Skip to main content

Polymeric Nanoparticles, Magnetic Nanoparticles and Quantum Dots: Current and Future Perspectives

  • Chapter
  • First Online:
  • 1339 Accesses

Abstract

Patenting nanomedicine based approaches are nowadays a topic of utmost interest among the scientific community. The multidisciplinary aspect of nanomedicine provides a unique opportunity for patenting the innovations. Nevertheless, it simultaneously poses several challenges. The proposed chapter aims at describing the scenario of drug delivery and targeting in nanomedicine using polymeric nanoparticles, magnetic nanoparticles and quantum dots. The chapter will cover topics on polymeric and magnetic nanoparticles with a thrust to the various patents granted across the globe. The patents available on these systems has been comprehensively summarized. The chapter will also discuss the basics of quantum dots, their biomedical applications and present and future prospects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdalla MO, Aneja R, Dean D, Rangari V, Russell A et al (2010) Synthesis and characterization of noscapine loaded magnetic polymeric nanoparticles. J Magn Magn Mater 322:190–196

    Google Scholar 

  • Aftabrouchard D, Dorlker E (1992) Preparation methods for biodegradable microparticles loaded with water-soluble drugs. STP Pharma Sci 2:365–380

    Google Scholar 

  • Ahmad Z, Pandey R, Sharma S, Khuller GK (2006) Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 48(3):171–176

    Google Scholar 

  • Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466

    Google Scholar 

  • Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C et al (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60(23):6641–6648

    Google Scholar 

  • Alexis F, Pridge E, Molnar LK, Fazrokhzaf OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515

    Google Scholar 

  • Alexis F, Pridgen EM, Langer R, Farokhzad OC (2010) Drug Delivery, Handbook of Experimental Pharmacology. In: Schäfer-Korting M (ed) Nanoparticle technologies for cancer therapy. Springer, Berlin

    Google Scholar 

  • Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Google Scholar 

  • Alivisatos AP, Gu WW, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76

    Google Scholar 

  • Allemann E, Leroux JC, Gurny R (1998) Polymeric nano-microparticles for the oral delivery of peptides and peptidomimetics. Adv Drug Deliv Rev 34:171–189

    Google Scholar 

  • Ammoury N, Fessi H, Devissaguet JP, Dubrasquet M, Benita S (1991) Jejunal absorption, pharmacological activity, and pharmacokinetic evaluation of indomethacin-loaded poly(d,l-lactide) and poly(isobutylcyanoacrylate) nanocapsules in rats. Pharm Res 8:101–105

    Google Scholar 

  • Andersen MO, Lichawska A, Arpanaei A, Rask Jensen SM et al (2010) Surface functionalisation of PLGA nanoparticles for gene silencing. Biomaterials 31:5671–5677

    Google Scholar 

  • Anderson D, Goh JB, Dinglasan JA (2009) Nanoparticles confined in polyelectrolytes. United States Patent 7501180

    Google Scholar 

  • Arbab A, Bashaw L, Miller B, Jordan E et al (2003) Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229:838–846

    Google Scholar 

  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32

    Google Scholar 

  • Azzazy HME, Mansour MMH, Kazmierczak SC (2007) From diagnostics to therapy: prospects of quantum dots. Clinic Biochem 40:917–927

    Google Scholar 

  • Badorrek CS, Elrod DB, Bowers MJ, Kim M, Schull TL (2011) Quantum dot-sensory array for biological recognition. United States Patent 20110130297

    Google Scholar 

  • Bahr M, Berkov D, Buske N, Clement J, Görnert P, Höffken K, Kliche K (2004) Magnetic nanoparticles having biochemical activity, method for the production thereof and their use. United States Patent 6767635

    Google Scholar 

  • Bao G, Nie S, Nitin N, Laconte L (2008) Multifunctional magnetic nanoparticle probes for intracellular molecular imaging and monitoring. United States Patent 7459145

    Google Scholar 

  • Barbera-guillem E (2004) Functionalized encapsulated fluorescent nanocrystals. United States Patent 6761877

    Google Scholar 

  • Barbera-guillem E (2011) Fluorescent ink compositions comprising functionalized fluorescent nanocrystals. United States Patent 20110101240

    Google Scholar 

  • Barichello JM, Morishita M, Takayama K, Nagai T (1999) Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 25:471–476

    Google Scholar 

  • Bawa R (2007) Patents and nanomedicines. Future medicines 2(3):351–374

    Google Scholar 

  • Bawa R (2008) Nanoparticle-based therapeutics in humans: a survey. Nanotechnol Law Bus 5:135–155

    Google Scholar 

  • Bawa R (2010) Nanopharmaceuticals. Eur J Nanomed 3(1):34–39

    Google Scholar 

  • Bawa R, Bawa SR, Maebius SB, Flynn T, Wei C (2005) Protecting new ideas and invention in nanomedicines with patents. Nanomedicine 1(2):150–158

    Google Scholar 

  • Bawendi MG, Mikulec FV, Lee JK (2001) Water-soluble fluorescent semiconductor nanocrystals. United States Patent 6319426

