholar 

  • Lemarchand C, Gref R, Couvreur P (2004) Polysaccharide-decorated nanoparticles. Eur Pharm Biopharm 58:327–341

    Google Scholar 

  • Leonett JP, Rayner B, Lemaitre M, Gagnor C, Milhaud PG, Imbach JL, Lebleu B (1988) Antiviral activity of conjugates between poly(l-lysine) and synthetic oligodeoxyribo nucleotides. Gene 12:323–332

    Google Scholar 

  • Leung RKM, Whittaker PA (2005) RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 107:222–239

    Google Scholar 

  • Li WM, Dragowska WH, Bally MB, Schutze-Redelmeier MP (2003) Effective induction of CD8+ T-cell response using CpG oligodeoxynucleotides and HER-2/neu-derived peptide co-encapsulated in liposomes. Vaccine 21:3319–3329

    Google Scholar 

  • Lieberman J, Song E, Lee SK, Shankar P (2003) Interfering with disease: opportunities and roadblocks to harnessing RNA interference. Trends Mol Med 9:397–403

    Google Scholar 

  • Liu Z, Zhirong Z, Gang P, Shurong W, Xi D, Dongmei Y, Zhirong Z, Qin H, Jie L (2009) Folate receptor mediated intracellular gene delivery using the charge changing solid lipid nanoparticles. Drug Del 16:341–347

    Google Scholar 

  • Locher CP, Witt SA, Ashlock BM, Levy JA (2004) Evaluation of genetic immunization adjuvants to improve the effectiveness of a human immunodeficiency virus type 2 (HIV-2) envelope DNA vaccine. DNA Cell Biol 23:107–110

    Google Scholar 

  • Lonez C, Vandenbranden M, Ruysschaert JM (2008) Cationic liposomal lipids: from gene carriers to cell signaling. Prog Lipid Res 47:340–347

    Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Google Scholar 

  • Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275:1625–1629

    Google Scholar 

  • Lundmark R, Carlsson SR (2010) Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosis. Seminars Cell Dev Biol 21:363–370

    Google Scholar 

  • Lundstrom K (2003) Latest development in viral vectors for gene therapy. Trends Biotechnol 21:117–122

    Google Scholar 

  • Lynn DM, Langer R (2000) Degradable poly(beta-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J Am Chem Soc 122:10761–10768

    Google Scholar 

  • Lysik MA, Wu-Pong S (2003) Innovations in oligonucleotide drug delivery. J Pharm Sci 92:1559–1573

    Google Scholar 

  • Ma Z, Li J, He F, Wilson A, Pitt B, Li S (2005) Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem Biophys Res Commun 330:755–759

    Google Scholar 

  • MacLachlan I, Cullis P (2005) Diffusible-PEG-lipid stabilized plasmid lipid particles. Adv Genet 53:157–188

    Google Scholar 

  • Mao CQ, Du JZ, Sun TM, Yao YD, Zhang PZ, Song EW, Wang J (2011) A biodegradable amphiphilic and cationic triblock copolymer for the delivery of siRNA targeting the acid ceramidase gene for cancer therapy. Biomaterials 32:3124–3133

    Google Scholar 

  • Martin ME, Rice KG (2007) Peptide-guided gene delivery. AAPS J 9:E18–E27

    Google Scholar 

  • Masson C, Escriou V, Bessodes M, Scherman D (2003) Lipid reagents for DNA transfer into mammalian cells. New Compr Biochem 38:279–289

    Google Scholar 

  • Matsumoto M, Kishikawa R, Kurosaki T, Nakagawa H, Ichikawa N, Hamamoto T, To H, Kitahara T, Sasaki H (2008) Hybrid vector including polyethylenimine and cationic lipid, DOTMA, for gene delivery. Int J Pharm 363:58–65

    Google Scholar 

  • Matzke M, Aufsatz W, Kanno T, Daxinger L, Papp I, Mette MF, Matzke AJM (2004) Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim Biophys Acta Gene Struct Expr 1677:129–141

    Google Scholar 

  • Mcanuff MA, Rettig GR, Rice KG (2007) Potency of siRNA versus shRNA mediated knockdown in Vivo. J Pharm Sci 96:2922–2930

    Google Scholar 

  • Medina-Kauwe LK, Xie J, Hamm-Alvarez S (2005) Intracellular trafficking of nonviral vectors. Gene Ther 12:1734–1751

