Skip to main content

Laser Micro and Nano Processing of Metals , Ceramics , and Polymers

  • Chapter
  • First Online:
Book cover Laser-Assisted Fabrication of Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 161))

Abstract

Laser -based material processing is well investigated for structuring , modification , and bonding of metals , ceramics , glasses, and polymers . Especially for material processing on micrometer, and nanometer scale laser-assisted processes will very likely become more prevalent as lasers offer more cost-effective solutions for advanced material research, and application. Laser ablation , and surface modification are suitable for direct patterning of materials and their surface properties. Lasers allow rapid prototyping and small-batch manufacturing . They can also be used to pattern moving substrates, permitting fly-processing of large areas at reasonable speed. Different types of laser processes such as ablation, modification, and welding can be successfully combined in order to enable a high grade of bulk and surface functionality. Ultraviolet lasers favored for precise and debris-free patterns can be generated without the need for masks, resist materials, or chemicals. Machining of materials, for faster operation, thermally driven laser processes using NIR and IR laser radiation, could be increasingly attractive for a real rapid manufacturing .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.G.K. Malek, Laser processing for bio-microfluidics applications (Part II). Anal. Bioanal. Chem. 385, 1362–1369 (2006)

    Article  Google Scholar 

  2. W. Pfleging et al., Laser patterning and packaging of CCD-CE-Chips made of PMMA. Sens. Actuators B-Chem. 138, 336–343 (2009)

    Article  Google Scholar 

  3. W. Pfleging, M. Przybylski, H.J. Bruckner, Excimer laser material processing—State of the art and new approaches in microsystem technology—Art. No. 61070G. Laser-based Micropackaging 6107(264), G1070–G1070 (2006)

    Google Scholar 

  4. W. Pfleging et al., (eds.), Laser -Based Micro- and Nanopackaging and Assembly IV. 2010. in SPIE

    Google Scholar 

  5. S. Fujii et al., Enlargement of crystal grains in thin silicon films by continuous-wave laser irradiation. Jpn. J. Appl. Phys. 46, 2501–2504 (2007)

    Article  ADS  Google Scholar 

  6. Y.T. Chen et al., Ablation of transparent materials using excimer lasers for photonic applications. Opt. Rev. 12, 427–441 (2005)

    Article  Google Scholar 

  7. W. Pfleging et al., Laser- and UV-assisted modification of polystyrene surfaces for control of protein adsorption and cell adhesion. Appl. Surf. Sci. 255, 5453–5457 (2009)

    Article  ADS  Google Scholar 

  8. S. Wilson et al., An automated polymer patch clamping system for high throughput screening and cell network measurement. Galvanotechnik 99, 2578–2584 (2008)

    Google Scholar 

  9. K. Gotoh, S. Kikuchi, Improvement of wettability and detergency of polymeric materials by excimer UV treatment. Colloid Polym. Sci. 283, 1356–1360 (2005)

    Article  Google Scholar 

  10. A. Welle et al., Photo-chemically patterned polymer surfaces for controlled PC-12 adhesion and neurite guidance. J. Neurosci. Methods 142, 243–250 (2005)

    Article  Google Scholar 

  11. W. Pfleging et al., Laser-assisted modification of polystyrene surfaces for cell culture applications. Appl. Surf. Sci. 253, 9177–9184 (2007)

    Article  ADS  Google Scholar 

  12. A. Manz et al., Planar chips technology for miniaturization and integration of separation techniques into monitoring systems—Capillary electrophoresis on a chip. J. Chromatogr. 593, 253–258 (1992)

    Article  Google Scholar 

  13. M. Castano-Alvarez et al., Critical points in the fabrication of microfluidic devices on glass substrates. Sens. Actuators B Chem. 130, 436–448 (2008)

    Article  Google Scholar 

  14. A.E. Guber et al., Microfluidic lab-on-a-chip systems based on polymers—Fabrication and application. Chem. Eng. J. 101, 447–453 (2004)

    Article  Google Scholar 

  15. H. Becker, C. Gartner, Polymer microfabrication technologies for microfluidic systems. Anal. Bioanal. Chem. 390, 89–111 (2008)

    Article  Google Scholar 

  16. R. Chen et al., Determination of EOF of PMMA microfluidic chip by indirect laser-induced fluorescence detection. Sens. Actuators B Chem. 114, 1100–1107 (2006)

    Article  Google Scholar 

  17. W. Pfleging et al., Rapid fabrication and replication of metal, ceramic and plastic mould inserts for application in microsystem technologies . Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 217, 53–63 (2003)

    Article  Google Scholar 

  18. W. Pfleging et al., Rapid fabrication of microcomponents—UV-laser assisted prototyping, laser micro-machining of mold inserts and replication via photomolding. Microsyst. Technol. 9(1-2), 67–74 (2002)

