Skip to main content

Nanosized Drug Delivery for Enhancement of Oral Bioavailability

  • Chapter
  • First Online:
Book cover Patenting Nanomedicines

Abstract

Oral delivery is the most preferred way especially for chronic administration of drugs, due to patient convenience and compliance. Hence, it remains as an important and immense segment in the drug market. However, many drug molecules belong to Biopharmaceutics classification systems (BCS) class II (poorly soluble and permeable) and class IV (poorly soluble and impermeable), resulting in low bioavailability, which is the most important limitation of oral delivery. Nanosizing of drugs can lead to a dramatic increase in oral absorption and subsequent bioavailability. Possible factors affecting the transport of these nano carriers across gastrointestinal mucosa are size reduction and surface properties that modify the non-specific or targeted uptake by enterocytes and/or M cells. Benefits of nano sizing can be listed as reduction in variability of absorption, improved absorption for higher doses and rapid formulation development. Therefore, many nanosized systems have been formulated for oral delivery. This chapter presents the requirements in the field of oral delivery and describes the design, characterization and application of various nanosized formulations, such as, vesicular, micellar and particulate systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92:1343–1355

    Google Scholar 

  • Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59:478–490

    Google Scholar 

  • Al-Meshal MA, Khidr SH, Bayomi MA, Al-Angary AA (1998) Oral administration of liposomes containing cyclosporine: a pharmacokinetic study. Int J Pharm 168:163–168

    Google Scholar 

  • Alonso-Romanowski S, Chiaramoni NS, Lioy VS, Gargini RA, Viera LI, Taira MC (2003) Characterization of diacetylenic liposomes as carriers for oral vaccines. Chem Phys Lipids 122:191–203

    Google Scholar 

  • Anandan R, Nair PG, Mathew S (2004) Anti-ulcerogenic effect of chitin and chitosan on mucosal antioxidant defence system in HCl-ethanol-induced ulcer in rats. J Pharm Pharmacol 56:265–269

    Google Scholar 

  • Aungst BJ (2000) Intestinal permeation enhancers. J Pharm Sci 89:429–442

    Google Scholar 

  • Azad AK, Sermsintham N, Chandrkrachang S, Stevens WF (2004) Chitosan membrane as a wound-healing dressing: characterization and clinical application. J Biomed Mater Res B Appl Biomater 69:216–222

    Google Scholar 

  • Baker, JR, Hamouda T, Shih A, Myc A (2003) Non-toxic antimicrobial compositions and methods of use. United States Patent 6635676

    Google Scholar 

  • Barea MJ, Jenkins MJ, Gaber MH, Bridson RH (2010) Evaluation of liposomes coated with a pH responsive polymer. Int J Pharm 402:89–94

    Google Scholar 

  • Bayındır ZS, Yüksel N (2010) Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci 99:2049–2060

    Google Scholar 

  • Bochot A, Couvreur P, Fattal E (2000) Intravitreal administration of antisense oligonucleotides: potential of liposomal delivery. Prog Retin Eye Res 19:131–147

    Google Scholar 

  • Bonduelle S, Pimienta C, Benoit JP, Lenaerts V (1995) Body distribution in mice of intravenously injected radiolabelled cyclosporin associated with polyisohexylcyanoacrylate nanocapsules or nanospheres. Eur J Pharm Biopharm 41:27–30

    Google Scholar 

  • Brannon-Peppas L (1995) Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int J Pharm 116:1–9

    Google Scholar 

  • Brayden DJ, Jepson MA, Baird AW (2005) Keynote review: intestinal Peyer’s patch M cells and oral vaccine targeting. Drug Discov Today 10:1145–57

    Google Scholar 

  • Brey RN, Liang L (2002) Polymerizable fatty acids, phospholipids and polymerized liposomes therefrom. United States Patent 6500453

    Google Scholar 

  • Bromberg L (2008) Polymeric micelles in oral chemotherapy. J Control Release 128:99–112

    Google Scholar 

  • Brown TA (2006) Rapid review physiology. Mosby, Philadelphia

    Google Scholar 

  • Brüsewitz C, Schendler A, Funke A, Wagner T, Lipp R (2007) Novel poloxamer-based nanoemulsions to enhance the intestinal absorption of active compounds. Int J Pharm 329:173–181

    Google Scholar 

  • Bunjes H (2010) Lipid nanoparticles for the delivery of poorly water-soluble drugs. J Pharm Pharmacol 62:1637–1645

    Google Scholar 

  • Chen CC, Tsai TH, Huang ZR, Fang JY (2010) Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm 74:474–482

    Google Scholar 

  • Chen Y, Liu Y, Chen J, Lai J, Sun J, Huc F, Wua W (2009) Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int J Pharm 376:153–160

    Google Scholar 

  • Cheng MB, Wang JC, Li YH, Liu XY, Zhang X, Chen DW, Zhou SF, Zhang Q (2008) Characterization of water-in-oil microemulsion for oral delivery of earthworm fibrinolytic enzyme. J Control Release 129:41–48

    Google Scholar 

  • Chiappetta DA, Sosnik A (2007) Poly(ethylene oxide)–poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 66:303–317

    Google Scholar 

  • Childers NK, Denys FR, McGee NF, Michalek SM (1990) Ultrastructural study of liposome uptake by M cell purified antigen. Reg Immunol 3:8–16

    Google Scholar 

  • Conacher M, Alexander J, Brewer JM (2001) Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes). Vaccine 19:2965–2974

    Google Scholar 

  • Constantinides PP, Chaubal MV, Shorr R (2008) Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv Drug Deliv Rev 60:757–767

