Skip to main content

Lignin as Source of Fine Chemicals: Vanillin and Syringaldehyde

  • Chapter
  • First Online:
Biomass Conversion

Abstract

The sustainability of processes to integrate in biochemical and thermochemical platforms is a key factor for the success of lignocellulose-based biorefineries. Production and separation of high added-value compounds from renewable resources are emergent areas of science and technology with relevance to both scientific and industrial communities. Lignin is one of the raw materials with high potential due to its chemistry and proprieties. One of the routes is the production of aromatic aldehydes, vanillin, and syringaldehyde, toward environmental friendly processes as oxidation with O2, including separation of products by membrane and ion exchange processes. In this chapter, the types, availability, and characteristics of lignins are described, as well as the current trends of some industrial producers and processors. A concise yet comprehensive revision of the literature on lignin oxidation research focusing vanillin and syringaldehyde is provided. Separation processes for recovery of the aldehydes are included closing with a design of reaction and separation integrated process for aldehydes production from lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sjöström E (ed) (1993) Wood chemistry, fundamentals and applications. Academic Press, New York

    Google Scholar 

  2. Boerjan W, Ralph J, Baucher M (2003) Lignin Biosynthesis. Annu Rev Plant Biol 54(1):519–546

    Article  Google Scholar 

  3. Adler E (1977) Lignin chemistry-past, present and future. Wood Sci Technol 11(3):169–218

    Article  Google Scholar 

  4. Davin LB, Patten AM, Jourdes M, Lewis NG (2009) Lignins: a twenty-first century challenge. Biomass recalcitrance. Blackwell Publishing Ltd, London

    Google Scholar 

  5. Ek M, Gellerstedt G, Henriksson G (eds) (2009) Pulp and paper chemistry and technology. Wood chemistry and wood biotechnology, vol 1. Walter de Gruyter, Berlin

    Google Scholar 

  6. Yr Chen, Sarkanen S (2010) Macromolecular replication during lignin biosynthesis. Phytochemistry 71(4):453–462

    Article  Google Scholar 

  7. Lewin M, Goldstein IS (eds) (1991) Wood structure and composition. Marcel Dekker, New York

    Google Scholar 

  8. Lawoko M, Henriksson G, Gellerstedt G (2005) Structural differences between the lignin—carbohydrate complexes present in wood and in chemical pulps. Biomacromolecules 6(6):3467–3473

    Article  Google Scholar 

  9. Evtuguin DV, Neto CP, Silva AMS, Domingues PM, Amado FML, Robert D, Faix O (2001) Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood. J Agric Food Chem 49(9):4252–4261

    Article  Google Scholar 

  10. Pinto PC, Evtuguin DV, Neto CP (2005) Effect of structural features of wood biopolymers on hardwood pulping and bleaching performance. Ind Eng Chem Res 44(26):9777–9784

    Article  Google Scholar 

  11. Boudet AM, Grima-Pettenati J (1996) Lignin genetic engineering. Mol Breeding 2(1):25–39

    Article  Google Scholar 

  12. Baucher M, Halpin C, Petit-Conil MWB (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38(4):305–350

    Article  Google Scholar 

  13. Gellerstedt G, Lindfors E-L (1984) Structural changes in lignin during kraft cooking part 4. Phenolic hydroxyl groups in wood and kraft pulps. Svensk Papperstidn 15:115–118

    Google Scholar 

  14. Gellerstedt G, Gustafsson K (1987) Structural changes in lignin during kraft cooking. Part 5. Analysis of dissolved lignin by oxidative degradation. J Wood Chem Technol 7(1):65–80

    Google Scholar 

  15. Marques AP, Evtuguin DV, Magina S, Amado FML, Prates A (2009) Structure of Lignosulphonates from Acidic Magnesium-Based Sulphite Pulping of Eucalyptus globulus. J Wood ChemTechnol 29(4):337–357

    Article  Google Scholar 

  16. Robert DR, Bardet M, Gellerstedt Gr, Lindfors EL (1984) Structural changes in lignin during kraft cooking part 3. On the structure of dissolved lignins. J Wood Chem Technol 4(3):239–263

    Google Scholar 

  17. Vázquez G, Antorrena G, González J, Freire S (1997) The Influence of pulping conditions on the structure of acetosolv eucalyptus lignins. J Wood Chem Technol 17(1):147–162

    Article  Google Scholar 

  18. Gierer J (1985) Chemistry of delignification. Wood Sci Technol 19(4):289–312. doi:10.1007/bf00350807

    Google Scholar 

  19. Tarabanko VE, Koropatchinskaya NV, Kudryashev AV, Kuznetsov BN (1995) Influence of lignin origin on the efficiency of the catalytic oxidation of lignin vanillin and syringaldehyde. Russ Chem Bull 2:367–371