    Article  Google Scholar 

  19. D.A. Chang-Yen, B.K. Gale, An integrated optical biochemical sensor fabricated using rapid-prototyping techniques. Microfluid. Biomems. Med. Microsyst. 4982, 185–195 (2003)

    Google Scholar 

  20. P.E. Dyer, Excimer laser polymer ablation: twenty years on. Appl. Phys. A 77, 167–173 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  21. W. Pfleging et al., (eds.), Lasergestützte Prozesse für Polymerwerkstoffe in der Mikro- und Nanotechnik: Strukturierung, Modifizierung und Verbindungstechnik. in Technologien und Werkstoffe der Mikro- und Nanosystemtechnik. (VDE-Verl, Karlsruhe, 2007)

    Google Scholar 

  22. J.Y. Cheng et al., Direct-write laser micromachining and universal surface modification of PMMA for device development. Sens. Actuators B 99, 186–196 (2004)

    Article  Google Scholar 

  23. W. Pfleging, O. Baldus, Laser patterning and welding of transparent polymers for microfluidic device fabrication—Art. no. 610705. Laser-based Micropackaging 6107(264), 10705–10705 (2006)

    Google Scholar 

  24. Y. Sun, Y.C. Kwok, N.T. Nguyen, Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation. J. Micromech. Microeng. 16, 1681–1688 (2006)

    Article  ADS  Google Scholar 

  25. S.C. Wang, C.Y. Lee, H.P. Chen, Thermoplastic microchannel fabrication using carbon dioxide laser ablation. J. Chromatogr. A 1111, 252–257 (2006)

    Article  Google Scholar 

  26. C.W. Tsao et al., Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7, 499–505 (2007)

    Article  Google Scholar 

  27. F.G. Bachmann, U.A. Russek, Laser welding of polymers using high power diode lasers. Photon Process. Microelectron. Photonics 4637, 505–518 (2002)

    Google Scholar 

  28. K.H. Zum Gahr, J. Schneider, Surface modification of ceramics for improved tribological properties. Ceram. Int. 26, 363–370 (2000)

    Article  Google Scholar 

  29. S.Rüdiger et al., H. Dimigen (eds.), Laser induced surface modification of cordierite. in EUROMAT 99Surface Engineering, (München, Wiley-VCH, 1999)

    Google Scholar 

  30. U. Duitsch, S. Schreck, M. Rohde, Experimental and numerical investigations of heat and mass transport in laser-induced modification of ceramic surfaces. Int. J. Thermophys. 24, 731–740 (2003)

    Article  Google Scholar 

  31. A. Schwartz, Ceramic Joining 1990 Materials Park (ASM International, Ohio, 1990)

    Google Scholar 

  32. R.M.D. Nascimento, A.E. Martinelli, A.J.A. Buschinelli, Review article: recent advances in metal-ceramic brazing . Cerâmica 49, 178–198 (2003)

    Article  Google Scholar 

  33. W. Lippmann et al., Laser joining of silicon carbide—A new technology for ultra-high temperature resistant joints. Nucl. Eng. Des. 231, 151–161 (2004)

    Article  Google Scholar 

  34. H. Haferkamp et al., Laser beam active brazing of metal ceramic joints. Lasers Tools Manuf. Durable Goods Microelectron. 2703, 300–309 (1996)

    Google Scholar 

  35. S.F. Huang, H.L. Tsai, S.T. Lin, Effects of brazing route and brazing alloy on the interfacial structure between diamond and bonding matrix. Mater. Chem. Phys. 84, 251–258 (2004)

    Article  Google Scholar 

  36. S.D. Peteves et al., The reactive route to ceramic joining: Fabrication, interfacial chemistry and joint properties. Acta Mater. 46, 2407–2414 (1998)

    Google Scholar 

  37. R. Kohler et al., Patterning and annealing of nanocrystalline \(\hbox{LiCoO}_2\) thin films. J. Optoelectron. Adv. Mater. 12, 547–552 (2010)

    Google Scholar 

  38. H. Yang et al., A review of Li-Ion cell chemistries and their potential use in hybrid electric vehicles. J. Ind. Eng. Chem. 12, 12–38 (2006)

    Google Scholar 

  39. Y. Wang, G.Z. Cao, Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 20, 2251–2269 (2008)

    Article  Google Scholar 

  40. B. Ketterer et al., Development of high power density cathode materials for Li-ion batteries. Int. J. Mater. Res. 99, 1171–1176 (2008)

    Article  Google Scholar 

  41. Y. Zhang, C.Y. Chung, Z. Min, Growth of HT-\(\hbox{LiCoO}_2\) thin films on Pt-metatized silicon substrates. Rare Met. 27, 266–272 (2008)

    Article  Google Scholar 

  42. J.L. Tirado, Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. Mater. Sci. Eng. R Reports 40, 103–136 (2003)

    Article  Google Scholar 

  43. R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219–225 (2008)

    Article  ADS  Google Scholar 

  44. K. Sugioka, Ultrafast laser processing of glass down to the nano-scale. Springer Ser. Mater. Sci. 130, 279–293 (2010)