    Google Scholar 

  • Constantinides PP, Liang, L, Jang EH (2009) Stabilized reverse micelle compositions and uses thereof. European Patent EP 1460992

    Google Scholar 

  • Cooper ER (2010) Nanoparticles: a personal experience for formulating poorly water soluble drugs. J Control Release 141:300–312

    Google Scholar 

  • Corr SC, Gahan CC, Hill C (2008) M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 52:2–12

    Google Scholar 

  • Crowley PJ, Martini LG (2004) Formulation design: new drugs from old. Drug Discov Tod Ther Strat 1:537–542

    Google Scholar 

  • Croy SR, Kwon GS (2006) Polymeric micelles for drug delivery. Curr Pharm Des 12:4669–4684

    Google Scholar 

  • Dahan A, Hoffman A (2007) The effect of different lipid based formulations on the oral absorption of lipophilic drugs: the ability of in vitro lipolysis and consecutive ex vivo intestinal permeability data to predict in vivo bioavailability in rats. Eur J Pharm Biopharm 67:96–105

    Google Scholar 

  • Dahan A, Hoffman A (2008) Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J Control Release 129:1–10

    Google Scholar 

  • Damge C, Michel C, Aprahamian M, Couvreur P (1988) New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 37:246–251

    Google Scholar 

  • Debuigne F, Cuisenaire J, Jeunieau L, Masereel B, Nagy JB (2001) Synthesis of nimesulid nanoparticles in the microemulsion epikuron/isopropyl myristate/water/n-butanol (or isopropanol). J Colloid Interface Sci 243:90–101

    Google Scholar 

  • Desai MP, Labhasetwar V, Amidon GL, Levy RJ (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13:1838–1845

    Google Scholar 

  • Doktorovova S, Gokce E, Özyazıcı M, Souto EB (2009) Lipid matrix nanoparticles: pharmacokinetics and biopharmaceutics. Curr Nanosci 5:358–371

    Google Scholar 

  • Eldridge JH, Hammond CJ, Meulbroek JA, Staas JK, Gilley RM, Tice TR (1990) Controlled vaccine release in the gut-associated lymphoid tissues: I. Orally administered biodegradable microspheres target the Peyer’s patches. J Control Release 11:205–214

    Google Scholar 

  • El-Shabouri MH (2002) Positively charged nanoparticles for improving the oral bioavailability of cyclosporine-A. Int J Pharm 249:101–108

    Google Scholar 

  • Frokjaer S, Otzen DE (2005) Protein drug stability: a formulation challenge. Nat Rev Drug Discov 4:298–306

    Google Scholar 

  • Ganta S, Amiji M (2009) Co-administration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 6:928–939

    Google Scholar 

  • Ganta S, Devalapally H, Baguley BC, Garg S, Amiji M (2008a) Microfluidic preparation of chlorambucil nanoemulsion formulations and evaluation of cytotoxicity and pro-apoptotic activity in tumor cells. J Biomed Nanotechnol 4:165–173

    Google Scholar 

  • Ganta S, Paxton JW, Baguley BC, Garg S (2008b) Pharmacokinetics and pharmacodynamics of chlorambucil delivered in parenteral emulsion. Int J Pharm 360:115–121

    Google Scholar 

  • Ganta S, Devalapally H, Amiji M (2010) Curcumin enhances oral bioavailability and anti-tumor therapeutic efficacy of paclitaxel upon administration in nanoemulsion formulation. J Pharm Sci 99:4630–4641

    Google Scholar 

  • Gasco MR (1993) Method for producing solid lipid microspheres having a narrow size distribution. United States Patent 5250236

    Google Scholar 

  • Gaucher G, Satturwar P, Jones MC, Furtos A, Leroux JC (2010) Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm 76:147–58

    Google Scholar 

  • Georger JH, Singh A, Price RR, Schnur JM, Yager P, Schoen PE (1987) Helical and tubular microstructures formed by polymerizable phosphatidylcholines. J Am Chem Soc 109:6169–6175

    Google Scholar 

  • Gokce E, Özyazıcı M, Souto EB (2010) Nanoparticulate strategies for effective delivery of poorly soluble therapeutics. Therapeutic Delivery 1:149–167

    Google Scholar 

  • Gokce EH, Sandri G, Bonferoni MC, Rossi S, Ferrari F, Güneri T, Caramella C (2008) Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Int J Pharm 364:76–86

    Google Scholar 

  • Goodin S (2007) Oral chemotherapeutic agents: understanding mechanisms of action and drug interactions. Am J Health Syst Pharm 64:S15–S24

    Google Scholar 

  • Graf A, Rades T, Hook SM (2009) Oral insulin delivery using nanoparticles based on microemulsions with different structure-types: optimisation and in vivo evaluation. Eur J Pharm Sci 37:53–61

    Google Scholar 

  • Grau MJ, Kayser O, Muller RH (2000) Nanosuspensions of poorly soluble drugs -reproducibility of small scale production. Int J Pharm 196:155–157

    Google Scholar 

  • Gregoriadis G (1995) Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol 13:527–537

    Google Scholar 

  • Gregoriadis G, Perrie Y (2006) Liposome-entrapped DNA oral vaccines. United States Patent 7008791

    Google Scholar 

  • Guilford TF (2006) Liposomal formulation for oral administration of glutathione (reduced). United States Patent 20060099244

    Google Scholar 

  • Gulsun T, Gursoy RN, Oner L (2011) Design and characterization of nanocrystal formulations containing ezetimibe. Chem Pharm Bull 59:41–45