    Google Scholar 

  • Bawendi MG, Mikulec FV, Lee Jin (2002) Water-soluble fluorescent nanocrystals. United States Patent 6444143

    Google Scholar 

  • Bawendi MG, Sundar VC, Mikulec F (2005) Biological applications of quantum dots. United States Patent 6855551

    Google Scholar 

  • Berry C, Wells S, Charles S, Curtis AS (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24:4551–4557

    Google Scholar 

  • Bharde AA, Parikh RY, Baidakova M, Jouen S, Hannoyer B et al (2008) Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 24(11):5787–5794

    Google Scholar 

  • Bouchard LS, Anwar MS, Liu GL, Hann B, Xie ZH, Gray JW, Wang X et al (2009) Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc Natl Acad Sci USA 106:4085–4089

    Google Scholar 

  • Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54(5):631–651

    Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Google Scholar 

  • Brus LE (1984) Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–9

    Google Scholar 

  • Bucolo C, Maltese A, Maugeri F, Busà B, Puglisi G, Pignatello R (2004) Eudragit RL100 nanoparticle system for the ophthalmic delivery of cloricromene. J Pharm Pharmacol 56(7):841–846

    Google Scholar 

  • Cadée JAM, Van Luyn JA, Brouwer LA, Planting JA, Van Wachem PB et al (2000) In vivo biocompatibility of dextran-based hydrogels. J Biomed Mater Res 50(3):397–404

    Google Scholar 

  • Calvo P, Vila-Jato JL, Alonso MJ (1996) Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J Pharm Sci 85:530–536

    Google Scholar 

  • Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14:1431–1436

    Google Scholar 

  • Calvo P, Gouritin B, Brigger I, Lasmezas C (2001) PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. J Neurosci Methods 111(2):151–155

    Google Scholar 

  • Carpenter EE, Carpenter V (2007) Fluorescent-magnetic nanoparticles with core-shell structure. United States Patent 7235228

    Google Scholar 

  • Cengelli F, Maysinger D, Tschudi-Monnet F, Montet X et al (2006) Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures. J Pharmacol Exp Ther 318:108–116

    Google Scholar 

  • Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Google Scholar 

  • Chan WCW, Maxwell DJ, Gao XH, Bailey RE, Han MY, Nie SM (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    Google Scholar 

  • Chan W, Fischer H, Mardyani S, Jiang W (2007) Stable, water-soluble quantum dot, method of preparation and conjugates thereof. United States Patent 20070042576

    Google Scholar 

  • Chen C, Yao J, Durst R (2006) Liposome encapsulation of fluorescent nanoparticles: quantumdots and silica nanoparticles. J Nanopart Res 8:1033–1038

    Google Scholar 

  • Chen K, Xie J, Xu H, Behera D, Michalski MH et al (2009) Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting. Biomaterials 30:6912–6919

    Google Scholar 

  • Chen MA, Bin LUO, Huai-he S, Lin-jie Z (2010) Preparation of carbon-encapsulated metal magnetic nanoparticles by an instant pyrolysis method. New Carbon Mater 25(3):199–204

    Google Scholar 

  • Cheng MMC, Cuda G, Bunimovich YL, Gaspari M, Heath JR et al (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 10:11–19

    Google Scholar 

  • Chertok B, David AE, Yang VC (2010) Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials 31:6317–6324

    Google Scholar 

  • Cherukuri P, Glazer ES, Curley SA (2010) Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 62:339–345

    Google Scholar 

  • Cho H, Shih S, Lin Y, Lin H, Lin K (2005) Magnetic nanoparticle. United States Patent 20050025971

    Google Scholar 

  • Choi MJ, McDonagh AM, Maynard P, Roux C (2008) Metal-containing nanoparticles and nano-structured particles in fingermark detection. Forensic Sci Int 179:87–97

    Google Scholar 

  • Coester C, Kreuter J, Von-Briesen H, Langer K (2000) Preparation of avidin-labelled gelatin nanoparticles as carriers for biotinylated peptide nucleic acid (PNA). Int J Pharm 196(2):147–149

    Google Scholar 

  • Cohen IS, Rosen AB, Brink PR, Gaudette G, Rosen MR, Robinson RB (2009) Quantum dot labeled stem cells for use in providing pacemaker. United States Patent 20090062876

    Google Scholar 

  • Corr SA, Gunko YK, Douvalis AP, Venkatesan M, Gunning RD (2004) Magnetite nanocrystals from a single source metallorganic precursor: metallorganic chemistry vs biogeneric bacteria. J Mater Chem 14:944–946

    Google Scholar 

  • Couvreur P, Kante B, Lenaerts V, Scailteur V, Roland M, Speiser P (1980) Tissue distribution of antitumour drugs associated with polyalkylcyanoacrylate nanoparticles. J Pharm Sci 69:199–202

    Google Scholar 

  • Couvreur P, Dubernet C, Puisieux F (1995) Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm 41:2–13