    Article  Google Scholar 

  45. K. Sugioka, Y. Hanada, K. Midorikawa, Three-dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips. Laser Photonics Rev. 4, 386–400 (2010)

    Article  Google Scholar 

  46. A. Kar, J. Mazumder, Effect of cooling rate on solid solubility in laser claddin. Proc. ASME/JSME 3, 237–249 (1987)

    Google Scholar 

  47. A. Kar, J. Mazumder, One-dimensional diffusion-model for extended solid-solution in laser cladding. J. Appl. Phys. 61, 2645–2655 (1987)

    Article  ADS  Google Scholar 

  48. M. Picasso, A.F.A. Hoadley, Finite element simulation of laser surface treatments including convection in the melt pool. Int. J. Numer. Methods Heat Fluid Flow 4, 61–83 (1993)

    Article  Google Scholar 

  49. X. He et al., Laser-surface alloying of metallic materials. Lasers Eng. 4, 291–316 (1995)

    MATH  Google Scholar 

  50. Y. Zhang, A. Faghri, Melting and resolidification of a subcooled mixed powder bed with moving gaussian heat source. J. Heat Transf. 120, 883–891 (1998)

    Article  Google Scholar 

  51. M. Bamberger et al., Calculation of process parameters for laser alloying and cladding. J. Laser Appl. 10, 29–33 (1998)

    Article  ADS  Google Scholar 

  52. E. Toyserkani, A. Khajepour, S. Corbin, 3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process. Opt. Lasers Eng. 41, 849–867 (2004)

    Article  Google Scholar 

  53. S.Z. Shuja, B.S. Yilbas, M.O. Budair, Modeling of laser heating of solid substance including assisting gas impingement. Numer. Heat Transfer Part A Appl. 33, 315–339 (1998)

    Article  ADS  Google Scholar 

  54. P.M. Raj et al., Three-dimensional computational modelling of momentum, heat and mass transfer in laser surface alloying with distributed melting of alloying element. Int. J. Numer. Methods Heat Fluid Flow 11, 576–599 (2001)

    Article  MATH  Google Scholar 

  55. I.H. Chowdhury, X.F. Xu, Heat transfer in femtosecond laser processing of metal. Numer. Heat Transfer Part A Appl. 44(3), 219–232 (2003)

    Article  ADS  Google Scholar 

  56. S. Roychoudhary, T.L. Bergman, Response of agglomerated, multiceramic particles to intense heating and cooling for thermal plasma spraying simulation. Numer. Heat Transfer Part A Appl. 45(3), 211–233 (2004)

    Article  ADS  Google Scholar 

  57. C. Del Borrello, E. Lacoste, Numerical simulation of the liquid flow into a porous medium with phase change: application to metal matrix composites processing. Numer. Heat Transfer Part A Appl. 44, 723–741 (2003)

    Article  ADS  Google Scholar 

  58. I. Ahmed, T.L. Bergman, An engineering model for solid-liquid phase change within sprayed ceramic coatings of nonuniform thickness. Numer. Heat Transfer Part A Appl. 41, 113–129 (2002)

    Article  ADS  Google Scholar 

  59. J.F. Li, L. Li, F.H. Stott, Predictions of flow velocity and velocity boundary layer thickness at the surface during laser melting of ceramic materials. J. Phys. D-Appl. Phys. 37, 1710–1717 (2004)

    Article  ADS  Google Scholar 

  60. J. Cheng, A. Kar, Mathematical model for laser densification of ceramic coating. J. Mater. Sci. 32, 6269–6278 (1997)

    Article  Google Scholar 

  61. D.B. Spalding, PHOENICS Overview, in CHAM (Concentration Heat And Momentum Ltd.) Technical Report: TR 001. 2001

    Google Scholar 

  62. D.D. Gray, A. Giorgini, Validity of Boussinesq approximation for liquids and gases. Int. J. Heat Mass Transf. 19, 545–551 (1976)

    Article  MATH  Google Scholar 

  63. J.V. Boussinesq, Théorie analytique de la chaleur, vol. 1, 2, (Gauthier-Villars, Paris, 1901–1903)

    Google Scholar 

  64. A.D. Brent, V.R. Voller, K.J. Reid, Enthalpy-porosity technique for modeling convection-diffusion phase-change—Application to the melting of a pure metal. Numer. Heat Transf. 13, 297–318 (1988)

    ADS  Google Scholar 

  65. V.R. Voller, C. Prakash, A fixed grid numerical modeling methodology for convection diffusion Mushy region phase-change problems. Int. J. Heat Mass Transf. 30, 1709–1719 (1987)