    Google Scholar 

  20. Pinto PR, Borges da Silva EA, Rodrigues AE (2011) Insights into oxidative conversion of lignin to high-added-value phenolic aldehydes. Ind Eng Chem Res 50(2):741–748

    Article  Google Scholar 

  21. Clayton D, Einspahr D, Easty D, Lonsky W, Malcolm E, McDonough T, Shroeder L, Thompson N (1987) Pulp and paper manufacture, vol 5. Alkaline pulping. Tappi and CPPA, Atlanta

    Google Scholar 

  22. Gierer J (1980) Chemical aspects of kraft pulping. Wood Sci Technol 14(4):241–266

    Article  Google Scholar 

  23. Lebo SE, Gargulak JD, McNally TJ (2000) Lignin. Kirk-Othmer encyclopedia of chemical technology. John Wiley & Sons, London

    Google Scholar 

  24. Gierer J, Wännström S (1984) Formation of alkali-stahle c–c-bonds between lignin and carbohydrate fragments during kraft pulping. Holzforschung 38(4):181–184

    Article  Google Scholar 

  25. Ragnar M, Lindgren CT, Nilvebrant N-O (2000) pKa-values of guaiacyl and syringyl phenols related to lignin. J Wood Chem Technol 20(3):277–305

    Article  Google Scholar 

  26. Öhman F (2006) Precipitation and separation of lignin from kraft black liquor. Chalmers University of Technology, Gottenburg, Sweden

    Google Scholar 

  27. Tomani P, Axegard P (2007) Development and demonstration of the LignoBoost process. In: The ILI umbrella programme and other existing and new approaches in lignin research, ILI 8th forum, Rome, 10–12 May. The International Lignin Institute, pp 109–113

    Google Scholar 

  28. Tomani P (2008) Large scale lignin removal experiences. In: STFI-Packforsk (ed) 1st Nordic wood biorefinery conference (NWBC 2008), Stockholm, 11–13 March, pp 168–174

    Google Scholar 

  29. Lindgren K, Alvarado F, Olander K, Öhman F Potential lignin products from the wood biorefinery (2011) In: INNVENTIA (ed) The 3rd Nordic wood biorefinery conference (NWBC 2011), Stockholm, 22–24 March, pp 153–155

    Google Scholar 

  30. Nordström Y, Sjöholm E, Brodin I, Drougge R, Gellerstedt G, Lindfors E-L (2011) Lignin for carbon fibres In: INNVENTIA (ed) 3rd Nordic wood biorefinery conference (NWBC 2011), Stockholm, 22–24 March INNVENTIA, pp 156–160

    Google Scholar 

  31. Jönsson A-S, Nordin A-K, Wallberg O (2008) Concentration and purification of lignin in hardwood kraft pulping liquor by ultrafiltration and nanofiltration. Chem Eng Res Des 86(11):1271–1280

    Article  Google Scholar 

  32. Wallberg O, Jönsson A-S (2006) Separation of lignin in kraft cooking liquor from a continuous digester by ultrafiltration at temperatures above 100°C. Desalination 195(1–3):187–200

    Article  Google Scholar 

  33. Toledano A, García A, Mondragon I, Labidi J (2010) Lignin separation and fractionation by ultrafiltration. Sep Purif Technol 71(1):38–43

    Article  Google Scholar 

  34. Toledano A, Serrano L, Garcia A, Mondragon I, Labidi J (2010) Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chem Eng J 157(1):93–99

    Article  Google Scholar 

  35. Gosselink RJA, de Jong E, Guran B, Abächerli A (2004) Co-ordination network for lignin–standardisation, production and applications adapted to market requirements (EUROLIGNIN). Ind Crop Prod 20(2):121–129

    Article  Google Scholar 

  36. Mathias AL (1993) Produção de vanilina a partir da lenhina: estudo cinético e do processo (in Portuguese language). PhD, University of Porto

    Google Scholar 

  37. Adler E, Hägglund EKM (1954) Method of producing water-soluble products from black liquor lignin. United States patent 2680113

    Google Scholar 

  38. JE Holladay JE, Bozell JJ, White JF, Johnson D (2007) Results of screening for potential candidates from biorefinery lignin. Top value-added chemicals from biomass, vol II. Pacific Northwest National Laboratory and National Renewable Energy Laboratory, Richland

    Google Scholar 

  39. Meadwestvaco web page (2011) http://www.meadwestvaco.com/SpecialtyChemicals/index.htm. Accessed 21 May 2011

  40. Pinto PC, Evtuguin DV, Neto CP, Silvestre AJD, Amado FML (2002) Behavior of Eucalyptus globulus lignin during kraft pulping. II. Analysis by NMR, ESI/MS and GPC. J Wood Chem Technol 22(2):109–125