    Google Scholar 

  • Couvreur P, Barrat G, Fattal E, Legrand P, Vauthier C (2002) Nanocapsule technology. Crit Rev Ther Drug Carrier Syst 19:99–134

    Google Scholar 

  • Dahan M, Laurence T, Pinaud F, Chemla DS, Alivisatos AP et al (2001) Time-gated biological imaging by use of colloidal quantum dots. Opt Lett 26:825–827

    Google Scholar 

  • Damge C, Maincent P, Ubrich N (2007) Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 117(2):163–170

    Google Scholar 

  • Date AA, Joshi MD, Patravale VB (2007) Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev 59(6):505–521

    Google Scholar 

  • Desai NP, Soon-Shiong P (2003) Compositions and methods for administration of pharmacologically active compounds. United States Patent 20036537579

    Google Scholar 

  • Desai NP, Soon-Shiong P, Yang A (2007) Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof. United States Patent 20070092563

    Google Scholar 

  • Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, Tao C, De T, Beals B, Dykes D, Noker P, Yao R, Labao E, Hawkins M, Soon-Shiong P (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12:1317–1324

    Google Scholar 

  • Di Toro R, Betti V, Spampinato S (2004) Biocompatibility and integrin-mediated adhesion of human osteoblasts to poly(dl-lactide-co-glycolide) copolymers. Eur J Pharm Sci 21(2–3):161–169

    Google Scholar 

  • Dimitrova B, Ivanov IB, Nakache E (1988) Mass transport effects on the stability of emulsion films with acetic acid and acetone diffusing across the interface. J Disp Sci Technol 9:321–341

    Google Scholar 

  • Eberbeck D, Wiekhorst F, Wagner S, Trahms L (2011) How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance. Appl Phys Lett 98(18):182502–18503

    Google Scholar 

  • Efros AL, Rosen M (2000) The electronic structure of semiconductor nanocrystals. Annu Rev Mater Sci 30:475–521

    Google Scholar 

  • El-Shabouri MH (2002) Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 249:101–108

    Google Scholar 

  • Erbacher P, Zou S, Bettinger T, Steffan AM, Remy JS (1998) Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res 15(9):1332–1339

    Google Scholar 

  • Fassas A, Buffels R, Anagnostopoulos A, Gacos E et al (2003) Safety of high-dose liposomal daunorubicin (daunoxome) for refractory or relapsed acute myeloblastic leukaemia. Br J Haematol 122(1):161–163

    Google Scholar 

  • Fernandez MJA, Remunan Lopez C, Cuna Vilan MM, Alonso Sande M (2006) Nanoparticles for the administration of active ingredients, method of producing said particles and composition containing same. United States Patent 20060134785

    Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Google Scholar 

  • Figuerola A, Di Corato R, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62:126–143

    Google Scholar 

  • Fischer HC, Chan WC (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571

    Google Scholar 

  • Frangioni JV, Bawendi MG, Kim S, Lim YT (2007) Materials and methods for near-infrared and infrared lymph node mapping. United States Patent 7181266

    Google Scholar 

  • Freeman MW, Arrott A, Watson JHL (1960) Magnetism in medicine. J Appl Phys 31:S404–405

    Google Scholar 

  • Ganachaud F, Katz JL (2005) Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices. Chem Phys Chem 6:209–216

    Google Scholar 

  • Gao XL, Chen J, Chen JY, Wu BX, Chen HZ, Jiang XG (2008) Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging. Bioconjugate Chem 19:2189–2195

    Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18(28):285604

    Google Scholar 

  • Gref R, Luck M, Quellec P, Marchand M, Dellacherie E et al (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloid Surf B Biointerface 18:301–313

    Google Scholar 

  • Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J (2005) Phase III trial of nanoparticles albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23:7794–7803

    Google Scholar 

  • Gryparis EC, Hatziapostolou M, Papadimitriou E, Avgoustakis K (2007) Anticancer activity of cisplatin-loaded PLGA–mPEG nanoparticles on LNCaP prostate cancer cells. Eur J Pharm Biopharm 67:1–8

    Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Google Scholar 

  • Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobiosci 3:66–73

    Google Scholar 

  • Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomed 2(1):23–39

    Google Scholar 

  • Haik Y (2009) Magnetic nanoparticles for imaging. United States Patent 20090068112

    Google Scholar 

  • Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol 26:57–64

    Google Scholar 

  • Hamley IW (2003) Nanotechnology with soft materials. Chem Int Ed 42(15):1692–1712

    Google Scholar 

  • Han M, Wang F (2009) Novel water-soluble nanocrystals comprising a polymeric coating reagent, and methods of preparing the same. United States Patent 20090098663

    Google Scholar 

  • Hasadsri L, Kreuter J, Hattori H, Iwasaki T, George JM (2009) Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem 13; 284(11):6972–6981

    Google Scholar 

  • Hawkins MJ, Soong Siong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60:876–885