    Google Scholar 

  • Meidan VM, Cohen JS, Amariglio N, Hirsch-Lerner D, Barenholz Y (2000) Interaction of oligonucleotides with cationic lipids: the relationship between electrostatics, hydration and state of aggregation. Biochim Biophys Acta Biomembr 1464:251–261

    Google Scholar 

  • MĂ©vel M, Kamaly N, Carmona S, Oliver MH, Jorgensen MR, Crowther C, Salazar FH, Marion PL, Fujino M, Natori Y, Thanou M, Arbuthnot P, Yaouanc JJ, Jaffrès PA, Miller AD (2010) DODAG; a versatile new cationic lipid that mediates efficient delivery of pDNA and siRNA. J Control Rel 143:222–232

    Google Scholar 

  • Midoux P, Monsigny M (1999) Efficient gene transfer by histidylated polylysine pDNA complexes. Bioconjug Chem 10:406–411

    Google Scholar 

  • Mignet N, Chaix C, Rayner B, Imbach JL (1997) Synthesis and evaluation of glucuronic acid derivatives as alkylating agents for the reversible masking of internucleoside groups of antisense oligonucleotides. Carb Res 303:17–24

    Google Scholar 

  • Miller AM, Dean DA (2009) Tissue-specific and transcription factor-mediated nuclear entry of DNA. Adv Drug Del Rev 61:603–613

    Google Scholar 

  • Min SH, Kim DM, Kim MN, Ge J, Lee DC, Park IY, Park KC, Hwang JS, Cho CW, Yeom YI (2010) Gene delivery using a derivative of the protein transduction domain peptide, K-Antp. Biomaterials 31:1858–1864

    Google Scholar 

  • Moka KWC, Lama AMI, Cullisa PR (1999) Stabilized plasmid-lipid particles: factors influencing plasmid entrapment and transfection properties. Biochim Biophys Acta Biomembr 1419:137–150

    Google Scholar 

  • Monkkonen J, Urtti A (1998) Lipid fusion in oligonucleotide and gene delivery with cationic lipids. Adv Drug Del Rev 34:37–49

    Google Scholar 

  • Monnard PA, Oberholzer T, Luisi P (1997) Entrapment of nucleic acids in liposomes. Biochim Biophys Acta Biomembr 1329:39–50

    Google Scholar 

  • Moore NM, Sheppard CL, Sakiyama-Elbertet SE (2009) Characterization of a multifunctional PEG-based gene delivery system containing nuclear localization signals and endosomal escape peptides. Acta Biomater 5:854–864

    Google Scholar 

  • Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP (2008) Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 29:3477–3496

    Google Scholar 

  • Moser HE, Dervan PB (1987) Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238:645–650

    Google Scholar 

  • Munkonge FM, Dean DA, Hillery E, Griesenbach U, Alton EW (2003) Emerging significance of plasmid DNA nuclear import in gene therapy. Adv Drug Del Rev 55:749–760

    Google Scholar 

  • Muotri AR, da Veiga PL, dos Reis VL, Menck CF (1999) Ribozymes and the anti-gene therapy: how a catalytic RNA can be used to inhibit gene function. Gene 237:303–310

    Google Scholar 

  • Navarro G, de ILarduya CT (2009) Activated and non-activated PAMAM dendrimers for gene delivery in vitro and in vivo. Nanomed: Nanotechnol Biol Med 5:287–297

    Google Scholar 

  • Navarro-Quiroga I, González-Barrios JA, Barron-Moreno F, González-Bernal V, Martinez-Arguelles DB, Martinez-Fong D (2002) Improved neurotensin-vector-mediated gene transfer by the coupling of hemagglutinin HA2 fusogenic peptide and Vp1 SV40 nuclear localization signal. Mol Brain Res 105:86–97

    Google Scholar 

  • Ng SL, Such GK, Johnston APR, Antequera-GarcĂ­a G, Caruso F (2011) Controlled release of DNA from poly(vinylpyrrolidone) capsules using cleavable linkers. Biomaterials 32:6277–6284

    Google Scholar 

  • Nichols BJ, Lippincott-Schwartz J (2001) Endocytosis without clathrin coats. Trends in Cell Biol 11:406–412