    Article  Google Scholar 

  41. Pinto PC, Evtuguin DV, Neto CP, Silvestre AJD (2002) Behavior of Eucalyptus globulus lignin during kraft pulping I. Analysis by chemical degradation methods. J Wood Chem Technol 22(2):93–108

    Article  Google Scholar 

  42. Nagy M, Kosa M, Theliander H, Ragauskas AJ (2010) Characterization of CO2 precipitated Kraft lignin to promote its utilization. Green Chem 12(1):31–34

    Article  Google Scholar 

  43. Wilde FGN-D (1987) Recovery of lignosulphonate from a calcium bisulphite pulp mill effluent by ultrafiltration. Desalination 67:495–505

    Article  Google Scholar 

  44. Restolho JA, Prates A, de Pinho MN, Afonso MD (2009) Sugars and lignosulphonates recovery from eucalyptus spent sulphite liquor by membrane processes. Biomass Bioenergy 33(11):1558–1566

    Article  Google Scholar 

  45. Bhattacharya PK, Todi RK, Tiwari M, Bhattacharjee C, Bhattacharjee S, Datta S (2005) Studies on ultrafiltration of spent sulfite liquor using various membranes for the recovery of lignosulphonates. Desalination 174(3):287–297

    Article  Google Scholar 

  46. Mänttäri M, Kallioinen M, Pihlajamäki A, Nyström M (2010) Industrial membrane processes in the treatment of process waters and liquors. Water Sci Technol 62(7):1653–1660

    Article  Google Scholar 

  47. Heikkila H (1986) Production of pure sugars and lignosulfonates from sulfite spent liquor. United States patent 4631129

    Google Scholar 

  48. Brauns FE (1967) Recovery of lignosulfonates. United States patent 3297676

    Google Scholar 

  49. Hamala TSL, Koivvnen HST, Kontturi A-KK, Sarkkinen PVJ (1982) Process for recovering lignosulfates from spent sulfite liquor. Finland patent

    Google Scholar 

  50. Chakrabarty K, Saha P, Ghoshal AK (2010) Separation of lignosulfonate from its aqueous solution using emulsion liquid membrane. J Membr Sci 360(1–2):34–39

    Article  Google Scholar 

  51. Evju H (1979) Process for preparation of 3-methoxy-4-hydroxibenzaldeyde. Norway patent

    Google Scholar 

  52. Ringena O, Saake B, Lehnen R (2005) Isolation and fractionation of lignosulfonates by amine extraction and ultrafiltration: a comparative study. Holzforschung 59(4):405–412

    Article  Google Scholar 

  53. Borregard LignoTech web page (2011), http://www.lignotech.com/eway/default.aspx?pid=249&trg=MainPage_9490&MainPage_9490=9546:0. Accessed 23 May 2011

  54. Lersch M (2011) Biorefining at Borregaard—recent developments in the processing of lignocellulosics. In: The 3rd Nordic wood biorefinery conference (NWBC 2011), Stockholm, 22–24 March 2011, pp 109–113

    Google Scholar 

  55. Ismail F, Mulholland DA, Marsh JJ (2005) An analysis of the water soluble components of Sappi Saiccor’s effluent streams. Water SA 31(4):569–574

    Google Scholar 

  56. Moodley B, Mulholland DA, Brookes HC (2011) The electro-oxidation of lignin in Sappi Saiccor dissolving pulp mill effluent. Water SA 37(1):33–40

    Google Scholar 

  57. Sjöde A, Frölander A, Lersh M, Rødsrud G (2009) Lignocellulosic biomass conversion by sulfite pretreatment. International patent WO2010/078930

    Google Scholar 

  58. Pye EK (2008) Industrial lignin production and applications. Biorefineries-industrial processes and products. Wiley-VCH Verlag GmbH, Germany

    Google Scholar 

  59. Marwedel T (2009) Vanillin from Borregaard gives small CO2 footprints—Aroma Chemicals, available at web page http://www.borregaard.com/eway/default.aspx?pid=270&trg=MainLeft_12937&Main_12928=12937:0:15,4975:1:0:0:::0:0&MainLeft_12937=12539:25998::1:12939:6:::0:0. Borregaard website. Accessed 20 Feb 2011

  60. Ekeberg D, Gretland KS, Gustafsson J, Bråten SM, Fredheim GE (2006) Characterisation of lignosulphonates and kraft lignin by hydrophobic interaction chromatography. Anal Chim Acta 565(1):121–128

    Article  Google Scholar 

  61. Fredheim GE, Braaten SM, Christensen BE (2003) Comparison of molecular weight and molecular weight distributions of softwood and hardwood lignosulfonates. J Wood Chem Technol 23(2):197–215