    Article  Google Scholar 

  66. C.Y. Li, S.V. Garimella, J.E. Simpson, Fixed-grid front-tracking algorithm for solidification problems, part I: method and validation. Numer. Heat Transf. Part B Fundam. 43, 117–141 (2003)

    Article  ADS  Google Scholar 

  67. K.G. Kang, H.S. Ryou, Computation of solidification and melting using the PISO algorithm. Numer. Heat Transf. Part B Fundam. 46, 179–194 (2004)

    Article  ADS  Google Scholar 

  68. M. Rohde et al., Numerical simulation of laser-induced modification processes of ceramic substrates. Numer. Heat Transf. Part A Appl. 50, 835–849 (2006)

    Article  ADS  Google Scholar 

  69. M.F. Jensen et al., Microstructure fabrication with a \(\hbox{CO}_{2}\) laser system: characterization and fabrication of cavities produced by raster scanning of the laser beam. Lab Chip 3, 302–307 (2003)

    Article  Google Scholar 

  70. G.H. Pettit, R. Sauerbrey, Pulsed ultraviolet-laser ablation. Appl. Phys. A 56, 51–63 (1993)

    Article  ADS  Google Scholar 

  71. J.K. Frisoli, Y. Hefetz, T.F. Deutsch, Time-resolved uv absorption of polyimide—Implications for laser ablation. Appl. Phys. B Photophysics Laser Chem. 52, 168–172 (1991)

    Article  ADS  Google Scholar 

  72. H. Schmidt et al., Ultraviolet laser ablation of polymers : spot size, pulse duration, and plume attenuation effects explained. J. Appl. Phys. 83, 5458–5468 (1998)

    Article  ADS  Google Scholar 

  73. W. Pfleging et al., Direct laser-assisted processing of polymers for micro-fluidic and micro-optical applications. Photon Process. Microelectron. Photonics Ii 4977, 346–356 (2003)

    Google Scholar 

  74. E. Bremus-Kobberling, A. Gillner, Laser structuring and modification of surfaces for chemical and medical micro components. Fourth Int. Symp. Laser Precis. Microfab. 5063, 217–222 (2003)

    Google Scholar 

  75. W. Pfleging et al., Patterning of polystyrene by UV-laser raidiation for the fabrication of devices for patch clamping—Art. no. 68800D. Laser Based Micro Nanopackaging Assembly Ii 6880(180), D8800–D8800 (2008)

    Google Scholar 

  76. S. Wilson et al., S. Dimov, (eds.), Machining of polystyrene by UV laser radiation for patch clamping device fabrication . in 4th International Conference on Multi-Material Micro Manufacture, (Whittles Publication, Cardiff, 2008)

    Google Scholar 

  77. H. Niino et al., Surface microstructuring of transparent materials by laser-induced backside wet etching using excimer laser. Fourth Int. Symp. Laser Precis. Microfab. 5063, 193–201 (2003)

    Google Scholar 

  78. H. Niino et al., Surface microfabrication of fused silica glass by UV laser irradiation. Photon Process. Microelectron. Photonics Iii 5339, 112–117 (2004)

    Google Scholar 

  79. S. Nikumb et al., Precision glass machining , drilling and profile cutting by short pulse lasers. Thin Solid Films 477, 216–221 (2005)

    Article  ADS  Google Scholar 

  80. D.M. Karnakis et al., Comparison of glass processing using high repetition femtosecond (800 nm) and UV (255 nm) nanosecond pulsed lasers. Microfluid. BioMEMS Med. Microsyst. III 5718, 216–227 (2005)

    Google Scholar 

  81. M.H. Yen et al., Rapid cell-patterning and microfluidic chip fabrication by crack-free \(\hbox{CO}_2\) laser ablation on glass . J. Micromech. Microeng. 16, 1143–1153 (2006)

    Article  ADS  Google Scholar 

  82. F. Schneider et al., (eds.), Adaptive Silikonmembranlinsen mit integriertem Piezo-Aktor. in MikroSystemTechnik KONGRESS 2007, (VDE-Verlag GmbH, Dresden 2007)

    Google Scholar 

  83. T. Hanemann et al., Rapid fabrication of microcomponents, design, test, integration, and packaging of mems/moems. Proceedings 4019, 436–443 (2000)

    Google Scholar 

  84. S. Schreck, K.H. Zum Gahr, Laser -assisted structuring of ceramic and steel surfaces for improving tribological properties. Appl. Surf. Sci. 247, 616–622 (2005)

    Article  ADS  Google Scholar 

  85. K. Poser et al., TiN-particle reinforced alumina for unlubricated tribological applications mated with metallic counterbodies. Materialwissenschaft Und Werkstofftechnik 36, 122–128 (2005)

    Article  Google Scholar 

  86. O. Baldus, S. Schreck, M. Rohde, Writing conducting lines into alumina ceramics by a laser dispersing process. J. Eur. Ceram. Soc. 24, 3759–3767 (2004)