    Google Scholar 

  • Hedberg EL, Kroese-Deutman HC, Shih CK, Crowther RS, Carney DH, Mikos AG, Jansen JA (2005) In vivo degradation of porous poly(propylene fumarate)/poly(dl-lactic-co-glycolic acid) composite scaffolds. Biomaterials 26(22):4616–4623

    Google Scholar 

  • Hezinger AFE, Tebmar J, Gopferich A (2008) Polymer coating of quantum dots—a powerful tool toward diagnostics and sensorics. Eur J Pharm Biopharm 68:138–152

    Google Scholar 

  • Hornig S, Biskup C, Gräfe A, Wotschadlo J, Liebert T et al (2008) Biocompatible fluorescent nanoparticles for pH-sensoring. Soft Matter 4:1169–1172

    Google Scholar 

  • Hornig S, Bunjes H, Heinze T (2009) Preparation and characterization of nanoparticles based on dextran–drug conjugates. J Colloid and Interface Sci 338:56–62

    Google Scholar 

  • Huang W (2003) Method for the production of semiconductor quantum particles. United States Patent 6623559

    Google Scholar 

  • Huang D, Liao F, Molesa S, Redinger D, Subramanain V (2003) Plastic compatible low resistance printable gold nanoparticle conductors for flexible electronics. J Electrochem Soc 150:412–417

    Google Scholar 

  • Hughes GA (2005) Nanostructure-mediated drug delivery. Nanomed Nanotech Biol Med 1:22–30

    Google Scholar 

  • Itoh K, Pongpeerapat A, Tozuka Y, Oguchi T, Yamamoto K (2003) Nanoparticle formation of poorly water-soluble drugs from ternary ground mixtures with PVP and SDS. Chem Pharm Bull (Tokyo) 51:171–174

    Google Scholar 

  • Jahanshahi M, Babaei Z (2008) Protein nanoparticle: a unique system as drug delivery vehicles. Afr J Biotech 7(25):4926–4934

    Google Scholar 

  • Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29:4012–4021

    Google Scholar 

  • Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732

    Google Scholar 

  • Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ (2001) Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release 73(2–3):255–267

    Google Scholar 

  • Jasieniak J, Bullen C, van Embden J, Mulvaney P (2005) Phosphine-free synthesis of CdSe nanocrystals. J Phys Chem B 109:20665–20668

    Google Scholar 

  • Jia N, Lian Q, Shen H, Wang C, Li X, Yang Z (2007) Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. Nano Lett 7:2976–2980

    Google Scholar 

  • Johannsen M, Gneveckow U, Thiesen B, Taymoorian K et al (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–1662

    Google Scholar 

  • Jordan A, Scholz R, Wust P, Fähling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419

    Google Scholar 

  • Khurshid H, Kim SH, Bonder MJ, Colak L, Ali B et al (2009) Development of heparin-coated magnetic nanoparticles for targeted drug delivery applications. J Appl Phys 105(7):308–311

    Google Scholar 

  • Kim SY, Lee YM (2001) Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(epsilon-caprolactone) as novel anticancer drug carriers. Biomaterials 22(13):1697–1704

    Google Scholar 

  • Klabunde KJ, Zhang D, Sorensen C (2000) Encapsulated nanometer magnetic particles. United States Patent 6045925

    Google Scholar 

  • Kreuter J, Ramge P, Petrov V, Hamm S et al (2003) Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 20:409–416

    Google Scholar 

  • Kumar MN, Mohapatra SS, Kong X, Jena PK, Bakowsky U, Lehr CM (2004) Cationic poly(lactide-co-glycolide) nanoparticles as efficient in vivo gene transfection agents. J Nanosci Nanotechnol 4(8):990–994

    Google Scholar 

  • Kumar A, Sahoo B, Montpetit A, Behera S, Lockey RF, Mohapatra SS (2007) Development of hyaluronic acid-Fe2O3 hybrid magnetic nanoparticles for targeted delivery of peptides. Nanomedicine 3:132–137

    Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloid Surf B Biointerface 75:1–18

    Google Scholar 

  • Lai CY, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S et al (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451–4459

    Google Scholar 

  • Lai F, Wissing SA, Muller RH, Fadda AM (2006) Artemisia arborescens L essential oil loaded, solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS Pharm Sci Tech 7(1):10–18

    Google Scholar 

  • Landry FB, Bazile DV, Spenlehauer G, Veillard M, Kreuter J (1996) Influence of coating agents on the degradation of poly(d, l-lactic acid) nanoparticles in model digestive fluids (USP XXII). STP Pharma Sci 6:195–202

    Google Scholar 

  • Lange K, Anhorn MG, Steinhauser I, Dreis S, Celebi D, Schrickel N, Faust S, Vogel V (2008) Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. Int J Pharm 347:109–117

    Google Scholar 

  • Leatherdale C, Woo W, Miculec F, Bawendi MG (2002) On the absorption cross section of CdSe nanocrystal quantum dots. J Phys Chem 106:7619–7622

    Google Scholar 

  • Lee J (2010) Magnetic nanoparticle complex. United States Patent 20100051510

    Google Scholar 

  • Lee D, Cohen R, Rubner M (2005a) Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 21:9651–9659