    Article  Google Scholar 

  62. Gellerstedt G, Henriksson G (2008) Lignins: major sources, structure and properties. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, Oxford

    Google Scholar 

  63. Marques AP, Evtuguin DV, Magina S, Amado FML, Prates A (2009) Chemical composition of spent liquors from acidic magnesium-based sulphite pulping of Eucalyptus globulus. J Wood Chem Technol 29(4):322–336

    Article  Google Scholar 

  64. Marques AP, Evtuguin DV, Magina S, Amado FML, Prates A (2009) Structure of lignosulphonates from acidic magnesium-based sulphite pulping of Eucalyptus globulus. J Wood Chem Technol 29(4):337–357

    Article  Google Scholar 

  65. Moodley B, Mulholland DA, Marsh JJ (2003) The characterisation of organic components in the calcium and magnesium effluent streams at Sappi Saiccor. Water SA 29(3):237–240

    Google Scholar 

  66. McDonough J (1992) The chemistry of organosolv delignification. Technical paper series, vol 455. Institute of paper science and technology, Atlanta

    Google Scholar 

  67. El Hage R, Brosse N, Chrusciel L, Sanchez C, Sannigrahi P, Ragauskas A (2009) Characterization of milled wood lignin and ethanol organosolv lignin from Miscanthus. Polym Degrad Stab 94(10):1632–1638

    Article  Google Scholar 

  68. Arato C, Pye E, Gjennestad G (2005) The lignol approach to biorefining of woody biomass to produce ethanol and chemicals. Appl Biochem Biotechnol 123(1):871–882

    Article  Google Scholar 

  69. Schmiedl D, Unkelbach G, Graf J, Schweppe R (2009) Studies in catalyzed hydrothermal degradation processes on sulphur-free lignin and extractive separation of aromatic SYNTHONs. In: Nordic wood and biorefinery conference (NWBC 2009), Helsinky, Finland, 2–4 Sept, pp 189–196

    Google Scholar 

  70. Kim D-E, Pan X (2010) Preliminary study on converting hybrid poplar to high-value chemicals and lignin using organosolv ethanol process. Ind Eng Chem Res 49(23):12156–12163

    Article  Google Scholar 

  71. Kleinert TN (1971) Organosolv pulping and recovery process. United States patent 3585104

    Google Scholar 

  72. Pye EK, Lora JH (1991) The Alcell process a proven alternative to kraft pulping. Tappi J 74(3):113–118

    Google Scholar 

  73. Lignol web page (2011) http://www.lignol.ca/about.html. Accessed 20 May 2011

  74. Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481

    Article  Google Scholar 

  75. Michels J, Wagemann K (2011) The German lignocellulose feedstock biorefinery project. In: The 3rd Nordic wood biorefinery conference (NWBC 2011), Stockholm, 22–24 March 2011, pp 70–75

    Google Scholar 

  76. Lignovalue project web page (2011), http://www.biobased.nl/lignovalue. Accessed May 2011

  77. Lehnen R, Heitmann M, Flötotto A (2011) Organosolv lignin in phenol formaldehyde resins—evaluation of curing behaviour and wood bonding effectiveness. In: The 3rd Nordic wood biorefinery conference (NWBC 2011), Stockholm, 22–24 March, pp 187–192

    Google Scholar 

  78. Schweppe R, Unkelbach G, Fehrenbacher U (2009) Transformation of lignocellulose into aromatic building blocks. Paper presented at the Biorefinica 2009, Biobased products and biorefineries, Osnabrück, 27-28 Jan

    Google Scholar 

  79. Thring RW, Vanderlaan MN, Griffin SL (1997) Polyurethanes from Alcell® lignin. Biomass Bioenergy 13(3):125–132

    Article  Google Scholar 

  80. Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN (2011) Lignin-based polyurethane elastomers. In: The 3rd Nordic wood biorefinery conference (NWBC 2011), Stockholm, 22–24 March, pp 334–335

    Google Scholar 

  81. Kadla JF, Kubo S, Venditti RA, Gilbert RD, Compere AL, Griffith W (2002) Lignin-based carbon fibers for composite fiber applications. Carbon 40(15):2913–2920

    Article  Google Scholar 

  82. Satheesh Kumar MN, Mohanty AK, Erickson L, Misra M (2009) Lignin and its applications with polymers. Journal Biobased Mater Bioenergy 3(1):1–24

    Article  Google Scholar 

  83. Cateto CA, Barreiro MF, Rodrigues AE, Brochier-Salon MC, Thielemans W, Belgacem MN (2008) Lignins as macromonomers for polyurethane synthesis: a comparative study on hydroxyl group determination. J Appl Polym Sci 109(5):3008–3017