    Article  Google Scholar 

  87. P. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and Technology (Wiley-VCH, Weinheim, 2003)

    Book  Google Scholar 

  88. S. Banerjee, D. Chakravorty, Electrical resistivity of silver-silica nanocomposites. J. Appl. Phys. 85, 3623–3625 (1999)

    Article  ADS  Google Scholar 

  89. R.G. Duan et al., Metal-like electrical conductivity in ceramic nano-composite. Scr. Mater. 50, 1309–1313 (2004)

    Article  Google Scholar 

  90. M.A. Rodriguez et al., Microstructure and phase development of buried resistors in low temperature Co-fired ceramic. J. Electroceram. 5, 217–223 (2000)

    Article  Google Scholar 

  91. M. Rohde, B. Schulz, The effect of the exposure to different irradiation sources on the thermal-conductivity of \(\hbox{Al}_{2}\hbox{O}_{3}\). J. Nucl. Mater. 173, 289–293 (1990)

    Article  ADS  Google Scholar 

  92. J.L. Cai, H. Gong, The influence of Cu/Al ratio on properties of chemical-vapor-deposition-grown p-type Cu-Al-O transparent semiconducting films. J. Appl. Phys. 98, 033707, (2005)

    Google Scholar 

  93. S. Komornicki, M. Radecka, R. Sobas, Structural, electrical and optical properties of \(\hbox{TiO}_2\)\(\hbox{WO}_3\) polycrystalline ceramics . Mater. Res. Bull. 39, 2007–2017 (2004)

    Article  Google Scholar 

  94. M. Gillet, R. Delamare, E. Gillet, Growth, structure and electrical properties of tungsten oxide nanorods. Eur. Phys. J. D 34, 291–294 (2005)

    Article  ADS  Google Scholar 

  95. H.T. Wang et al., Thermal conductivity measurement of tungsten oxide nanoscale thin films. Mater. Trans. 47, 1894–1897 (2006)

    Article  Google Scholar 

  96. T. Lippert, J.T. Dickinson, Chemical and spectroscopic aspects of polymer ablation : special features and novel directions. Chem. Rev. 103, 453–485 (2003)

    Article  Google Scholar 

  97. P.E. Dyer, S.D. Jenkins, J. Sidhu, Development and origin of conical structures on Xecl laser ablated polyimide. Appl. Phys. Lett. 49, 453–455 (1986)

    Article  ADS  Google Scholar 

  98. D.J. Krajnovich, J.E. Vazquez, Formation of intrinsic surface-defects during 248 Nm photoablation of polyimide. J. Appl. Phys. 73, 3001–3008 (1993)

    Article  ADS  Google Scholar 

  99. R. Lloyd et al., Laser -assisted generation of self-assembled microstructures on stainless steel . Appl. Phys. A 93, 117–122 (2008)

    Article  ADS  Google Scholar 

  100. S.I. Dolgaev et al., Growth of large microcones in steel under multipulsed Nd : YAG laser irradiation. Appl. Phys. A 83, 417–420 (2006)

    Article  ADS  Google Scholar 

  101. A. Usoskin, H.C. Freyhardt, H.U. Krebs, Influence of light scattering on the development of laser-induced ridge-cone structures on target surfaces. Appl. Phys. A 69, S823–S826 (1999)

    Article  ADS  Google Scholar 

  102. S.I. Dolgaev et al., Formation of conical microstructures upon laser evaporation of solids. Appl. Phys. A 73, 177–181 (2001)

    Article  ADS  Google Scholar 

  103. V. Oliveira, F. Simoes, R. Vilar, M.A. Maher, H.D. Stewart (eds.), Column growth mechanisms during KrF laser micromachining of \({\hbox{Al}_2}{\hbox{O}}_3\)-TiC, in Proc. SPIE, (2005)

    Google Scholar 

  104. R. Kohler et al., W. Pfleging, et al. (eds.), Laser -assisted structuring and modification of \(\hbox{LiCoO}_{2}\) thin films. in Proceedings SPIE, (2009)

    Google Scholar 

  105. R. Kelly et al., On the debris phenomenon with laser-sputtered polymers . Appl. Phys. Lett. 60, 2980–2982 (1992)

    Article  ADS  Google Scholar 

  106. S.B. Tang, M.O. Lai, L. Lu, Effects of oxygen pressure on \(\hbox{LiCoO}_2\) thin film cathodes and their electrochemical properties grown by pulsed laser deposition. J. Alloy. Compd. 424, 342–346 (2006)

    Article  Google Scholar 

  107. H. Xia, L. Lu, Texture effect on the electrochemical properties of \(\hbox{LiCoO}_{2}\) thin films prepared by PLD. Electrochim. Acta 52, 7014–7021 (2007)