    Google Scholar 

  • Guo J, Ping Q, Chen Y (2001) Pharmacokinetic behavior of cyclosporin A in rabbits by oral administration of lecithin vesicle and sandimmun neoral. Int J Pharm 216:17–21

    Google Scholar 

  • Hamman JH, Enslin GM, Kotze AF (2005) Oral delivery of peptide drugs: barriers and developments. BioDrugs 19:165–177

    Google Scholar 

  • Hamouda T, Baker JR (2000) Antimicrobial mechanism of action of surfactant lipid preparations in enteric gram-negative bacilli. J Appl Microbiol 89:397–403

    Google Scholar 

  • Han M, Watarai S, Kobayashi K, Yasuda T (1997) Application of liposomes for development of oral vaccines: study of in vitro stability of liposomes and antibody response to antigen associated with liposomes after oral immunization. J Vet Med Sci 59:1109–1114

    Google Scholar 

  • Han S, Yao T, Zhang X, Gan L, Zhu C, Yu H, Gan Y (2009) Lipid-based formulations to enhance oral bioavailability of the poorly water-soluble drug anethol trithione: effects of lipid composition and formulation. Int J Pharm 379:18–24

    Google Scholar 

  • Hanafy A, Spahn-Langguth H, Vergnault G, Grenier P, Tubic-Grozdanis M, Lenhardt T, Langguth P (2007) Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv Drug Deliv Rev 59:419–426

    Google Scholar 

  • Harokopakis E, Childers NK, Michalek SM, Zhang SS, Tomasi M (1995) Conjugation of cholera toxin or its B subunit to liposomes for targeted delivery of antigens. J Immunol Methods 185:31–42

    Google Scholar 

  • Hecq J, Deleers M, Fanara D, Vranckx H, Amighi K (2005) Preparation and characterisation of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm 299:167–177

    Google Scholar 

  • Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89:151–165

    Google Scholar 

  • Hill TL (2001) A different approach to nanothermodynamics. Nano Lett 1:273–275

    Google Scholar 

  • Horn D, Rieger J (2001) Organic nanoparticles in the aqueous phasetheory, experiment, and use. Angew Chem Int Ed 40:4330–4361

    Google Scholar 

  • Hu L, Tang X, Cui F (2004) Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J Pharm Pharmacol 56:1527–1535

    Google Scholar 

  • Humphrey MJ, Ringrose PS (1986) Peptide and related drugs: a review of their absorption metabolism and excretion. Drug Metab Rev 17:283–310

    Google Scholar 

  • Huynh NT, Passirani C, Saulnier P, Benoit JP (2009) Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm 379:201–209

    Google Scholar 

  • Illum L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15:1326–1331

    Google Scholar 

  • Imanaka H (2008) Anticancer composition for oral use comprising liposome containing phytosterols and prevention or treatment for cancer using the liposome. United States Patent 20080102111

    Google Scholar 

  • Ito M, Ban A, Ishihara M (2000) Anti-ulcer effects of chitin and chitosan, healthy foods, in rats. Jpn J Pharmacol 82:218–225

    Google Scholar 

  • Iwanaga K, Ono S, Narioka K, Morimoto K, Kakemi M, Yamashita S, Nango M, Oku N (1997) Oral delivery of insulin by using surface coating liposomes, Improvement of stability of insulin in GI tract. Int J Pharm 157:73–80

    Google Scholar 

  • Jackson S, Mestecky J, Childers NK, Michalek SM (1990) Liposomes containing anti-idiotypic antibodies: an oral vaccine to induce protective secretory immune response specific for pathogens of mucosal surfaces. Infect Immun 58:1932–1936

    Google Scholar 

  • Jacobs C, Kayser O, Muller RH (2001) Production and characterisation of mucoadhesive nanosuspensions for the formulation of bupravaquone. Int J Pharm 214:3–7

    Google Scholar 

  • Jadon PS, Gajbhiye V, Jadon RS, Gajbhiye KR, Ganesh N (2009) Enhanced oral bioavailability of griseofulvin via niosomes. AAPS PharmSciTech 10:1186–1192

    Google Scholar 

  • Jaeghere FD, Allemann E, Kubel F, Galli B, Cozens R, Doelker E, Gurny R (2000) Oral bioavailability of a poorly water soluble HIV-1 protease inhibitor incorporated into pH-sensitive particles: effect of the particle size and nutritional state. J Control Release 68:291–298

    Google Scholar 

  • Jain S, Sharma RK, Vyas SP (2006) Chitosan nanoparticles encapsulated vesicular systems for oral immunization: preparation, in-vitro and in-vivo characterization. J Pharm Pharmacol 58:303–310

    Google Scholar 

  • Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47:83–97

    Google Scholar 

  • Jinno J, Kamada N, Miyake M, Yamada K, Mukai T, Odomi M, Toguchi H, Liversidge GG, Higaki K, Kimura T (2006) Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release 111:56–64

    Google Scholar 

  • Jones MC, Leroux JC (1999) Polymeric micelles– a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48:101–111

    Google Scholar 

  • Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131

    Google Scholar 

  • Kaukonen AM, Boyd BJ, Charman WN, Porter CJH (2004a) Drug solubilization behavior during in vitro digestion of suspension formulations of poorly watersoluble drugs in triglyceride lipids. Pharm Res 21:254–260

    Google Scholar 

  • Kaukonen AM, Boyd BJ, Porter CJH, Charman WN (2004b) Drug solubilization behavior during in vitro digestion of simple triglyceride lipid solution formulations. Pharm Res 21:245–253