    Article  Google Scholar 

  84. Thring RW, Breau J (1996) Hydrocracking of solvolysis lignin in a batch reactor. Fuel 75(7):795–800

    Article  Google Scholar 

  85. Sridach W (2010) The environmentally benign pulping process of non-wood fibers. Suranaree J Sci Technol 17(2):105–123

    Google Scholar 

  86. Clark JH, Deswarte FEI (2008) The biorefinery concept–an integrated approach. Introduction to chemicals from biomass. John Wiley & Sons, New Delhi

    Google Scholar 

  87. Kleinert M, Barth T (2008) Towards a lignincellulosic biorefinery: direct one-step conversion of lignin to hydrogen-enriched biofuel. Energy & Fuels 22(2):1371–1379

    Article  Google Scholar 

  88. Pandey MP, Kim CS (2011) Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol 34(1):29–41

    Article  Google Scholar 

  89. Yan N, Zhao C, Dyson PJ, Wang C, Liu L-t, Kou Y (2008) Selective degradation of wood lignin over noble-metal catalysts in a two-step process. Chemsuschem 1(7):626–629

    Article  Google Scholar 

  90. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599

    Article  Google Scholar 

  91. Hocking MB (1997) Vanillin: synthetic flavoring from spent sulfite liquor. J Chem Educ 74(9):1055

    Google Scholar 

  92. Bjørsvik H-R, Liguori L (2002) Organic processes to pharmaceutical chemicals based on fine chemicals from lignosulfonates. Org Process Res Dev 6(3):279–290

    Article  Google Scholar 

  93. Vanillin squeezed by cost pressures (2006) Reed Business Information Limited. http://www.icis.com/Articles/2006/06/10/2014671/vanillin-squeezed-by-cost-pressures.html. Accessed 20 May 2011

  94. Ramachandra Rao S, Ravishankar GA (2000) Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agric 80(3):289–304

    Article  Google Scholar 

  95. Walton NJ, Mayer MJ, Narbad A (2003) Vanillin. Phytochemistry 63(5):505–515

    Article  Google Scholar 

  96. Sandborn LR, Salvesen JR, Howard GC (1936) Process of making vanillin. United States patent 2057117

    Google Scholar 

  97. Pearl IA (1958) Lignin as a raw material for the production of pure chemicals. J Chem Educ 35(10):502

    Google Scholar 

  98. Hibbert H, Tomlinson GJ (1937) Manufacture of vanillin from waste sulphite pulp liquor. United States patent 2069185

    Google Scholar 

  99. Thiel L, Hendricks F (2004) Study into the establishment of an aroma and fragrance fine chemicals value chain in South Africa, Part III: Aroma Chemicals derived from petrochemical feedstocks, tender number T79/07/03. Government tender bulletins. National Economic Development and Labor Council, Available from: http://www.nedlac.org.za/research/fridge-studies/fine-chemicals.aspx

  100. Priefert H, Rabenhorst J, Steinbuchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56(3–4):296–314

    Article  Google Scholar 

  101. Schrader J, Etschmann MMW, Sell D, Hilmer JM, Rabenhorst J (2004) Applied biocatalysis for the synthesis of natural flavour compounds—current industrial processes and future prospects. Biotechnol Lett 26(6):463–472

    Article  Google Scholar 

  102. Rhodia web page (2011) http://www.rhodia.com/en/markets_and_products/leading_brands/silcea_rhovanil_natural.tcm. Accessed 20 May 2011

  103. Manchand PS, Rosen P, Belica PS, Oliva GV, Perrotta AV, Wong HS (1992) Syntheses of antibacterial 2,4-diamino-5-benzylpyrimidines. Ormetoprim and trimethoprim. J Org Chem 57(13):3531–3535

    Article  Google Scholar 

  104. Manchand P (1978) Process for preparing 2,4-diamino-5-(substituted benzyl)-pyrimidines

    Google Scholar 

  105. Erofeev YV, Afanas’eva VL, Glushkov RG (1990) Synthetic routes to 3,4,5-trimethoxybenzaldehyde. Pharm Chem J 24(7):501–510 review

    Article  Google Scholar 

  106. Pepper JM, MacDonald JA (1953) The synthesis of syringaldehyde from vanillin. Can J Chem 31:476–483

    Article  Google Scholar 

  107. Pearl IA (1948) Synthesis of syringaldehyde. J Am Chem Soc 70(5):1746–1748

    Article  Google Scholar 

  108. Tripathi AK, Sama JK, Taneja SC (2010) An expeditious synthesis of syringaldehyde from para-cresol. Indian J Chem 49:379–381 Section B