    Google Scholar 

  • Lee Y, Lee J, Bae CJ, Park J, Noh H, Park J, Hyeon T (2005b) Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15:503–509

    Google Scholar 

  • Leong KW, Haller MF, Malavaud BA, Le Visage CS (2004) Systemic delivery of compounds through non-invasive bladder administration. United States Patent 6797704

    Google Scholar 

  • Lescure F, Zimmer C, Roy D, Couvreur P (1992) Optimization of polycyanoacrylate nanoparticle preparation: influence of sulfur dioxide and pH on nanoparticles characteristics. J Colloid Interface Sci 154:77–86

    Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Google Scholar 

  • Li H, Wang X, Gao Z, He Z (2007) Gemini surfactant for fluorescent and stable quantum dots in aqueous solution. Nanotechnology 18(20):205603

    Google Scholar 

  • Li Y, Su X, Yang L (2008) Quantum dot biolabeling and immunomagnetic separation for detection of contaminants. United States Patent 20080135490

    Google Scholar 

  • Lins Dantas FM (2011) Pharmaceutical compositions of nanoparticles containing active ingredients. United States Patent 20110118364

    Google Scholar 

  • Liu L, Won YJ, Cooke PH, Coffin DR, Fishman ML, Hicks KB, Ma PX (2004a) Pectin/poly(lactide-co-glycolide) composite matrices for biomedical applications. Biomaterials 25(16):3201–3210

    Google Scholar 

  • Liu Z, Wang H, Lu Q, Du GH, Peng L, Du YQ, Zhang SM, Yao KL (2004b) Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. J Magn Magn Mater 283:258–262

    Google Scholar 

  • Liu TM, Musinski LD, Patel PR, Gallimore AD et al (2007) Nanoparticle electric propulsion for space exploration in space technology and applications. International Forum STAIF, Albuquerque

    Google Scholar 

  • Liversidge G, Jenkins S, Liversidge EM (2011) Injectable nanoparticulate olanzapine formulations. United States Patent 7910577

    Google Scholar 

  • Lockman PR, Mumper RJ, Khan MA, Allen DD (2002) Nanoparticle technology for drug delivery across the blood brain barrier. Drug Dev Ind Pharm 28:1–13

    Google Scholar 

  • Lockman PR, Koziara JM, Mumper RJ, Allen DD (2004) Nanoparticle surface charges alter blood brain barrier integrity and permeability. J Drug Target 12(9–10):635–641

    Google Scholar 

  • Lubbe AS, Bergemann C, Huhnt W, Fricke T, Riess H et al (1996) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 56:4694–4701

    Google Scholar 

  • Lubbe AS, Alexiou C, Bergemann C (2001) Clinical applications of magnetic drug targeting. J Surg Res 95:200–206

    Google Scholar 

  • Ma Z, Liu H (2007) Synthesis and surface modification of magnetic particles for application in biotechnology and biomedicine. China Particuol 5:1–10

    Google Scholar 

  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46

    Google Scholar 

  • Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P et al (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81:53–60

    Google Scholar 

  • Maitra AN, Ghosh PK, De TK, Sahoo SK (1999) Process for the preparation of highly monodispersed hydrophilic polymeric nanoparticles of size less than 100 nm. United States Patent 5874111

    Google Scholar 

  • Mao H-Q, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y et al (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 70:399–421

    Google Scholar 

  • Maysinger D, Lovric J, Eisenberg A, Savic R (2007) Fate of micelles and quantum dots in cells. Eur J Pharm Biopharm 65:270–81

    Google Scholar 

  • McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251

    Google Scholar 

  • Md S, Haque S, Sahni JK, Baboota S, Ali J (2011) New non-oral drug delivery systems for Parkinson’s disease treatment. Expert Opin Drug Deliv 8:359–374

    Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4:435–446

    Google Scholar 

  • Memişoğlu E, Bochot A, Ozalp M, Sen M, Duchêne D, Hincal AA (2003) Direct formation of nanospheres from amphiphilic beta-cyclodextrin inclusion complexes. Pharm Res 20:117–125

    Google Scholar 

  • Merodio M, Arnedo A, Jesús Renedo M, Irache JM (2001) Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci 12(3):251–259

    Google Scholar 

  • Michalet X, Pinaud FF, Bentolila LA, Tsay JM et al (2005) Quantum dots for live cells, in vivo imaging and diagnostics. Science 307:538–544

    Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ, Elghanian R, Taton TA (2007) Nanoparticles having oligonucleotides attached thereto and uses therefore. United States Patent 7259252

    Google Scholar 

  • Mistrya A, Stolnika S, Illum L (2009) Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 379(1):146–157

    Google Scholar 

  • Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MN (2007) Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release 119(1):77–85

    Google Scholar 

  • Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234:222–235

    Google Scholar 

  • Mu L, Feng SS (2003) A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release 86(1):33–48

    Google Scholar 

  • Mudshinge SR, Amol B, Deore AM, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 19:129–141

    Google Scholar 

  • Muldoon LL, Varallyay P, Kraemer DF, Kiwic G et al (2004) Trafficking of superparamagnetic iron oxide particles (Combidex) from brain to lymph nodes in the rat. Neuropathol Appl Neurobiol 30(1):70–79

    Google Scholar 

  • Müller K, Skepper JN, Posfai M, Trivedi R, Howarth S et al (2007) Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials 28(9):1629–1642

    Google Scholar 

  • Mulvaney P, Liz-Marzan LM, Giersig M, Ung T (2000) Silica encapsulation of quantum dots and metal clusters. J Mater Chem 10:1259–1270

    Google Scholar 

  • Naasani I (2005) Nanocrystals. United States Patent 6955855

    Google Scholar 

  • Nagare S, Sagawa J, Senna M (2006) Chemical and structural properties of drug- protein nanocomposites prepared by pulsed laser deposition from conjugated targets. J Nanopart Res 6:589–593

    Google Scholar 

  • Nehilla BJ, Allen PG, Desai TA (2008) Surfactant-free, drug-quantum-dot coloaded poly(lactide-co-glycolide) nanoparticles: towards multifunctional nanoparticles. ACS Nano 2:538–5344

    Google Scholar 

  • Neubergera T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496

    Google Scholar 

  • Norris DJ, Efros AL, Rosen M, Bawendi MG (1996) Size dependence of exciton fine structure in CdSe quantum dots. Phys Rev B Condens Matter 53:16347–16354

    Google Scholar 

  • Oh JE, Lee KH, Park TG, Nam YS (2007) Controlled drug delivery system using the conjugation of drug to biodegradable polyester. United States Patent 20077163698

    Google Scholar 

  • Oppenhiem RC (1981) Solid colloidal drug delivery systems: nanoparticles. Int J Pharm 8:217–234

    Google Scholar 

  • Pan J, Feng SS (2009) Targeting and imaging cancer cells by Folate decorated, quantum dots (QDs)-loaded nanoparticles of biodegradable polymers. Biomaterials 30:1176–1183

    Google Scholar 

  • Pandey R, Ahmad Z (2011) Nanomedicine and experimental tuberculosis: facts, flaws, and future. Nanomedicine 7:259–272

    Google Scholar 

  • Pandey R, Khuller GK (2005) Antitubercular inhaled therapy: opportunities, progress and challenges. J Antimicrob Chemother 55:430–435

    Google Scholar 

  • Panizzo RA, Kyrtatos PG, Price AN, Gadian DG et al (2009) In vivo magnetic resonance imaging of endogenous neuroblasts labelled with a ferumoxide–polycation complex. NeuroImage 44(4):1239–1246

    Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181

    Google Scholar 

  • Pankhurst QA, Thanh NKT, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 42(22):224001–224015

    Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347

    Google Scholar 

  • Pardoe H, Chua-anusorn, St Pierre TG, Dobson J (2001) Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol. J Magn Magn Mater 225 (1–2):41–46

    Google Scholar 

  • Park K (2009) Transport across the blood brain barrier using albumin nanoparticles. J Control Release 137(1):78–86

    Google Scholar 

  • Park SI, Lim JH, Kim JH, Yun HI, Kim CO (2006) Toxicity estimation of magnetic fluids in a biological test. J Magn Magn Mater 304(1):406–408

    Google Scholar 

  • Patil SD, Papadimitrakopoulos F, Burgess DJ (2004) Dexamethasone-loaded poly(lactic-co-glycolic) acid microspheres/poly(vinyl alcohol) hydrogel composite coatings for inflammation control. Diab Technol Ther 6(6):887–897

    Google Scholar 

  • Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184

    Google Scholar 

  • Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404:59–61

    Google Scholar 

  • Peracchia MT, Fattal E, Desmaele D, Besnard M, Noel JP et al (1999) Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 60:121–128

    Google Scholar 

  • Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19(24):245705

    Google Scholar 

  • Prokop A (2003) Drug delivery system exhibiting permeability control. United States Patent 20036589563

    Google Scholar 

  • Prokop A (2004) Micro-particulate and nano-particulate polymeric delivery system. United States Patent 20046726934

    Google Scholar 

  • Qi L, Gao X (2008) Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Deliv 5:263–267

    Google Scholar 

  • Qiu X (2000) Synthesis and characterization of magnetic nanoparticles. Chin J Chem 18:834–837

    Google Scholar 

  • Quellet C, Hotz J, Balmer M (2010) Polymeric nanoparticles including olfactive components. United States Patent 7776939

    Google Scholar 

  • Quintanar-Guerrero D, Allemann E, Fessi H, Doelker E (1998) Preparation techniques and mechanism of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 24:1113–1128

    Google Scholar 

  • Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P (1993) Development of a new drug carrier made from alginate. J Pharm Sci 82:912–927

    Google Scholar 

  • Reddy RG, Erathodiyil N (2005) Degradable nanoparticles. United States Patent 20050196343

    Google Scholar 

  • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2:8–21

    Google Scholar 

  • Sahu SK, Maiti S, Maiti TK, Ghosh SK, Pramanik P (2011) Hydrophobically modified carboxymethyl chitosan nanoparticles targeted delivery of paclitaxel. J Drug Target 19(2):104–113

    Google Scholar 

  • Sanoj Rejinold N, Muthunarayanan M, Divyarani VV, Sreerekha PR, Chennazhi KP, Nair SV, Tamura H, Jayakumar R (2011) Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery. J Colloid Interface Sci 360(1):39–51

    Google Scholar 

  • Schroeder JE, Shweky I, Shmeeda H, Banin U, Gabizon A (2007) Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles. J Control Release 124:28–34

    Google Scholar 

  • Seijo B, Fattal E, Roblot-Treupel L, Couvreur P (1990) Design of nanoparticles of less than 50 nm diameter: preparation, characterization and drug loading. Int J Pharm 62:1–7

    Google Scholar 

  • Sharma A, Pandey R, Sharma S, Khuller GK (2004) Chemotherapeutic efficacy of poly (D, L-lactide-co-glycolide) nanoparticle encapsulated antitubercular drugs at sub-therapeutic dose against experimental tuberculosis. Int J Antimicrob Agents 24:599–604

    Google Scholar 

  • Shih W, Shih WY, Li H, Schillo MC (2008) Synthesis of water soluble nanocrystalline quantum dots and uses thereof. United States Patent 7335345

    Google Scholar 

  • Smith AM, Dave S, Nie S, True L, Gao X (2006) Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diag 6:231–244

    Google Scholar 

  • Song XR, Cai Z, Zheng Y, He G, Cui FY, Gong DQ et al (2009) Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci 37:300–305

    Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20

    Google Scholar 

  • Sugahara S, Kajikia M, Kuriyama H, Kobayashi T (2007) Complete regression of xenografted human carcinomas by a paclitaxel-carboxymethyl dextran conjugate (AZ10992). J Control Release 117(1):40–50

    Google Scholar 

  • Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205

    Google Scholar 

  • Sun CR, Sze R, Zhang M (2006) Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res 78(3):550–557

    Google Scholar 

  • Sung H-w, Lin Y, Chen M, Tu H (2009) Nanoparticles for monoclonal antibody delivery. United States Patent S7541028

    Google Scholar 

  • Takebe G, Takagi T, Suzuki M, Hiramatsu M (2011) Preparation of polymeric nanoparticles of cyclosporine A using infrared pulsed laser. Int J Pharm 414(1–2):244–250

    Google Scholar 

  • Tan W, Zhang Y (2005) Multifunctional quantum-dot-based magnetic chitosan nanobeads. Adv Mater 17:2375–2380

    Google Scholar 

  • Tan W, Huang N, Zhang Y (2007) Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications. J Colloid Interface Sci 310:464–470

    Google Scholar 

  • Tang NJ, Zhang W, Jiang HY, Wu XL, Liu W et al (2004) Nanostructured magnetite (Fe3O4) thin films prepared by sol–gel method. J Magn Magn Mater 282:92–95

    Google Scholar 

  • Tice TR, Gilley RM (1985) Preparation of injectable controlled-release microcapsules by solvent-evaporation process. J Control Rel 2:343–352

    Google Scholar 

  • Ticho U, Blumenthal M, Zonis S, Gal A, Blank I, Mazor ZW (1979) A clinical trial with Piloplex—a new long-acting pilocarpine compound: preliminary report. Ann Ophthalmol 11:555–561

    Google Scholar 

  • Tiyaboonchai W (2003) Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J 11(3):51–66

    Google Scholar 

  • Tobio M, Gref R, Sanchez A, Langer R, Alonso MJ (1998) Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res 15:270–275

    Google Scholar 

  • Tomczak N, Janczewski D, Han M, Vancso GJ (2009) Designer polymer–quantum dot architectures. Prog Polym Sci 34:393–430

    Google Scholar 

  • Toms SA, Lin W (2006) Methods of medical imaging using quantum dots. United States Patent 2006017336

    Google Scholar 

  • Tran N, Webster TJ (2010) Magnetic nanoparticles: biomedical applications and challenges. J Mater Chem 20:8760–8767

    Google Scholar 

  • Turos E, Cormier R, Kyle DE (2010) Polyacrylate Nanoparticle Drug Delivery. United States Patent 20100278920

    Google Scholar 

  • Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P (2003) Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Rel 93:151–160

    Google Scholar 

  • Vlerken LEV, Vyas TK, Amiji MM (2007) Poly(ethylene glycol)-modified nanoparticles for tumor-targeted and intracellular delivery. Phama Res 24:1405

    Google Scholar 

  • Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24:1211–1217

    Google Scholar 

  • Wang Y, Chen L (2011) Quantum dots, lighting up the research and development of nanomedicine. doi:10.1016/j.nano.2010.12.006

  • Wang L, Chaw CS, Yang YY, Moochhala SM, Zhao B, Heller J (2004) Preparation, characterization, and in vitro evaluation of physostigmine-loaded poly(ortho ester) and poly(ortho ester)/poly(d, llactide- co-glycolide) blend microspheres fabricated by spray drying. Biomaterials 25(16):3275–3282

    Google Scholar 

  • Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Google Scholar 

  • Wang J, Tao X, Zhang Y, Wei D, Ren Y (2010a) Reversion of multidrug resistance by tumor targeted delivery of antisense oligodeoxynucleotides in hydroxypropyl-chitosan nanoparticles. Biomaterials 31:4426–4433

    Google Scholar 

  • Wang L, Neoh KG, Kang ET, Shuter B, Wang SC (2010b) Biodegradable magnetic-fluorescent magnetite/poly(dl-lactic acid-co-alpha, beta-malic acid) composite nanoparticles for stem cell labeling. Biomaterials 31:3502–3511

    Google Scholar 

  • Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL (2010c) Trimethylated chitosan conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials 31:908–915

    Google Scholar 

  • Wang XS, White RL, Webb CD, Li G (2011) Magnetic nanoparticles, magnetic detector arrays, and methods for their use in detecting biological molecules. United States Patent 7906345

    Google Scholar 

  • Wehrle P, Magenheim B, Benita S (1995) Influence of process parameters on the PLA nanoparticle size distribution, evaluated by means of factorial design. Eur J Pharm Biopharm 41:19–26

    Google Scholar 

  • Wei C (2005) The valuable and significant role of nanomedicine. Nanomedicine 1:285

    Google Scholar 

  • Wilson B, Samanta MK, Santhi K, Kumar KPS, Paramakrishnan N, Suresh B (2008) Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 70:75–84

    Google Scholar 

  • Wise FW (2000) Lead salt quantum dots: the limit of strong quantum confinement. Acc Chem Res 33:773–80

    Google Scholar 

  • Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46

    Google Scholar 

  • Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlaq PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–497

    Google Scholar 

  • Xie J, Chen K, Huang J, Lee S, Wang J, Gao J, Li X, Chen X (2010) PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31(11):3016–3022

    Google Scholar 

  • Xu J, Yang H, Fu W, Du K, Sui Y, Chen J, Zeng Y, Li M, Zou G (2007) Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J Magn Magn Mater 309:307–311

    Google Scholar 

  • Xu Q, Zhang HT, Liu K, Rao JH, Liu XM, Wu L, Xu BN (2011) In vitro and in vivo magnetic resonance tracking of Sinerem-labeled human umbilical mesenchymal stromal cell-derived Schwann cells. Cell Mol Neurobiol 31(3):365–75

    Google Scholar 

  • Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly (ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 83:601–606

    Google Scholar 

  • Yang J, Lee C-H, Ko H-J, Suh J-S, Yoon H-G, Lee K, Huh Y-M, Haam S (2007) Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed Engl 46:8836–8839

    Google Scholar 

  • Yang H, Li K, Liu Y, Liu Z, Miyoshi H (2009) Poly(D, L-lactide-co-glycolide) nanoparticles encapsulated fluorescent isothiocyanate and paclitaxol: preparation, release kinetics and anticancer effect. J Nanosci Nanotechnol 9:282–287

    Google Scholar 

  • Yezhelyev MV, Qi L, Oregan RM, Nie S, Gao X (2008) Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc 130:9006–9012

    Google Scholar 

  • Yordanov G, Yoshimura H, Dushkin C (2008) Phosphine-free synthesis of metal chalcogenide quantum dots by means of in situ-generated hydrogen chalcogenides. Colloid Polym Sci 286:813–817

    Google Scholar 

  • Yordanov G, Simeonova M, Alexandrova A, Yoshimura H, Dushkin C (2009) Quantum dots tagged poly(alkylcyanoacrylate) nanoparticles intended for bioimaging applications. Coll Surf A Physicochem Eng Aspect 339:199–205

    Google Scholar 

  • Zambaux MF, Bonneaux F, Gref R, Dellacherie E, Vigneron C (1999) Preparation and characterization of protein C-loaded PLA nanoparticles. J Control Release 60(2–3):179–188

    Google Scholar 

  • Zhang P, Liu G (2010) ZnO QD PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging. Biomaterials 31:3087–94

    Google Scholar 

  • Zhang M, Kohler N, Gunn JW (2008) Magnetic nanoparticle compositions and methods. United States Patent 7462446

    Google Scholar 

  • Zhukov TA, Ostapenko S, Sutphen R, Lancaster J, Sellers TA, Zhang JZ (2010) Luminescence characterization of quantum dots conjugated with biomarkers for early cancer detection. United States Patent 7655479

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ali, J., Md, S., Baboota, S., Sahni, J.K. (2012). Polymeric Nanoparticles, Magnetic Nanoparticles and Quantum Dots: Current and Future Perspectives. In: Souto, E. (eds) Patenting Nanomedicines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29265-1_4

Download citation

Publish with us

Policies and ethics