    Google Scholar 

  • Kawakami K, Yoshikawa T, Mororo Y, Hayashi T (2002) Microemulsion formulation for enhanced absorption of poorly soluble drugs: I. Prescription design. J Control Release 81:65–74

    Google Scholar 

  • Kayser O, Olbrich C, Yardley V, Kinderlen AF, Croft SL (2003) Formulation of amphotericin B as nanosuspension for oral administration. Int J Pharm 254:73–75

    Google Scholar 

  • Keck CM, Muller RH (2006) Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization. Eur J Pharm Biopharm 62:3–16

    Google Scholar 

  • Keller BC (2004) Oral liposomal delivery system. United States Patent 6726924

    Google Scholar 

  • Kesisoglou F, Zhou SY, Niemiec S, Lee JW, Zimmermann EM, Fleisher D (2005) Liposomal formulations of inflammatory bowel disease drugs: local versus systemic drug delivery in a rat model. Pharm Res 22:1320–30

    Google Scholar 

  • Khafagy AS, Morishita M, Onuki Y, Takayama K (2007) Current challenges in noninvasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev 59:1521–1546

    Google Scholar 

  • Khandavilli S, Panchagnula R (2007) Nanoemulsions as versatile formulations for paclitaxel delivery: peroral and dermal delivery studies in rats. J Invest Dermatol 127:154–162

    Google Scholar 

  • Kipnes M, Dandona P, Tripathy D, Still JG, Kosutic G (2003) Control of postprandial plasma glucose by an oral insulin product (HIM2) in patients with type 2 diabetes. Diabetes Care 26:421–426

    Google Scholar 

  • Kirby CJ, Gregoriadis G (1984) Preparation of liposomes containing Factor VIII for oral treatment of haemophilia. J Microencapsul 1:33–45

    Google Scholar 

  • Kreuter J (2007) Nanoparticles – a historical perspective. Int J Pharm 331:1–10

    Google Scholar 

  • Kyd JM, Cripps AW (2008) Functional differences between M cells and enterocytes in sampling luminal antigens. Vaccine 26:6221–4

    Google Scholar 

  • Lee J (2004) Intrinsic adhesion force of lubricants to steel surface. J Pharm Sci 93:2310–2318

    Google Scholar 

  • Lee J, Cheng Y (2006) Critical freezing rate in freeze drying nanocrystal dispersions. J Control Release 111:185–192

    Google Scholar 

  • Lee VA, Karthikeyan R, Rawls HR, Amaechi BT (2010) Anti-cariogenic effect of a cetylpyridinium chloridecontaining nanoemulsion. J Dent 38:742–749

    Google Scholar 

  • Lee VHL, Yamamoto A, Komplella UB (1991) Mucosal penetration enhancers for facilitation of peptide and protein drug absorption. Crit Rev Ther Drug Carrier Syst 8:91–192

    Google Scholar 

  • Lee WK, Park JY, Yang EH, Suh H, Kim SH, Chung DS, Choi K, Yang CW (2002) Investigation of factors influencing the release rates of cyclosporine A-loaded micro- and nanoparticles prepared by high-pressure homogenizer. J Control Release 84:115–123

    Google Scholar 

  • Lehr C (1994) Bioadhesion technologies for the delivery of peptides and protein drugs to GIT. Crit Rev Ther Drug Carrier Syst 11:119–160

    Google Scholar 

  • Lehr C, Bouwstra JA, Schacht EH, Junginer HE (1992) In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm 76:43–9

    Google Scholar 

  • Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymerosomes. Eur J Pharm Biopharm 65:259–69

    Google Scholar 

  • Li CL, Deng YJ (2004) Oil-based formulations for oral delivery of insulin. J Pharm Pharmacol 56:1101–1107

    Google Scholar 

  • Liedtke S, Wissing S, Muller RH, Mader K (2000) Influence of high pressure homogenization equipment on nanodispersions characteristics. Int J Pharm 160:229–37

    Google Scholar 

  • Lin SL, Lachman L, Swartz CJ, Huebner CF (1972) Preformulation investigation I. Relation of salt forms and biological activity of a novel antihypertensive. J Pharm Sci 61:1418–1422

    Google Scholar 

  • Linga SSN, Yuena KH, Magossoa E, Barker SA (2009) Oral bioavailability enhancement of a hydrophilic drug delivered via folic acid-coupled liposomes in rats. J Pharm Pharmacol 61:445–449

    Google Scholar 

  • Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol 44:235–49

    Google Scholar 

  • Lipper RA (1999) E pluribus product. Modern Drug Discov 2:55–60

    Google Scholar 

  • Liu M, Frechet JMJ (1999) Designing dendrimers for drug delivery. Pharm Sci Technol Today 2:393–401

    Google Scholar 

  • Liu R (2000) Particle size reduction, in water-insoluble drug formation. Interpharm Press, Buffalo Grove, pp 455–492

    Google Scholar 

  • Liversidge G, Cundy K (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm 125:91–97

    Google Scholar 

  • Liversidge GG, Conzentino P (1995) Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int J Pharm 125:309–313

    Google Scholar 

  • Lozano MV, Torrecilla D, Torres D, Vidal A, Dominguez F, Alonso MJ (2008) Highly efficient system to deliver taxanes into tumor cells: docetaxel-loaded chitosan oligomer colloidal carriers. Biomacromolecules 9:2186–2193

    Google Scholar 

  • Lukyanov AN, Torchilin VP (2004) Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 56:1273–1289