    Google Scholar 

  • Nimesh S, Kumar R, Chandra R (2006) Novel polyallylamine–dextran sulfate–DNA nanoplexes: highly efficient non-viral vector for gene delivery. Int J Pharm 320:143–149

    Google Scholar 

  • Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648

    Google Scholar 

  • Noguchi S, Hirashima N, Furuno T, Nakanishi M (2003) Remarkable induction of apoptosis in cancer cells by a novel cationic liposome complexed with a bcl-2 antisense oligonucleotide. J Control Rel 88:313–320

    Google Scholar 

  • Novina CD, Sharp PA (2004) The RNAi revolution. Nature 430:161–164

    Google Scholar 

  • Noyes BE, Stark GR (1975) Nucleic acid hybridization using DNA covalently coupled to cellulose. Cell 5:301–310

    Google Scholar 

  • Oh EJ, Park K, Kim KS, Kim J, Yang JA, Kong JH, Lee MY, Hoffman AS, Hahn SK (2010) Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Rel 141:2–12

    Google Scholar 

  • Oohara I, Suyama A, Wada A (1983) Reconstitution mechanism of nucleosome core particles mediated by poly(l-glutamic acid). Biochim Biophys Acta Gene Struct Expr 741:322–332

    Google Scholar 

  • Pante N, Kann M (2002) Nuclear Pore Complex Is Able to Transport Macromolecules with Diameters of 39 nm. Mol Biol Cell 13:425–434

    Google Scholar 

  • Paterson BM, Roberts BE, Kuff EL (1977) Structural gene identification and mapping by DNA mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci 74:4370–4374

    Google Scholar 

  • Pedroso de Lima MC, Simões S, Pires P, Faneca H, DĂĽzgĂĽne N (2001) Cationic lipid–DNA complexes in gene delivery: from biophysics to biological applications. Adva Drug Del Rev 47:277–294

    Google Scholar 

  • Pfeifer A, Lehmann H (2010) Pharmacological potential of RNAi — focus on miRNA. Pharmacol Ther 126:217–227

    Google Scholar 

  • Pichon C, Gonçalves C, Midoux P (2001) Histidine-rich peptides and polymers for nucleic acids delivery. Adv Drug Del Rev 53:75–94

    Google Scholar 

  • Plank C, Zauner W, Wagner E (1998) Application of mem-brane-active peptides for drug and gene delivery across cellular membranes. Adv Drug Del Rev 34:21–35

    Google Scholar 

  • Pollard H, Remy JS, Loussouarn DS, Behr JP, Escande D (1998) Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem 273:7507–7511

    Google Scholar 

  • Pooga M, Kut C, Kihlmark M, Häll-brink M, Fernaeus S, Raid R, Tiit L, Hallberg E, Bartfai T, Langel U (2001) Cellular translocation of proteins by transportan. FASEB J 1451–1453

    Google Scholar 

  • Pouton CW, Seymour LW (1998) Key issues in non-viral gene delivery. Adv Drug Del Rev 34:3–19

    Google Scholar 

  • Prata CAH, Zhao Y, Barthelemy P, Li Y, Luo D, McIntosh TJ, Lee SJ, Grinstaff MW (2004) Charge-reversal amphiphiles for gene delivery. J Am Chem Soc 126:12196–12197

    Google Scholar 

  • Radhakrishnan SK, Layden TJ, Gartel AL (2004) RNA interference as a new strategy against viral hepatitis. Virology 323:173–181

    Google Scholar 

  • Rao NM (2010) Cationic lipid-mediated nucleic acid delivery: beyond being cationic. Chem Phys Lipids 163:245–252

    Google Scholar 

  • Rao DD, Senzer N, Cleary MA, Nemunaitis J (2009a) Comparative assessment of siRNA and shRNA off target effects: what is slowing clinical development. Cancer Gene Ther 16:807–809

    Google Scholar 

  • Rao DD, Vorhies JS, Senzera N, Nemunaitis J (2009b) siRNA vs. shRNA: similarities and differences. Adv Drug Del Rev 61:746–759

    Google Scholar 

  • Read ML, Dash PR, Clark A, Howard KA, Oupicky D, Toncheva V, Alpar HO, Schacht EH, Ulbrich K, Seymour LW (2000) Physicochemical and biological characterisation of an antisense oligonucleotide targeted against the bcl-2 mRNA complexed with cationic–hydrophilic copolymers. Eur J Pharm Sci 10:169–177