    Article  Google Scholar 

  108. S.I. Cho, S.-G. Yoon, Characterization of \(\hbox{LiCoO}_{2}\) thin film cathodes deposited by liquid-delivery metallorganic chemical vapor deposition for rechargeable lithium batteries. J. Electrochem. Soc. 149, A1584–A1588 (2002)

    Article  Google Scholar 

  109. J.F.M. Oudenhoven et al., Low-pressure chemical vapor deposition of \(\hbox{LiCoO}_{2}\) thin films: a systematic investigation of the deposition parameters. J. Electrochem. Soc. 156, D169–D174 (2009)

    Article  Google Scholar 

  110. T. Matsushita, K. Dokko, K. Kanamura, Comparison of electrochemical behavior of \(\hbox{LiCoO}_{2}\) thin films prepared by sol-gel and sputtering processes. J. Electrochem. Soc. 152, A2229–A2237 (2005)

    Article  Google Scholar 

  111. K.W. Kim et al., Microfabrication of \(\hbox{LiCoO}_{2}\) film using liquid source misted chemical deposition technique. Solid State Ionics 159, 25–34 (2003)

    Article  Google Scholar 

  112. H. Pan, Y. Yang, Effects of radio-frequency sputtering powers on the microstructures and electrochemical properties of \(\hbox{LiCoO}_2\) thin film electrodes. J. Power Sources 189, 633–637 (2009)

    Article  Google Scholar 

  113. Z.M. Yang et al., Effect of annealing temperature on structure and electrochemical properties of \(\hbox{LiCoO}_{2}\) cathode thin films. Rare Met. 25, 189–192 (2006)

    Article  Google Scholar 

  114. H.K. Kim, Y.S. Yoon, Characteristics of rapid-thermal-annealed \(\hbox{LiCoO}_{2}\) cathode film for an all-solid-state thin film microbattery. J. Vac. Sci. Technol. A 22, 1182–1187 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  115. M. Okubo et al., Size effect on electrochemical property of nanocrystalline \(\hbox{LiCoO}_{2}\) synthesized from rapid thermal annealing method. Solid State Ionics 180, 612–615 (2009)

    Article  Google Scholar 

  116. M. Inaba et al., Raman study of layered rock-salt \(\hbox{LiCoO}_{2}\) and its electrochemical lithium deintercalation. J. Raman Spectrosc. 28, 613–617 (1997)

    Article  ADS  Google Scholar 

  117. H.Y. Park et al., \(\hbox{LiCoO}_{2}\) thin tilm cathode fabrication by rapid thermal annealing for micro power sources. Electrochim. Acta 52, 2062–2067 (2007)

    Article  Google Scholar 

  118. M.J. Pelletier, Analytical Applications of Raman Spectroscopy (Wiley-Blackwell, Hoboken, 1999) pp. 442–447.

    Google Scholar 

  119. V.G. Hadjiev, M.N. Iliev, I.V. Vergilov, The Raman-Spectra of \(\hbox{Co}_{3}\hbox{O}_{4}\). J. Phys. C 21, L199–L201 (1988)

    Article  ADS  Google Scholar 

  120. E. Antolini, M. Ferretti, Synthesis and thermal stability of \(\hbox{LiCoO}_{2}\). J. Solid State Chem. 117, 1–7 (1995)

    Article  ADS  Google Scholar 

  121. G. Cam, M. Kocak, Progress in joining of advanced materials. Int. Mater. Rev. 43, 1–44 (1998)

    Article  Google Scholar 

  122. J. Brandner et al., Microfabrication in Metals and Polymers . In: N. Kockmann (eds) Advanced Micro & Nanosystems (Wiley-VCH, Weinheim, 2006) pp. 267–319.

    Google Scholar 

  123. S. Kou, Solidification and liquation cracking issues in welding . JOM J Mine. Met. Mater. Soc. 55, 37–42 (2003)

    Article  Google Scholar 

  124. H. Zhao, D.R. White, T. DebRoy, Current issues and problems in laser welding of automotive aluminium alloys. Int. Mater. Rev. 44, 238–266 (1999)

    Article  Google Scholar 

  125. J. Zhang, D.C. Weckman, Y. Zhou, Effects of temporal pulse shaping on cracking susceptibility of 6061-T6 aluminum Nd : YAG laser welds. Welding J. 87, 18s–30s (2008)

    Google Scholar 

  126. A.P. Mackwood, R.C. Crafer, Thermal modelling of laser welding and related processes: a literature review. Opt. Laser Technol. 37, 99–115 (2005)

    Article  ADS  Google Scholar 

  127. J. Dowden (ed.), The theory of laser materials processing. Springer Series in Materials Science, vol. 119 (2009)

    Google Scholar 

  128. J. Mazumder, W.M. Steen, Heat-transfer model for Cw laser material processing. J. Appl. Phys. 51, 941–947 (1980)

    Article  ADS  Google Scholar 

  129. O.O.D. Neto, C.A.S. Lima, Nonlinear 3-dimensional temperature profiles in pulsed-laser heated solids. J. Phys. D 27, 1795–1804 (1994)