    Google Scholar 

  • Madhusudhan B, Rambhau D, Apte SS, Gopinath D (2007) Oral Bioavailability of Flutamide from 1-O-Alkylglycerol Stabilized o/w Nanoemulsions. J Dispers Sci Technol 28:1254–1261

    Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:71–284

    Google Scholar 

  • Mahato RI, Narang AS, Thoma L, Miller DD (2003) Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst 20:153–214

    Google Scholar 

  • Makhlof A, Fujimoto S, Tozuka Y, Takeuchi H (2011a) In vitro and in vivo evaluation of WGA–carbopol modified liposomes as carriers for oral peptide delivery. Eur J Pharm Biopharm 77:216–224

    Google Scholar 

  • Makhlof A, Werle M, Tozuka Y, Takeuchi H (2011b) A mucoadhesive nanoparticulate system for the simultaneous delivery of macromolecules and permeation enhancers to the intestinal mucosa. J Control Release 149:81–88

    Google Scholar 

  • Mauludin R, Muller RH, Keck CM (2009) Development of an oral rutin nanocrystal formulation. Int J Pharm 370:202–209

    Google Scholar 

  • Mehnert W, Mader K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    Google Scholar 

  • Mei Z, Li X, Wu Q, Hu S, Yang X (2005) The research on the antiinflammatory activity and hepatotoxicity of triptolide-loaded solid lipid nanoparticle. Pharmacol Res 51:345–351

    Google Scholar 

  • Merisko-Liversidge E, Liversidge GG, Cooper ER (2004) Nanosizing: a formulation approach for poorly water-soluble compounds. Eur J Pharm Sci 18:113–20

    Google Scholar 

  • Merisko-Liversidge EM, Lıversıdge GG (2008) Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol 36:43–48

    Google Scholar 

  • Merkle HP (1994) New aspects of pharmaceutical dosage forms for controlled drug delivery of peptides and proteins. Eur J Pharm Sci 2:19–21

    Google Scholar 

  • Michalek SM, Childers NK, Katz J, Denys FR, Berry AK, Eldridge JH, McGhee JR, Curtiss R (1989) Liposomes as oral adjuvants. Curr Top Microbiol Immunol 146:51–58

    Google Scholar 

  • Michalek SM, Childers NK, Katz J, Dertzbaugh M, Zhang S, Russell MW, Macrina FL, Jackson S, Mestecky J (1992) Liposomes and conjugate vaccines for antigen delivery and induction of mucosal immune responses. Adv Exp Med Biol 327:191–198

    Google Scholar 

  • Minato S, Iwanaga K, Kakemi M, Yamashita S, Oku N (2003) Application of polyethyleneglycol (PEG)-modified liposomes for oral vaccine: effect of lipid dose on systemic and mucosal immunity. J Control Release 89:189–197

    Google Scholar 

  • Mishra N, Goyal AK, Khatri K, Vaidya B, Paliwal R, Rai S, Mehta A, Tiwari S, Vyas S, Vyas SP (2008) Biodegradable polymer based particulate carrier(s) for the delivery of proteins and peptides. Curr Med Chem Anti Inflamm Anti Allergy Agents 7:240–251

    Google Scholar 

  • Moghimi SM, Muir IS, Illum L, Davis SS, Kolb-Bachofen V (1993) Coating particleswith a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum. Biochim Biophys Acta 1179:157–165

    Google Scholar 

  • Molpeceres J, Guzman M, Aberturas MR, Chacon M, Berges L (1996) Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement. J Pharm Sci 85:206–213

    Google Scholar 

  • Möschwitzer J, Achleitner G, Pomper H, Muller RH (2004) Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur J Pharm Biopharm 58:615–619

    Google Scholar 

  • Moynihan KL, Emerson DL, Chiang S, Hu N (2004) Liposomal camptothecin formulations. United States Patent 6740335

    Google Scholar 

  • Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18:309–327

    Google Scholar 

  • Mrestani Y, Behbood L, Hart A, Neubert RH (2010) Microemulsion and mixed micelle for oral administration as new drug formulations for highly hydrophilic drugs. Eur J Pharm Biopharm 74:219–222

    Google Scholar 

  • Muller RH, Mader K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Google Scholar 

  • Muller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect in the future. Adv Drug Deliv Rev 47:3–19

    Google Scholar 

  • Muller RH, Runge S, Ravelli V, Mehnert W, Thünemann AF, Souto EB (2006) Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN®) versus drug nanocrystals. Int J Pharm 317:82–89

    Google Scholar 

  • Nagasaki Y, Yasugi K, Yamamoto Y, Harada A, Kataoka K (2001) Sugar-installed block copolymer micelles: their preparation and specific interaction with lectin molecules. Biomacromolecules 2:1067–1070

    Google Scholar 

  • Oda M, Saitoh H, Kobayashi M, Aungst BJ (2004) Cyclodextrin as a suitable solubilizing agent for in situ absorption study of poorly water-soluble drugs. Int J Pharm 280:95–102

    Google Scholar 

  • Owens DE III, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Google Scholar 

  • Pace S, Pace GW, Parikh I, Mishra A (1999) Novel injectable formulations of insoluble drugs. Pharm Technol 23:116–34

    Google Scholar 

  • Pai CM, Min MH, Hwang JS, Cho KM (2010) Nanoparticle compositions of water-soluble drugs for oral administration and preparation methods thereof. United States Patent 7674767

    Google Scholar 

  • Pandey R, Sharma S, Khuller G (2005) Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis 85:415–420

    Google Scholar 

  • Panzner S, Brauer R, Kinne RW, Rauchhaus U (2006) Liposomal glucocorticoids. United States Patent 20060147511

    Google Scholar 

  • Pardakhty A, Varshosaz J, Rouholamini A (2007) In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int J Pharm 328:130–141

    Google Scholar 

  • Patravale VB, Date AA, Kulkarni RM (2004) Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 56:827–840

    Google Scholar 

  • Peters K, Leitzke S, Diederichs JE, Borner K, Hahn H, Muller RH, Ehlers S (2000) Preparation of clofazamine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in Mycobacterium avium infection. J Antimicrob Chemother 45:77–83

    Google Scholar 

  • Pinto-Alphandary H, Aboubakar M, Jaillard D, Couvreur P, Vauthier C (2003) Visualization of insulin-loaded nanocapsules: in vitro and in vivo studies after oral administration to rats. Pharm Res 20:1071–1084

    Google Scholar 

  • Plapied L, Duhem N, des Rieux A, Préat V (2011) Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci 16:228–237

    Google Scholar 

  • Pouton CW (1997) Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev 25:47–58

    Google Scholar 

  • Pouton CW (2000) Lipid formulations for oral administration of drugs: nonemulsifying, self-emulsifying and “self-microemulsifying” drug delivery systems. Eur J Pharm Sci 11:93–98

    Google Scholar 

  • Prego C, Torres D, Alonso MJ (2006a) Chitosan nanocapsules: a new carrier for nasal peptide delivery. J Drug Deliv Sci Tec 16:331–337

    Google Scholar 

  • Prego C, Torres D, Fernandez-Megia E, Novoa-Carballal R, Quinoa E, Alonso MJ (2006b) Chitosan–PEG nanocapsules as new carriers for oral peptide delivery Effect of chitosan pegylation degree. J Control Release 111:299–308

    Google Scholar 

  • Puglia C, Blasi P, Rizza L, Schoubben A, Bonina F, Rossi C, Ricci M (2008) Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int J Pharm 357:295–304

    Google Scholar 

  • Rabinow BE (2004) Nanosuspensions in drug delivery. Nature Rev Drug Discov 3:785–796

    Google Scholar 

  • Rentel CO, Bouwstra JA, Naisbett B, Junginger HE (1999) Niosomes as a novel peroral vaccine delivery system. Int J Pharm 186:161–167

    Google Scholar 

  • Reszka R, Fichtner I (2005) Orally administered pharmaceutical preparation comprising liposomically encapsulated paclitaxel. United States Patent 20050019386

    Google Scholar 

  • Richard A, Margaritis A (2001) Poly (glutamic acid) for biomedical applications. Crit Rev Biotechnol 21:219–232

    Google Scholar 

  • Roger E, Lagarce F, Garcion E, Benoit JP (2009) Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. J Control Release 140:174–181

    Google Scholar 

  • Ruenraroengsak P, Cook JM, Florence AT (2010) Nanosystem drug targeting: facing up to complex realities. J Control Release 141:265–76

    Google Scholar 

  • Russell-Jones GJ (2004) Use of targeting agents to increase uptake and localization of drugs to the intestinal epithelium. J Drug Target 12:113–123

    Google Scholar 

  • Saez A, Guzman M, Molpeceres J, Aberturas MR (2000) Freezedrying of polycaprolactone and poly (D, L-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs. Eur J Pharm Biopharm 50:379–387

    Google Scholar 

  • Sakuragawa N, Niiya K, Kondo S (1985) Oral-administration of factor-VIII concentrate preparation in vonwillebrands disease. Thromb Res 38:681–685

    Google Scholar 

  • Sanchez A, Alonso MJ (1995) Poly(D, L-lactide-co-glycolide) micro and nanospheres as a way to prolong blood plasma levels of subcutaneously injected yclosporin A. Eur J Pharm Biopharm 41:31–37

    Google Scholar 

  • Santander-Ortega MJ, Peula-García JM, Goycoolea FM, Ortega-Vinuesa JL (2011) Chitosan nanocapsules: effect of chitosan molecular weight and acetylation degree on electrokinetic behaviour and colloidal stability. Colloids Surf B Biointerfaces 82:571–580

    Google Scholar 

  • Sarciaux JM, Acar L, Sado PA (1995) Using microemulsion formulations for oral drug delivery of therapeutic peptides. Int J Pharm 120:27–136

    Google Scholar 

  • Sarker DK (2005) Engineering of nanoemulsions for drug delivery. Curr Drug Deliv 2:297–310

    Google Scholar 

  • Sarmento B, Martins S, Ferreira D, Souto EB (2007) Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomed 2:743–749

    Google Scholar 

  • Seki J, Sonoke S, Saheki A, Fukui H, Sasaki H, Mayumi T (2004) A nanometer lipid emulsion, lipid nano-sphere (LNS®), as a parenteral drug carrier for passive drug targeting. Int J Pharm 273:75–83

    Google Scholar 

  • Sezgin Z, Yuksel N, Baykara T (2007) Investigation of pluronic and PEG-PE micelles as carriers of meso-tetraphenyl porphine for oral administration. Int J Pharm 332:161–167

    Google Scholar 

  • Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M (2007) Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm 66:227–243

    Google Scholar 

  • Shah RB, Ahsan F, Khan MA (2002) Oral delivery of proteins: progress and prognostication. Crit Rev Ther Drug Carrier Syst 19:135–169

    Google Scholar 

  • Sharma P, Garg S (2009) Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv Drug Deliv Rev 18:491–502

    Google Scholar 

  • Shibamura A, Ikeda T, Nishikawa Y (2009) A method for oral administration of hydrophilic substances to Caenorhabditis elegans: effects of oral supplementation with antioxidants on the nematode lifespan. Mech Ageing Dev 130:652–655