    Google Scholar 

  109. Marshall HB, Vincent DL (1978) Production of syringaldehyde from hardwood waste pulping liquors. United States patent 4075248

    Google Scholar 

  110. Wu G, Heitz M, Chornet E (1994) Improved alkaline oxidation process for the production of aldehydes (vanillin and syringaldehyde) from steam-explosion hardwood lignin. Ind Eng Chem Res 33(3):718–723

    Article  Google Scholar 

  111. Sales FG, Maranhão LCA, Lima Filho NM, Abreu CAM (2006) Kinetic evaluation and modeling of lignin catalytic wet oxidation to selective production of aromatic aldehydes. Ind Eng Chem Res 45(20):6627–6631

    Article  Google Scholar 

  112. Sales FG, Abreu CAM, Pereira JAFR (2004) Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production. Brazilian J Chem Eng 21:211–218

    Article  Google Scholar 

  113. Santos SG, Marques AP, Lima DLD, Evtuguin DV, Esteves VI (2011) Kinetics of Eucalypt lignosulfonate oxidation to aromatic aldehydes by oxygen in alkaline medium. Ind Eng Chem Res 50(1):291–298

    Article  Google Scholar 

  114. Lee CY, Sharma A, Cheong JE, Nelson JL (2009) Synthesis and antioxidant properties of dendritic polyphenols. Bioorg Med Chem Lett 19(22):6326–6330

    Article  Google Scholar 

  115. Sales FG, Maranhão LCA, Filho NML, Abreu CAM (2007) Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin. Chem Eng Sci 62(18–20):5386–5391

    Google Scholar 

  116. Fargues C, Mathias A, Rodrigues A (1996) Kinetics of vanillin production from kraft lignin oxidation. Ind Eng Chem Res 35(1):28–36

    Article  Google Scholar 

  117. Mathias AL, Lopretti MI, Rodrigues AE (1995) Chemical and biological oxidation of Pinus-Pinaster lignin for the production of vanillin. J Chem Technol Biotechnol 64(3):225–234

    Article  Google Scholar 

  118. Mathias AL, Rodrigues AE (1995) Production of vanillin by oxidation of pine kraft lignins with oxygen. Holzforschung 49(3):273–278

    Article  Google Scholar 

  119. Araújo JD (2008) Production of vanillin from lignin present in the Kraft black liquor of the pulp and paper industry, PhD thesis. University of Porto

    Google Scholar 

  120. Araújo JDP, Grande CA, Rodrigues AE (2009) Structured packed bubble column reactor for continuous production of vanillin from kraft lignin oxidation. Catal Today 147:S330–S335

    Article  Google Scholar 

  121. Araújo JDP, Grande CA, Rodrigues AE (2010) Vanillin production from lignin oxidation in a batch reactor. Chem Eng Res Des 88(8A):1024–1032

    Google Scholar 

  122. Sridhar P, Araujo JD, Rodrigues AE (2005) Modeling of vanillin production in a structured bubble column reactor. Catal Today 105(3–4):574–581

    Article  Google Scholar 

  123. Villar JC, Caperos A, Garcia-Ochoa F (2001) Oxidation of hardwood kraft-lignin to phenolic derivatives with oxygen as oxidant. Wood Sci Technol 35(3):245–255

    Article  Google Scholar 

  124. Zhang J, Deng H, Lin L (2009) Wet Aerobic Oxidation of Lignin into aromatic aldehydes catalysed by a Perovskite-type oxide: LaFe1-xCuxO3 (x = 0, 0.1, 0.2). Molecules 14(8):2747–2757

    Article  Google Scholar 

  125. Xiang Q, Lee YY (2001) Production of oxychemicals from precipitated hardwood lignin. Appl Biochem Biotechnol 91–3:71–80

    Article  Google Scholar 

  126. Voill T, von Rohr PR (2010) Demonstration of a process for the conversion of kraft lignin into vanillin and methyl vanillate by acidic oxidation in aqueous methanol. Ind Eng Chem Res 49(2):520–525

    Article  Google Scholar 

  127. Labat G, Gonçalves A (2008) Oxidation in acidic medium of lignins from agricultural residues. Appl Biochem Biotechnol 148(1):151–161

    Article  Google Scholar 

  128. Partenheimer W (2009) The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures. Adv Synth Catal 351(3):456–466

    Article  Google Scholar 

  129. Stark K, Taccardi N, Bosmann A, Wasserscheid P (2010) Oxidative depolymerization of lignin in ionic liquids. Chemsuschem 3(6):719–723

    Article  Google Scholar 

  130. Zakzeski J, Jongerius AL, Weckhuysen BM (2010) Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chem 12(7):1225–1236

    Article  Google Scholar 

  131. Clark JH, Budarin V, Deswarte FEI, Hardy JJE, Kerton FM, Hunt AJ, Luque R, Macquarrie DJ, Milkowski K, Rodriguez A, Samuel O, Tavener SJ, White RJ, Wilson AJ (2006) Green chemistry and the biorefinery: a partnership for a sustainable future. Green Chem 8(10):853–860

    Article  Google Scholar 

  132. Tarabanko VE, Pervishina EP, Hendogina YV (2001) Kinetics of aspen wood oxidation by oxygen in alkaline media. React Kinet Catal Lett 72(1):153–162

    Article  Google Scholar 

  133. Borges da Silva EA, Zabkova M, Araujo JD, Cateto CA, Barreiro MF, Belgacem MN, Rodriques AE (2009) An integrated process to produce vanillin and lignin-based polyurethanes from kraft lignin. Chem Eng Res Des 87(9A):1276–1292

    Google Scholar 

  134. Zabkova M, Borges da Silva EA, Rodrigues AE (2007) Recovery of vanillin from kraft lignin oxidation by ion-exchange with neutralization. Sep Purif Technol 55(1):56–68

    Article  Google Scholar 

  135. Zabkova M, Borges da Silva EA, Rodrigues AE (2007) Recovery of vanillin from lignin/vanillin mixture by using tubular ceramic ultrafiltration membranes. J Membr Sci 301(1–2):221–237

    Article  Google Scholar 

  136. Ibrahim MNM, Sipaut CS, Yusof NNM (2009) Purification of vanillin by a molecular imprinting polymer technique. Sep Purif Technol 66(3):450–456

    Article  Google Scholar 

  137. Wang ZJ, Chen KF, Li J, Wang QQ, Guo J (2010) Separation of vanillin and syringaldehyde from oxygen delignification spent liquor by macroporous resin adsorption. Clean-Soil Air Water 38(11):1074–1079

    Article  Google Scholar 

  138. Zabkova M, Otero M, Minceva M, Zabka M, Rodrigues AE (2006) Separation of synthetic vanillin at different pH onto polymeric adsorbent Sephabeads SP206. Chem Eng Process 45(7):598–607

    Article  Google Scholar 

  139. Tarabanko VE, Fomova NA, Kuznetsov BN, Ivanchenko NM, Kudryashev AV (1995) On the mechanism of vanillin formation in the catalytic oxidation of lignin with oxygen. React Kinet Catal Lett 55(1):161–170

    Article  Google Scholar 

  140. Tarabanko VE, Petukhov DV, Selyutin GE (2004) New mechanism for the catalytic oxidation of lignin to vanillin. Kinet Catal 45(4):569–577

    Article  Google Scholar 

  141. Tarabanko VE, Hendogina YV, Petuhov DV, Pervishina EP (2000) On the role of retroaldol reaction in the process of lignin oxidation into vanillin. Kinetics of the vanillideneacetone cleavage in alkaline media. React Kinet Catal Lett 69(2):361–368

    Article  Google Scholar 

  142. Tarabanko VE, Kudryashev AV, Kuznetsov BN, Gulbis GR, Koropachinskaya NV, Ivanchenko NM (1996) Catalytic oxidation of lignosulfonates into vanillin and syringaldehyde in a flow-type setup. Russ J Appl Chem 69(4):559–563

    Google Scholar 

  143. Gierer J, Imsgard F (1977) The reactions of lignins with oxygen and hydrogen peroxide in alkaline media. Svensk Papperstidn 80:510–518

    Google Scholar 

  144. Kratzl K, Claus P, Lonsky W, Gratzl JS (1974) Model studies on reactions occurring in oxidations of lignin with molecular oxygen in alkaline media. Wood Sci Technol 8(1):35–49

    Google Scholar 

  145. Gierer J (1982) The chemistry of delignification—a general concept—part II. Holzforschung 36(2):55–64

    Article  Google Scholar 

  146. Gierer J, Imsgard F, Norén I (1977) Studies on the degradation of phenolic lignin units of the β-aryl ether type with oxygen in alkaline media. Acta Chem Scand B 31:561–572

    Article  Google Scholar 

  147. Tromans D (1998) Oxygen solubility modeling in inorganic solutions: concentration, temperature and pressure effects. Hydrometallurgy 50(3):279–296

    Article  Google Scholar 

  148. Marshall HB, Sankey AC (1951) Method of producing vanillin. United States patent 2544999

    Google Scholar 

  149. Fargues C, Mathias A, Silva J, Rodrigues A (1996) Kinetics of vanillin oxidation. Chem Eng Technol 19(2):127–136

    Article  Google Scholar 

  150. Collis BC (1954) Manufacture of vanillin from lignin. United States patent 2692291

    Google Scholar 

  151. Ji Y (2007) Kinetics and mechanism of oxygen delignification PhD, The University of Maine

    Google Scholar 

  152. Marshall HB, Sankey AC (1950) Method of producing vanillin. United States patent 2516827

    Google Scholar 

  153. Rodrigues AE, Araujo JDP (2002) Production of vanillin from lignin. Actualite Chimique 11–12:62–63

    Google Scholar 

  154. Pinto PC, Borges da Silva EA, Rodrigues AE (2010) Comparative study of solid-phase extraction and liquid–liquid extraction of lignin oxidation products for HPLC-UV quantification. Ind Eng Chem Res 49(23):12311–12318

    Article  Google Scholar 

  155. Bjørsvik H-R, Minisci F (1999) Fine chemicals from lignosulfonates. 1. Synthesis of vanillin by oxidation of lignosulfonates. Org Process Res Dev 3(5):330–340

    Google Scholar 

  156. Tsutsumi Y, Kondo R, Sakai K, Imamura H (1995) The difference of reactivity between syringyl lignin and guaiacyl lignin in alkaline systems. Holzforschung 49(5):423–428

    Article  Google Scholar 

  157. Sultanov VS, Wallis AFA (1991) Reactivities of guaiacyl and syringyl lignin model phenols towards oxidation with oxygen-alkali. J Wood Chem Technol 11(3):291–305

    Article  Google Scholar 

  158. Bjørsvik H-R, Norman K (1999) Fine chemicals from lignosulfonates. 2. Synthesis of veratric acid from acetovanillon. Org Process Res Dev 3(5):341–346

    Google Scholar 

  159. Kuznetsov BN, Kuznetsova SA, Danilov VG, Kozlov IA, Tarabanko VE, Ivanchenko NM, Alexandrova NB (2002) New catalytic processes for a sustainable chemistry of cellulose production from wood biomass. Catal Today 75(1–4):211–217

    Article  Google Scholar 

  160. Wong Z, Chen K, Li J (2010) Formation of vanillin and syringaldehyde in an oxygen delignification process. Bioresour Technol 5(3):1509–1516

    Google Scholar 

  161. Gierer J (1986) Chemistry of delignification. Wood Sci Technol 20(1):1–33

    Article  Google Scholar 

  162. Sandborn L, Howard GC (1938) Process of making vanillin. United States patent 2104701

    Google Scholar 

  163. Bryan CC (1955) Propanol extraction of sodium vanillinate. United States patent 2721221

    Google Scholar 

  164. Bauer K, Brandt H-W, Schroter J (1978) Carrier-vapor distillation. United States patent 4090922

    Google Scholar 

  165. Kaygorodov KL, Chelbina YV, Tarabanko VE, Tarabanko NV (2010) Extraction of vanillin by aliphatic alcohols. J Siberian Fed Univ-Chem 3:228–233

    Google Scholar 

  166. Forss KG, Talka ET, Fremer KE (1986) Isolation of vanillin from alkaline oxidized spent sulfite liquor. Ind Eng Chem Product Res Dev 25(1):103–108

    Article  Google Scholar 

  167. Forss KG, Talka ET, Fremer K-E (1981) Method for the isolation of vanillin from lignin in alkaline solutions. United States patent 4277626

    Google Scholar 

  168. Logan CD (1965) Cyclic process for recovering vanillin and sodium values from lignosulphonic waste liquors by ion exchange. United States patent 3197359

    Google Scholar 

  169. Evju H (1979) Process for preparation of 3-methoxy-4-hydroxybenzaldehyde. United States patent 4151207

    Google Scholar 

  170. Klemola A, Tuovinen J (1989) Method for the production of vanillin. United States patent 4847422

    Google Scholar 

  171. Coenen H, Konrad R (1990) Process for the extraction of vanillin. United States patent 4898990

    Google Scholar 

  172. Schoeffel EW (1962) Vanillin purification. United States patent 3049566

    Google Scholar 

  173. Makin EC (1984) Purification of vanillin. United States patent 4474994

    Google Scholar 

  174. Major FW, Nicolle FMA (1977) Vanillin recovery process. United States patent 4021493

    Google Scholar 

  175. Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN (2009) Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind Eng Chem Res 48(5):2583–2589

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. Detlef Schmiedl, Fraunhofer Institute for Chemical Technology, Germany and Dr. Daniel Araújo, Faculty of Engineering, University of Porto, Portugal, for kindly providing figures and data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alírio E. Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodrigues Pinto, P.C., Borges da Silva, E.A., Rodrigues, A.E. (2012). Lignin as Source of Fine Chemicals: Vanillin and Syringaldehyde. In: Baskar, C., Baskar, S., Dhillon, R. (eds) Biomass Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28418-2_12

Download citation

Publish with us

Policies and ethics