    Article  ADS  Google Scholar 

  130. N. Sonti, M.F. Amateau, Finite-element modeling of heat-flow in deep-penetration laser welds in aluminum-alloys. Numer. Heat Transfer 16, 351–370 (1989)

    Article  ADS  Google Scholar 

  131. H. Zhao, T. DebRoy, Macroporosity free aluminum alloy weldments through numerical simulation of keyhole mode laser welding . J. Appl. Phys. 93, 10089–10096 (2003)

    Article  ADS  Google Scholar 

  132. W.S. Chang, S.J. Na, A study on the prediction of the laser weld shape with varying heat source equations and the thermal distortion of a small structure in micro-joining. J. Mater. Process. Technol. 120, 208–214 (2002)

    Article  ADS  Google Scholar 

  133. H.L. Lin, C.P. Chou, Modeling and optimization of Nd : YAG laser micro-weld process using Taguchi method and a neural network. Int. J. Adv. Manuf. Technol. 37, 513–522 (2008)

    Article  Google Scholar 

  134. B.C. Kim et al., Investigation on the effect of laser pulse shape during Nd : YAG laser microwelding of thin Al sheet by numerical simulation. Metall. Mater. Trans. A 33, 1449–1459 (2002)

    Article  Google Scholar 

  135. E. Cicala et al., Hot cracking in Al-Mg-Si alloy laser welding —Operating parameters and their effects. Mater. Sci. Eng. A 395, 1–9 (2005)

    Article  Google Scholar 

  136. M.G. Nicholas, T.M. Valentine, M.J. Waite, The wetting of alumina by copper alloyed with titanium and other elements. J. Mater. Sci. 15, 2197–2206 (1980)

    Article  ADS  Google Scholar 

  137. S. Morozumi et al., Bonding mechanism between silicon-carbide and thin foils of reactive metals. J. Mater. Sci. 20, 3976–3982 (1985)

    Article  ADS  Google Scholar 

  138. A.J. Moorhead, H. Keating, Direct brazing of ceramics for advanced heavy-duty diesels. Welding J. 65, 17–31 (1986)

    Google Scholar 

  139. J.K. Boadi, T. Yano, T. Iseki, Brazing of pressureless-sintered Sic using Ag-Cu-Ti alloy. J. Mater. Sci. 22, 2431–2434 (1987)

    Article  ADS  Google Scholar 

  140. K. Suganuma, Y. Miyamoto, M. Koizumi, Joining of ceramics and metals. Ann. Rev. Mater. Sci. 18, 47–73 (1988)

    Article  ADS  Google Scholar 

  141. O.M. Akselsen, Review: advances in brazing of ceramics . J. Mater. Sci. 27, 1989–2000 (1992)

    Article  ADS  Google Scholar 

  142. T. Yano, H. Suematsu, T. Iseki, High-resolution electron-microscopy of a Sic/Sic joint brazed by a Ag-Cu-Ti alloy. J. Mater. Sci. 23, 3362–3366 (1988)

    Article  ADS  Google Scholar 

  143. L. Huijie, F. Jicai, Q. Yiyu, Microstructure and strength of the SiC/TiAl joint brazed with Ag-Cu-Ti filler metal. J. Mater. Sci. Lett. 19, 1241–1242 (2000)

    Article  Google Scholar 

  144. A. Kar, A.K. Ray, Characterization of \(\hbox{Al}_{2}\hbox{O}_{3}\)—304 stainless steel braze joint interface. Mater. Lett. 61, 2982–2985 (2007)

    Article  Google Scholar 

  145. K. Suganuma, T. Okamoto, K. Kamachi, Influence of shape and size on residual-stress in ceramic metal joining. J. Mater. Sci. 22, 2702–2706 (1987)

    Article  ADS  Google Scholar 

  146. H. Chang et al., Effects of residual stress on fracture strength of Si3N4/stainless steel joints with a Cu-interlayer. J. Mater. Eng. Perform. 11, 640–644 (2002)

    Article  Google Scholar 

  147. H.Q. Hao et al., The effect of interlayer metals on the strength of alumina ceramic and 1Cr18Ni9Ti stainless-steel bonding. J. Mater. Sci. 30, 4107–4111 (1995)

    Article  ADS  Google Scholar 

  148. M.R. Locatelli et al., New approaches to joining ceramics for high-temperature applications. Ceram. Int. 23, 313–322 (1997)

    Article  Google Scholar 

  149. R.A. Marks et al., Joining of alumina via copper/niobium/copper interlayers. Acta Mater. 48, 4425–4438 (2000)

    Article  Google Scholar 

  150. J.W. Park, P.F. Mendez, T.W. Eagar, Strain energy release in ceramic-to-metal joints by ductile metal interlayers. Scripta Mater. 53, 857–861 (2005)