    Google Scholar 

  • Singh KK, Vingkar SK (2008) Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. Int J Pharm 347:136–143

    Google Scholar 

  • Singh AK, Harrison SH, Schoeniger JS (2000) Ganglioside as a receptor for biological toxins: development of sensitive fluoroimmunoassays using ganglioside-bearing liposomes. Anal Chem 72:6019–6024

    Google Scholar 

  • Sjostrom B, Bergenstahl B (1992) Preparation of submicron drug particles in lecithin-stabilized o/w emulsions. I. Model studies of the precipitation of cholesteryl acetate. Int J Pharm 88:53–62

    Google Scholar 

  • Sjostrom B, Bergenstahl B, Kronberg B (1993) A method for the preparation of submicron particles of sparingly water-soluble drugs by precipitation in oilin- water emulsions. II: Influence of the emulsifier, the solvent, and the drug substance. J Pharm Sci 82:584–589

    Google Scholar 

  • Sjostrom B, Kaplun A, Talmon Y, Cabane B (1995) Structures of nanoparticles prepared from oil-in-water emulsions. Pharm Res 12:39–48

    Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Google Scholar 

  • Sosnik A, Carcaboso AM, Glisoni RJ, Moretton MA, Chiappetta DA (2010) New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv Drug Deliv Rev 62:547–559

    Google Scholar 

  • Souto EB, Wissing SA, Barbos CM, Muller RH (2004) Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur J Pharm Biopharm 58:83–90

    Google Scholar 

  • Spector MS, Selinger JV, Singh A, Rodriguez JM, Price RR, Schnur JM (1998) Controlling the morphology of chiral lipid tubules. Langmuir 14:3493–3500

    Google Scholar 

  • Sung HW, Tu H (2011) Nanoparticles for protein drug delivery United States Patent 7910086

    Google Scholar 

  • Tagne JB, Kakumanu S, Ortiz D, Shea T, Nicolosi RJ (2008) A nanoemulsion formulation of tamoxifen increases its efficacy in a breast cancer cell line. Mol Pharm 5:280–286

    Google Scholar 

  • Takada S, Uda Y, Toguchi H, Ogawa Y (1995) Application of a spray drying technique in production of TRH-containing injectable sustained release microparticles of biodegradable polymers. J Pharm Sci Technol 49:180–184

    Google Scholar 

  • Takahashi M, Uechi S, Takara K, Asikin Y, Wada K (2009) Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem 57:9141–9146

    Google Scholar 

  • Takeuchi H, Matsui Y, Yamamoto H, Kawashima Y (2003) Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. J Control Release 86:235–242

    Google Scholar 

  • Thanou M, Verhoef JC, Junginger HE (2001) Chitosan and its derivatives as intestinal absorption enhancers. Adv Drug Deliv Rev 50:S91–S101

    Google Scholar 

  • Thomson AB, Schoeller C, Keelan M, Smith L, Clandinin MT (1993) Lipid absorption: passing through the unstirred layers, brushborder membrane and beyond. Can J Physiol Pharmacol 71:531–555

    Google Scholar 

  • Tiwari R, Pathak K (2011) Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: Comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int J Pharm. doi:10.1016/j.ijpharm.2011.05.044

  • Tiwari SB, Amiji MM (2006) Improved oral delivery of paclitaxel following administration in nanoemulsion formulations. J Nanosci Nanotechnol 6:3215–3221

    Google Scholar 

  • Tomizawa H, Aramaki Y, Fujii Y, Hara T, Suzuki N, Yachi K, Kikuchi H, Tsuchiya S (1993) Uptake of phosphatidylserine liposomes by rat Peyer's patches following intraluminal administration. Pharm Res 10:549–552

    Google Scholar 

  • Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–1555

    Google Scholar 

  • Trotta M, Gallarete M, Pattarino F, Morel S (2001) Emulsions containing partially water-miscible solvents for the preparation of drug nanosuspensions. J Control Release 76:119–128

    Google Scholar 

  • Uchegbu IF, Vyas SP (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172:33–70

    Google Scholar 

  • Urata T, Arimori K, Nakano N (1999) Modification of the release rate of cyclosporin A from poly(L-lactic acid) microspheres by fatty acid ester and in vivo evaluation of the microspheres. J Control Release 58:133–141

    Google Scholar 

  • Van der Lubben IM, Verhoef JC, Borchard G, Junginger HE (2001) Chitosan for mucosal vaccination. Adv Drug Deliv Rev 52:139–144

    Google Scholar 

  • Veltkamp SA, Rosing H, Huitema AD, Fetell MR, Nol A, Beijnen JH, Schellens JH (2007) Novel paclitaxel formulations for oral application: a phase I pharmacokinetic study in patients with solid tumours. Cancer Chemother Pharmacol 60:635–642

    Google Scholar 

  • Veltkamp SA, Thijssen B, Garrigue JS, Lambert G, Lallemand F, Binlich F, Huitema AD, Nuijen B, Nol A, Beijnen JH, Schellens JH (2006) A novel self-microemulsifying formulation of paclitaxel for oral administration to patients with advanced cancer. Br J Cancer 95:729–734

    Google Scholar 

  • Venkataram S, Awni WM, Jordan K, Rahman YE (1990) Pharmacokinetics of two alternative dosage forms of cyclosporin: liposomes and intralipid. J Pharm Sci 79:216–219

    Google Scholar 

  • Venkatesan N, Vyas SP (2000) Polysaccharide coated liposomes for oral immunization - development and characterization. Int J Pharm 203:169–177

    Google Scholar 

  • Vergote GJ et al (2001) An oral controlled release matrix pellet formulation containing nanocrystalline ketoprofen. Int J Pharm 219:81–87

    Google Scholar 

  • Visser MR, Baert L, Klooster G, Schueller L, Geldof M, Vanwellkenhuysen I, de Hoch H, De Meyer S, Frijlink HW, Rosier J, Hinrichs WL (2010) Inulin solid dispersion technology to improve the absorption of the BCS Class IV drug TMC240. Eur J Pharm Biopharm 74:233–238

    Google Scholar 

  • Vyas TK, Shahiwala A, Amiji MM (2008) Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm 347:93–101

    Google Scholar 

  • Walmsley LM, Taylor T, Wilkinson PA, Brodie RR, Chasseaud LF, Alunjones V, Hunter JO (1986) Plasma concentrations and relative bioavailability of naftidrofuryl from different salt forms. Biopharm Drug Dispos 7:327–334

    Google Scholar 

  • Wang X, Dai J, Chena Z, Zhang T, Xia G, Nagaic T, Zhang Q (2004) Bioavailability and pharmacokinetics of cyclosporine A-loaded pH-sensitive nanoparticles for oral administration. J Control Release 97:421–429

    Google Scholar 

  • Watanabe E, Sudo R, Takahashi M, Hayashi M (2000) Evaluation of absorbability of poorly water-soluble drugs: validity of the use of additives. Biol Pharm Bull 23:838–843

    Google Scholar 

  • Werle M, Takeuchi H (2008) Liposomal polyion-complexes based on poly(allylamine) for oral peptide delivery: basic Investigations. Sci Pharm 76:751–760

    Google Scholar 

  • Werle M, Takeuchi H (2009) Chitosan–aprotinin coated liposomes for oral peptide delivery: development, characterisation and in vivo evaluation. Int J Pharm 370:26–32

    Google Scholar 

  • Werle M, Takeuchi H, Bernkop-Schnurch A (2009) Modified chitosans for oral drug delivery. J Pharm Sci 98:1643–1656

    Google Scholar 

  • Win KY, Feng S (2005) Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26:2713–2722

    Google Scholar 

  • Wiwattanapatapee R, Carreno-Gomez B, Duncan R (2000) Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm Res 17:991–998

    Google Scholar 

  • Wu ZH, Ping QN, Wei Y, Lai JM (2004) Hypoglycemic efficacy of chitosan-coated insulin liposomes after oral administration in mice. Acta Pharmacol Sin 25:966–972

    Google Scholar 

  • Yamabe K, Kato Y, Onishi H, Machida Y (2003) Potentiality of double liposomes containing salmon calcitonin as an oral dosage form. J Control Release 89:429–436

    Google Scholar 

  • Yamanaka YJ, Leong KW (2008) Engineering strategies to enhance nanoparticle mediated oral delivery. J Biomater Sci Polym Ed 19:1549–70

    Google Scholar 

  • Yanagawa A, Iwayama T, Saotome T, Shoji Y, Takano K, Oka H, Nakagawa T, Mizushima Y (1989) Selective transfer of cyclosporin to thoracic lymphatic systems by the application of lipid microspheres. J Microencapsul 6:161–164

    Google Scholar 

  • Yang S, Gursoy RN, Lambert G, Benita S (2004) Enhanced oral absorption of paclitaxel in a novel self-microemulsifying drug delivery system with or without concomitant use of P-glycoprotein inhibitors. Pharm Res 21:261–270

    Google Scholar 

  • Yin YM, Cui FD, Mu CF, Choi MK, Kim JS, Chung SJ, Shim CK, Kim DD (2009) Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation. J Control Release 140:86–94

    Google Scholar 

  • Yu LX, Amidon GL, Polli JE, Zhao H, Mehta MU, Conner DP, Shah VP, Lesko LJ, Chen ML, Lee VHL, Hussain AJ (2002) Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res 19:921–925

    Google Scholar 

  • Yüksel N, Karataş A, Özkan Y, Savaşer A, Özkan SA, Baykara T (2003) Enhanced bioavailability of piroxicam using Gelucire 44/14 and Labrasol: in vitro and in vivo evaluation. Eur J Pharm Biopharm 56:453–459

    Google Scholar 

  • Zhang N, Ping QN, Huanga GH, Xu WF (2005) Investigation of lectin-modified insulin liposomes as carriers for oral administration. Int J Pharm 294:247–259

    Google Scholar 

  • Zhang Q, Yie G, Li Y, Yang Q, Nagai T (2000) Studies on the cyclosporine A loaded stearic acid nanoparticles. Int J Pharm 200:153–159

    Google Scholar 

  • Zhang T, Chen J, Zhang Y, Shen Q, Pan W (2011) Characterization and evaluation of nanostructured lipid carrier as a vehicle for oral delivery of etoposide. Eur J Pharm Sci 43:174–179

    Google Scholar 

  • Zhang Z, Feng SS (2006) Self-assembled nanoparticles of poly(lactide)-Vitamin E TPGS copolymers for oral chemotherapy. Int J Pharm 324:191–198

    Google Scholar 

  • Zhuang CY, Li N, Wang M (2010) Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm 394:179–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mine Özyazıcı .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Özyazıcı, M., Gökçe, E.H., Yurdasiper, A. (2012). Nanosized Drug Delivery for Enhancement of Oral Bioavailability. In: Souto, E. (eds) Patenting Nanomedicines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29265-1_10

Download citation

Publish with us

Policies and ethics