    Google Scholar 

  • Rejman J, Tavernier G, Bavarsad N, Demeester J, De Smedt SC (2010) mRNA transfection of cervical carcinoma and mesenchymal stem cells mediated by cationic carriers. J Control Rel 147:385–391

    Google Scholar 

  • Resina S, Abes S, Turner JJ, Prevot P, Travo A, Clair P, Gait MJ, Thierry AR, Bernard Lebleu B (2007) Lipoplex and peptide-based strategies for the delivery of steric-block oligonucleotides. Int J Pharm 344:96–102

    Google Scholar 

  • Reynolds PN, Feng M, Curiel DT (1999) Chimeric viral vectors – the best of both worlds? Mol Med Today 5:25–29

    Google Scholar 

  • Ribeiroa AMC, Chaimovich H (1983) Preparation and characterization of large dioctadecyldimethylammonium chloride liposomes and comparison with small sonicated vesicles. Biochim Biophys Acta Biomembr 733:172–179

    Google Scholar 

  • Rippe B, Rosengren BI, Carlsson O, Venturoli D (2002) Transendothelial transport: the vesicle controversy. J Vasc Res 39:375–390

    Google Scholar 

  • Rittner K, Benavente A, Bompard-Sorlet A, Heitz F, Divita G, Brasseur R, Jacobs E (2002) New basic membrane-destabilizing pep-tides for plasmid-based Gene delivery in Vitro and in Vivo. Mol Ther 5:104–114

    Google Scholar 

  • Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12:340–349

    Google Scholar 

  • Robbins PD, Ghivizzani SC (1998) Viral vectors for gene therapy. Pharmacol Ther 80:35–47

    Google Scholar 

  • Roskrow MA, Gänsbacher B (1998) Recent developments in gene therapy for oncology and hematology. Crit Rev Oncol Hematol 28:139–151

    Google Scholar 

  • Roy I, Stachowiak MK, Bergey EJ (2008) Nonviral gene transfection nanoparticles: function and applications in the brain. Nanomed Nanotechnol Biol Med 4:89–97

    Google Scholar 

  • Rychahou PG, Jackson LN, Farrow BJ, Evers BM (2006) RNA interference: mechanisms of action and therapeutic consideration. Surgery 140:719–725

    Google Scholar 

  • Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Rel 145:182–195

    Google Scholar 

  • Sandvig K, Pust S, Skotland T, vanDeurs B (2011) Clathrin-independent endocytosis: mechanisms and function. Curr Opin Cell Biol 23:413–420

    Google Scholar 

  • Scardino A, Correale P, Firat H, Pellegrini M, Kosmatopoulos K, Opolon P, Alves P, Zurbriggen R, Gluck R, Lemonnier FA (2003) In vivo study of the GC90/IRIV vaccine for immune response and autoimmunity into a novel humanised transgenic mouse. Br J Cancer 89:199–205

    Google Scholar 

  • Schafer J, Hobel S, Bakowsky U, Aigner A (2010) Liposome polyethylenimine complexes for enhanced DNA and siRNA delivery. Biomaterials 31:6892–6900

    Google Scholar 

  • Scheule RK (2000) The role of CpG motifs in immunostimulation and gene therapy. Adv Drug Del Rev 44:119–134

    Google Scholar 

  • Schmidts T, Dobler D, von den Hoff SP, Garn H, Schlupp Runkel F (2011) Protective effect of drug delivery systems against the enzymatic degradation of dermally applied DNAzyme. Int J Pharm 410:75–78

    Google Scholar 

  • Schmidt-Wolf GD, Schmidt-Wolf IG (2003) Non-viral and hybrid vectors in human gene therapy: an update. Trends Mol Med 9:67–72

    Google Scholar 

  • Schuster MJ, Wu GY, Walton CM, Wu CH (1999) Multicomponent DNA carrier with a vesicular stomatitis virus G-Peptide greatly enhances liver-targeted gene expression in mice. Bioconjug Chem 10:1075–1083

    Google Scholar 

  • Semple SC, Klimuk SK, Harasym TO, Santos ND, Ansell SM, Wong KF, Maurer N, Stark H, Cullis PR, Hope MJ, Scherrer P (2001) Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim Biophys Acta Biomembr 1510:152–166

    Google Scholar 

  • Sen D, Geyer CR (1998) DNA enzymes. Curr Opin Chem Biol 2:680–687

    Google Scholar 

  • Shen Y, Wang B, Lu Y, Ouahab A, Li Q, Tu J (2011) A novel tumor-targeted delivery system with hydrophobized hyaluronic acid–spermine conjugates (HHSCs) for efficient receptor-mediated siRNA delivery. Int J Pharm 414:233–243

    Google Scholar 

  • Shih IL, Shen MH, Van YT (2006) Microbial synthesis of poly(e-lysine) and its various applications. Bioresource Technol 97:1148–1159

    Google Scholar 

  • Shim G, Han SE, Yu YH, Lee S, Lee HY, Kim K, Kwon IC, Park TG, Kim YB, Choi YS, Kim CW, Oh YK (2010) Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug. J Control Rel. doi:10.1016/j.jconrel.2010.10.017

  • Shruti K, Shrey K, Vibha R (2011) Micro RNAs: tiny sequences with enormous potential. Biochem Biophys Res Commun 407:445–449

    Google Scholar 

  • Shuey DJ, McCallus DE, Giordana T (2002) RNAi: gene-silencing in therapeutic Intervention. Drug Discov Today 7:1040–1046

    Google Scholar 

  • Silva GA (2007) Nanotechnology approaches for drug and small molecule delivery across the blood brain barrier. Surg Neurol 67:113–116

    Google Scholar 

  • Sonawane ND, Szoka FC Jr, Verkman AS (2003) Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-dna polyplexes. J Biol Chem 278:44826–44831

    Google Scholar 

  • Song LY, Ahkong QF, Rong Q, Wang Z, Ansell S, Hope MJ, Mui B (2002) Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes. Biochim Biophys Acta Biomembr 1558:1–13

    Google Scholar 

  • Su CH, Yeh HI, Hou CJY, Tsai CH (2008) Nonviral technologies for gene therapy in cardiovascular research. Int J Gerontol 2:35–47

    Google Scholar 

  • Suh J, Dawson M, Hanes J (2005) Real-time multiple-particle tracking: applications to drug and gene delivery. Adv Drug Del Rev 57:63–78

    Google Scholar 

  • Suh MS, Shim G, Lee HY, Han SE, Yu YH, Choi Y, Kim K, Kwon IC, Weon KY, Kim YB, Oh YK (2009) Anionic amino acid-derived cationic lipid for siRNA delivery. J Control Rel 140:268–276

    Google Scholar 

  • Sun TM, Du JZ, Yan LF, Mao HQ, Wang J (2008) Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials 29:4348–4355

    Google Scholar 

  • Swanson JA, Watts C (1995) Macropinocytosis. Trends Cell Biol 5:424–428

    Google Scholar 

  • Swarup V, Rajeswari MR (2007) Circulating (cell-free) nucleic acids – a promising, non-invasive tool for early detection of several human diseases. FEBS Letters 581:795–799

    Google Scholar 

  • Tachibana R, Harashima H, Shinohara Y, Kiwada H (2001) Quantitative studies on the nuclear transport of plasmid DNA and gene expression employing nonviral vectors. Adv Drug Del Rev 52:219–226

    Google Scholar 

  • Tagalakis AD, He L, Saraiva L, Gustafsson KT, Hart SL (2011) Receptor-targeted liposome-peptide nanocomplexes for siRNA delivery. Biomaterials 32:6302–6315

    Google Scholar 

  • Tahara K, Sakai T, Yamamoto H, Takeuchi H, Kawashima Y (2008) Establishing chitosan coated PLGA nanosphere platform loaded with wide variety of nucleic acid by complexation with cationic compound for gene delivery. Int J Pharm 354:210–216

    Google Scholar 

  • Takashima Y, Saito R, Nakajima A, Oda M, Kimura A, Kanazawa T, Okada H (2007) Spray-drying preparation of microparticles containing cationic PLGA nanospheres as gene carriers for avoiding aggregation of nanospheres. Int J Pharm 343:262–269

    Google Scholar 

  • Tamaddon AM, Shirazi FH, Moghimi HR (2007) Modeling cytoplasmic release of encapsulated oligonucleotides from cationic liposomes. Int J Pharm 336:174–182

    Google Scholar 

  • Tanaka Y, Kasai M, Taneichi M, Naito S, Kato H, Mori M, Nishida M, Maekawa N, Yamamura H, Komuro K, Uchida T (2004) Liposomes with differential lipid components exert differential adjuvanticity in antigen-liposome conjugates via differential recognition by macrophages. Bioconjug Chem 15:35–40

    Google Scholar 

  • Tanner NK (1999) Ribozymes: the characteristics and properties of catalytic RNAs. FEMS Microbiol Rev 23:257–275

    Google Scholar 

  • Tebes SJ, Kruk PA (2005) The genesis of RNA interference, its potential clinical applications, and implications in gynecologic cancer. Gynecol Oncol 99:736–741

    Google Scholar 

  • Teixeira H, Rosilio V, Laigle A, Lepault J, Erk I, Scherman D, Benita S, Couvreur P, Dubernet C (2001) Characterization of oligonucleotide/lipid interactions in submicron cationic emulsions: influence of the cationic lipid structure and the presence of PEG-lipids. Biophys Chem 92:169–181

    Google Scholar 

  • Thanou M, Waddington S, Miller AD (2007) Comprehensive medicinal chemistry II. Gene Ther 1:297–319

    Google Scholar 

  • Toub N, Malvy C, Fattal E, Couvreur P (2006) Innovative nanotechnologies for the delivery of oligonucleotides and siRNA. Biomed Pharmacother 60:607–620

    Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enhrichment: RNA ligands to bactriophage T4 DNA polymerase. Science 249:505–510

    Google Scholar 

  • Tyler-McMahon BM, Boules M, Richelson E (2000) Neurotensin: peptide for the next millennium. Regul Pept 93:125–136

    Google Scholar 

  • Ulanova M, Puttagunta L, Kim MK, Schreiber AD, Befus AD (2003) Antisense oligonucleotides to Syk kinase: a novel therapeutic approach for respiratory disorders. Curr Opin Investig Drugs 4:552–555

    Google Scholar 

  • Uprichard SL (2005) The therapeutic potential of RNA interference. FEBS Letters 579:5996–6007

    Google Scholar 

  • Vaijayanti M, Kumar A (2003) Pyrrolidine carbamate nucleic acids: synthesis and DNA binding studies. Bioorg Med Chem 11:3393–3399

    Google Scholar 

  • van Deurs B, Holm PK, Sandvig K, Hansen SH (1993) Are caveolae involved in clathrin independent endocytosis? Trends Cell Biol 3:249–251

    Google Scholar 

  • Varkouhi AK, Scholte M, Storm G, Haisma HJ (2011) Endosomal escape pathways for delivery of biological. J Control Rel 151:220–228

    Google Scholar 

  • Vazquez E, Ferrer-Miralles N, Villaverde A (2008) Peptide-assisted traffic engineering for nonviral gene therapy. Drug Discov Today 13:23–24

    Google Scholar 

  • Vercauteren D, Vandenbroucke RE, Jones AT, Rejman J, Demeester J, De Smedt SC, Sanders NN, Braeckmans K (2010) The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol Ther 18:561–569

    Google Scholar 

  • Vickers TA, Koo S, Bennett CF, Crooke ST, Dean NM, Baker BF (2003) Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem 278:7108–7118

    Google Scholar 

  • Vighi E, Ruozi B, Montanari M, Battini R, Leo E (2010) pDNA condensation capacity and in vitro gene delivery properties of cationic solid lipid nanoparticles. Int J Pharm 389:254–261

    Google Scholar 

  • Vroman B, Ferreira I, Jerome I, Jerome R, Preat V (2007) PEGylated quaternized copolymer/DNA complexes for gene delivery. Int J Pharm 344:88–95

    Google Scholar 

  • Waelti ER, Gluck R (1996) Delivery to cancer cells of antisense l-myc oligonucleotides incorporated in fusogenic, cationic-lipidreconstituted influenza-virus envelopes (cationic virosomes). Int J Cancer 77:728–733

    Google Scholar 

  • Wagner E, Kircheis R, Walker GF (2004) Targeted nucleic acid delivery into tumors: new avenues for cancer therapy. Biomed Pharmacother 58:152–161

    Google Scholar 

  • Walder RY, Walder JA (1988) Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc Natl Acad Sci USA 85:5011–5015

    Google Scholar 

  • Wang S, Cheng L, Yu F, Pan W, Zhang J (2006) Delivery of different length poly(l-lysine)-conjugated ODN to HepG2 cells using N-stearyllactobionamide-modified liposomes and their enhanced cellular biological effects. Int J Pharm 311:82–88

    Google Scholar 

  • Wang J, Tao X, Zhang Y, Wei D, Ren Y (2010a) Reversion of multidrug resistance by tumor targeted delivery of antisense oligodeoxynucleotides in hydroxypropyl-chitosannanoparticles. Biomaterials 31:4426–4433

    Google Scholar 

  • Wang P, Zhao XH, Wang ZY, Meng M, Li X, Ning Q (2010b) Generation 4 polyamidoamine dendrimers is a novel candidate of nano-carrier for gene delivery agents in breast cancer treatment. Cancer Letters 298:34–49

    Google Scholar 

  • Wang T, Upponi JR, Torchilin VP (2011) Design of multifunctional non-viral gene vectors to overcome physiological barriers: Dilemmas and strategies. Int J Pharm. doi:10.1016/j.ijpharm.2011.07.013

  • Wasana EK, Harviea P, Edwards K, Karlsson G, Ballya MB (1999) A multi-step lipid mixing assay to model structural changes in cationic lipoplexes used for in vitro transfection. Biochim Biophys Acta Biomembr 1461:27–46

    Google Scholar 

  • Wasungu L, Stuart MCA, Scarzello M, Engberts JBFN, Hoekstra D (2006) Lipoplexes formed from sugar-based gemini surfactants undergo a lamellar-to-micellar phase transition at acidic pH. Evidence for a non-inverted membrane-destabilizing hexagonal phase of lipoplexes. Biochim Biophys Acta Biomembr 1758:1677–1684

    Google Scholar 

  • Waterhouse DN, Dragowska WH, Gelmon KA, Mayer LD, Bally MB (2004) Pharmacodynamic behavior of liposomal antisense oligonucleotides targeting Her-2/neu and vascular endothelial growth factor in an ascitic MDA435/LCC6 human breast cancer model. Cancer Biol Ther 3:197–204

    Google Scholar 

  • Weijun LW, François NF, Francis C, Szoka FC (2004) GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery. Adv Drug Del Rev 56:967–985

    Google Scholar 

  • Weiler J, Hunziker J, Hall J (2006) Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther 13:496–502

    Google Scholar 

  • Wiethoff CM, Middaugh CR (2003) Barriers to nonviral gene delivery. J Pharm Sci 92:203–217

    Google Scholar 

  • Won YW, Lim KS, Kim YH (2011) Intracellular organelle-targeted non-viral gene delivery systems. J Control Rel 152:99–109

    Google Scholar 

  • Wong S, Putnam D (2007) Polymer systems for gene delivery—past, present, and future. Prog Polym Sci 32:799–837

    Google Scholar 

  • Wu SC, Yu CH, Lin CW, Chu IM (2003) The domain III fragment of Japanese encephalitis virus envelope protein: mouse immunogenicity and liposome adjuvanticity. Vaccine 21:2516–2522

    Google Scholar 

  • Xiong XB, Falamarzian A, Garg AM, Lavasanifar A (2011) Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery. J Control Rel. doi:10.1016/j.jconrel.2011.04.028

  • Xu L, Anchordoquy T (2011) Drug delivery trends in clinical trials and translational medicine: challenges and opportunities in the delivery of nucleic acid-based therapeutics. J Pharm Sci 100:38–52

    Google Scholar 

  • Yamada Y, Nomura T, Harashima H, Yamashita A, Katoono R, Yui N (2010) Intranuclear DNA release is a determinant of transfection activity for a non-viral vector: biocleavable polyrotaxane as a supramolecularly dissociative condenser for efficient intranuclear DNA release. Biol Pharm Bull 33:1218–1222

    Google Scholar 

  • Yamashita A, Kanda D, Katoono R, Yui N, Ooya T, Maruyama A, Akita H, Kogure K, Arashima H (2008) Supramolecular control of polyplex dissociation and cell transfection: efficacy of amino groups and threading cyclodextrins in biocleavable polyrotaxanes. J Control Rel 131:137–144

    Google Scholar 

  • Yang Y, Xu Z, Chen S, Gao Y, Gu W, Chen L, Pei Y, Li Y (2008) Histidylated cationic polyorganophosphazene/DNA self-assembled nanoparticles for gene delivery. Int J Pharm 353:277–282

    Google Scholar 

  • Yang X, Li N, Gorenstein DG (2011a) Strategies for the discovery of therapeutic aptamers. Exp Opin Drug Discov 6:75–87

    Google Scholar 

  • Yang Y, Li X, Cheng L, He S, Zou J, Chen F, Zhang Z (2011b) Core–sheath structured fibers with pDNA polyplex loadings for the optimal release profile and transfection efficiency as potential tissue engineering scaffolds. Acta Biomater 7:2533–2543

    Google Scholar 

  • Ylösmäki E, Hakkarainen T, Hemminki A, Visakorpi T, Andino R, Saksela K (2008) Generation of a conditionally replicating adenovirus based on targeted destruction of E1A mRNA by a cell type-specific MicroRNA. J Virol 82:11009–11015

    Google Scholar 

  • Yoshida J, Mizuno M, Fujii M, Kajita Y, Nakahara N, Hatano M, Saito R, Nobayashi M, Wakabayashi T (2004) Human gene therapy for malignant gliomas (glioblastoma multiforme and anaplastic astrocytoma) by in vivo transduction with human interferon β gene using cationic liposomes. Hum Gene Ther 15:77–86

    Google Scholar 

  • Zabner J (1997) Cationic lipids used in gene transfer. Adv Drug Del Rev 27:17–28

    Google Scholar 

  • Zaki NM, Tirelli N (2010) Gateways for the intracellular access of nano-carriers: a review of receptor-mediated endocytosis mechanisms and of possible strategies in receptor targeting. Exp Opin Drug Del 7:895–913

    Google Scholar 

  • Zamecnik PC, Stephenson M (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci 75:280–284

    Google Scholar 

  • Zauner W, Ogris M, Wagner E (1998) Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv Drug Del Rev 30:97–113

    Google Scholar 

  • Zelphati O, Uyechi LS, Barron LG, Szoka FC (1998) Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochim Biophys Acta Lipid Lipid Metabol 1390:119–133

    Google Scholar 

  • Zhang Y, Schlachetzki F, Li JY, Boado RJ, Pardridge WM (2003a) Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Mol Vis 9:465–472

    Google Scholar 

  • Zhang Z, Huang W, Wang E, Dong S (2003b) Investigation of the influence on conformational transition of DNA induced by cationic lipid vesicles. Spectrochim Acta A Mol Biomol Spectrosc 59:255–263

    Google Scholar 

  • Zhang Y, Li H, Sun J, Gao J, Liu W, Li B, Guo Y, Chen J (2010) DC-Chol/DOPE cationic liposomes: a comparative study of the influence factors on plasmid pDNA and siRNA gene delivery. Int J Pharm 390:198–207

    Google Scholar 

  • Zhang XX, McIntosh TJ, Grinstaff MW (2011) Functional lipids and lipoplexes for improved gene delivery. Biochimie. doi:10.1016/j.biochi.2011.05.005

  • Zhao XB, Lee RJ (2004) Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Adv Drug Del Rev 56:1193–1204

    Google Scholar 

  • Zhu C, Jung S, Luo S, Meng F, Zhu X, Park TG, Zhong Z (2010) Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA–PCL–PDMAEMA triblock copolymers. Biomaterials 31:2408–2416

    Google Scholar 

  • Zohra FT, Chowdhury EH, Toshihiro Akaike T (2009) High performance mRNA transfection through carbonate apatite cationic liposome conjugates. Biomaterials 30:4006–4013

    Google Scholar 

  • Zou W, Liu C, Chen Z, Zhang N (2009) Studies on bioadhesive PLGA nanoparticles: a promising gene delivery system for efficient gene therapy to lung cancer. Int J Pharm 370:187–195

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge University Grants Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padma V. Devarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

D’Souza, A., Pranatharthiharan, S., Devarajan, P.V. (2012). Nanomedicine in Nucleic Acid Therapy. In: Souto, E. (eds) Patenting Nanomedicines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29265-1_7

Download citation

Publish with us

Policies and ethics