    Article  Google Scholar 

  151. G.J. Qiao et al., Brazing \(\hbox{Al}_{2}\hbox{O}_{3}\) to Kovar alloy with Ni/Ti/Ni interlayer and dramatic increasing of joint strength after thermal cycles. Eco-Mater. Process. Des. Vi 486(487), 481–484 (2005)

    Google Scholar 

  152. G. Blugan et al., Brazing of silicon nitride ceramic composite to steel using SiC-particle-reinforced active brazing alloy. Ceram. Int. 33, 1033–1039 (2007)

    Article  Google Scholar 

  153. G. Blugan, J. Janczak-Rusch, J. Kuebler, Properties and fractography of Si3N4/TiN ceramic joined to steel with active single layer and double layer braze filler alloys. Acta Mater. 52, 4579–4588 (2004)

    Article  Google Scholar 

  154. N.Y. Taranets, H. Jones, Wettability of AlN with different roughness, porosity and oxidation state by commercial Ag-Cu-Ti brazes. J. Mater. Sci. 40, 2355–2359 (2005)

    Article  ADS  Google Scholar 

  155. H.P. Xiong, C.G. Wan, Z.F. Zhou, Increasing the Si3N4/1.25Cr-0 Mo steel joint strength by using the method of drilling holes by laser in the surface layer of brazed Si3N4. J. Mater. Sci. Lett. 18, 1461–1463 (1999)

    Article  Google Scholar 

  156. A.A. Shirzadi, Y. Zhu, H.K.D.H. Bhadeshia, Joining ceramics to metals using metallic foam. Mater. Sci. Eng. A 496, 501–506 (2008)

    Article  Google Scholar 

  157. H.Q. Hao, Z.H. Jin, X.T. Wang, The influence of brazing conditions on joint strength in \(\hbox{Al}_{2}\hbox{O}_{3}/\hbox{Al}_{2}\hbox{O}_{3}\) bonding. J. Mater. Sci. 29, 5041–5046 (1994)

    Article  ADS  Google Scholar 

  158. W. Tillmann et al., Kinetic and microstructural aspects of the reaction layer at ceramic/metal braze joints. J. Mater. Sci. 31, 445–452 (1996)

    Article  ADS  Google Scholar 

  159. M. Brochu, M.D. Pugh, R.A.L. Drew, Joining silicon nitride ceramic using a composite powder as active brazing alloy. Mater. Sci. Eng. A 374, 34–42 (2004)

    Article  Google Scholar 

  160. O.C. Paiva, M.A. Barbosa, Brazing parameters determine the degradation and mechanical behaviour of alumina/titanium brazed joints. J. Mater. Sci. 35, 1165–1175 (2000)

    Article  Google Scholar 

  161. K. Poser, K.H. Zum Gahr, J. Schneider, Development of \(\hbox{Al}_{2}\hbox{O}_{3}\) based ceramics for dry friction systems. Wear 259, 529–538 (2005)

    Article  Google Scholar 

  162. A. Albers, A. Arslan, M. Mitariu, Clutches using engineering ceramics as friction material. Materialwissenschaft Und Werkstofftechnik 36, 102–107 (2005)

    Article  Google Scholar 

  163. U.A. Russek et al., Laser beam welding of thermoplastics. Photon Process. Microelectron. Photonics Ii 4977, 458–472 (2003)

    Google Scholar 

  164. K. Sato et al., Laser welding of plastics transparent to near-infrared radiation. Photon processing in microelectronics and photonics 4637, 528–536 (2002)

    Google Scholar 

  165. T. Klotzbuecheret et al., Diode laser welding for packaging of transparent micro-structured polymer chips—Art. no. 610704. Laser-based Micropackaging 6107(264), 10704–10704 (2006)

    Google Scholar 

  166. A. Griebel et al., Integrated polymer chip for two-dimensional capillary gel electrophoresis. Lab Chip 4, 18–23 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by the Federal Ministry for Education and Research (BMBF) in the BMBF-project 03SF0344A “Li-ion battery cells based on novel nanocomposite materials” (LIB-NANO) in the framework of “Lithium-Ion Battery LIB-2015”, and by the Deutsche Forschungsgemeinschaft (DFG) in context with the Sonderforschungsbereich 483 “High performance sliding and friction systems based on advanced ceramics ”. This work was carried out with the support of the Karlsruhe Nano Micro Facility (KNMF), a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Pfleging .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfleging, W., Kohler, R., Südmeyer, I., Rohde, M. (2013). Laser Micro and Nano Processing of Metals , Ceramics , and Polymers . In: Majumdar, J., Manna, I. (eds) Laser-Assisted Fabrication of Materials. Springer Series in Materials Science, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28359-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28359-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28358-1

  • Online ISBN: 978-3-642-28359-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics