Skip to main content

Enzyme-Based Logic Systems: Composition, Operation, Interfacing, and Applications

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science
  • 148 Accesses

Abstract

Biomolecular systems for information processing have recently received great attention in the general framework of unconventional computing. While DNA biocomputing systems have been studied by many researchers and have already reached a high level of complexity, enzyme-based cascades mimicking Boolean logic operations are a relatively new subfield that is rapidly progressing. This chapter reviews recent progress in the enzyme-based information processing systems and suggests applications in biosensing, rather than computation. This chapter overviews various methods for analysis of output signals generated by enzyme-based logic systems. The considered methods include different optical techniques (optical absorbance, fluorescence spectroscopy, surface plasmon resonance), electrochemical techniques (cyclic voltammetry, potentiometry, impedance spectroscopy, conductivity measurements, use of field-effect transistor devices, pH measurements), and various mechano-electronic methods (using atomic force microscope, quartz crystal microbalance). While each of the methods is already well known for various bioanalytical applications, their use in combination with the biomolecular logic systems is rather new and sometimes not trivial. Many of the discussed methods have been combined with the use of signal-responsive materials to transduce and amplify biomolecular signals generated by the logic operations. Interfacing of biocomputing logic systems with electronics and “smart” signal-responsive materials allowed for extending logic operations to actuation functions, for example, stimulating molecular release and switchable features of bioelectronic devices, such as biofuel cells. The purpose of this chapter is to emphasize broad variability of the bioanalytical systems applied for the signal transduction in biocomputing processes. All bioanalytical systems discussed in the article are exemplified with specific logic gates and multi-gate networks realized with enzyme-based biocatalytic cascades.

This chapter is based partially on recently published review articles (Katz 2015, 2017; Katz et al. 2017) with the copyright permissions from Elsevier, Wiley-VCH, and Springer. The compiled text was updated and edited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Abs:

Optical absorbance

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (chromogenic substrate used to follow peroxidase activity)

ABTSox :

Oxidized ABTS (colored product)

Ac:

Acetic acid

AcCh:

Acetylcholine

AcChE:

Acetylcholinesterase (enzyme; EC 3.1.1.7)

ADH:

Alcohol dehydrogenase (enzyme; EC 1.1.1.1)

ADP:

Adenosine 5′-diphosphate

AFM:

Atomic force microscope (microscopy)

AGS:

Amyloglucosidase (enzyme; EC 3.2.1.3)

Ala:

Alanine (amino acid)

Ald:

Acetaldehyde

ALT:

Alanine transaminase (enzyme; EC 2.6.1.2)

Asc:

Ascorbic acid

ATP:

Adenosine 5′-triphosphate

BuCh:

Butyrylcholine

ChO:

Choline oxidase (enzyme; EC 1.1.3.17)

CK:

Creatine kinase (enzyme; EC 2.7.3.2)

CN:

4-Chloro-1-naphthol

CN-ox:

CN insoluble oxidized product

Crt:

Creatine

DC:

Direct current

DHA:

dehydroascorbic acid (product of oxidation of ascorbic acid)

Diaph:

Diaphorase (enzyme; EC 1.8.1.4)

DNA:

Deoxyribonucleic acid

EIS:

Electrolyte–insulator–semiconductor

Et-O-Ac:

Ethyl acetate

EtOH:

Ethanol

FET:

Field-effect transistor

Frc:

Fructose

G6PDH:

Glucose 6-phosphate dehydrogenase (enzyme; EC 1.1.1.49)

GDH:

Glucose dehydrogenase (enzyme; EC 1.1.1.47)

Glc:

Glucose

Glc6P:

Glucose-6-phosphate

Glc6PA:

Gluconate-6-phosphate acid (product of Glc6P oxidation)

GlcA:

Gluconic acid

Glu:

Glutamate (amino acid, salt form)

GluOx:

Glutamate oxidase (enzyme; EC 1.4.3.11)

GOx:

Glucose oxidase (enzyme; EC 1.1.3.4)

HK:

Hexokinase (enzyme; EC 2.7.1.1)

HRP:

Horseradish peroxidase (enzyme; EC 1.11.1.7)

Inv:

Invertase (enzyme; EC 3.2.1.26)

Ip :

Peak current (measured with cyclic voltammetry)

IR:

Infrared

ITO:

Indium tin oxide (electrode)

Lac:

Lactate

LDH:

Lactate dehydrogenase (enzyme; EC 1.1.1.27)

LSPR:

Localized surface plasmon resonance

Luc:

Luciferase (enzyme from ATP assay kit, Sigma-Aldrich)

Lucif:

Luciferin

MP-11:

Microperoxidase-11

MPh:

Maltose phosphorylase (enzyme; EC 2.4.1.8)

NAD+ :

Nicotinamide adenine dinucleotide

NADH:

Nicotinamide adenine dinucleotide reduced

NPs:

Nanoparticles

O/W:

Oil-in-water Pickering emulsion

P2VP:

Poly(2-vinylpyridine)

P4VP:

Poly(4-vinylpyridine)

PB:

Prussian blue

PEO:

Poly(ethylene oxide)

PEP:

Phospho(enol)pyruvic acid (or phosphoenolpyruvate in the form of salt)

Pi:

Inorganic phosphate

PK:

Pyruvate kinase (enzyme; EC 2.7.1.40)

Ppy:

Polypyrrole

Ppy-ox:

Polypyrrole-oxidized state

Ppy-red:

Polypyrrole-reduced state

PQQ:

Pyrroloquinoline quinone

PS:

Polystyrene

Pyr:

Pyruvate

QCM:

Quartz crystal microbalance

R:

Reflectance measured by SPR

Rcell :

Ohmic resistance measured in a bulk solution in an electrochemical cell

RE:

Reference electrode

Ret :

Electron transfer resistance (measured by Faradaic impedance spectroscopy)

RNA:

Ribonucleic acid

SPR:

Surface plasmon resonance

TBI:

Traumatic brain injury

TMB:

3,3′,5,5′-Tetramethylbenzidine (chromogenic substrate used to follow peroxidase activity)

UV:

Ultraviolet

Va :

Alternative voltage applied between the conducting support and reference electrode of the EIS devise

Vbias :

Constant (bias) voltage applied between the conducting support and reference electrode of the EIS devise

VFB :

Flat band voltage of the EIS device

W/O:

Water-in-oil Pickering emulsion

α-KTG:

α-Ketoglutaric acid

Bibliography

  • Abouzar MH, Poghossian A, Cherstvy AG, Pedraza AM, Ingebrandt S, Schöning MJ (2012) Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: experiments and modeling. Phys Status Solidi A 209:925–934

    Article  ADS  Google Scholar 

  • Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    Article  ADS  Google Scholar 

  • Albery WJ, O'Shea GJ, Smith AL (1996) Interpretation and use of Mott-Schottky plots at the semiconductor/electrolyte interface. J Chem Soc Faraday Trans 92:4083–4085

    Article  Google Scholar 

  • Alfonta L, Katz E, Willner I (2000) Probing antigen-antibody interactions on electrode supports by the biocatalyzed precipitation of an insoluble product. Anal Chem 72:927–935

    Article  Google Scholar 

  • Alfonta L, Bardea A, Khersonsky O, Katz E, Willner (2001) Chronopotentiometry and faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports: routes for enzyme sensors, immunosensors and DNA-sensors. Biosens Bioelectron 16:675–687

    Google Scholar 

  • Alon U (2007) An introduction to systems biology: design principles of biological circuits. Chapman & Hall/CRC Press, London

    MATH  Google Scholar 

  • Ashkenasy G, Dadon Z, Alesebi S, Wagner N, Ashkenasy N (2011) Building logic into peptide networks: bottom-up and top-down. Isr J Chem 51:106–117

    Article  Google Scholar 

  • Bakshi S, Zavalov O, Halámek J, Privman V, Katz E (2013) Modularity of biochemical filtering for inducing sigmoid response in both inputs in an enzymatic AND gate. J Phys Chem B 117:9857–9865

    Article  Google Scholar 

  • Bakshi S, Halámková L, Halámek J, Katz E (2014) Biocatalytic analysis of biomarkers for forensic identification of gender. Analyst 139:559–563

    Article  ADS  Google Scholar 

  • Bardea A, Katz E, Willner T (2000) Probing antigen-antibody interactions on electrode supports by the biocatalyzed precipitation of an insoluble product. Electroanalysis 12:1097–1106

    Article  Google Scholar 

  • Baron R, Lioubashevski O, Katz E, Niazov T, Willner I (2006) Logic gates and elementary computing by enzymes. J Phys Chem A 110:8548–8553

    Article  Google Scholar 

  • Baughman RH (1996) Conducting polymer artificial muscles. Synth Met 78:339–353

    Article  Google Scholar 

  • Benenson Y (2009) Biocomputers: from test tubes to live cells. Mol BioSyst 5:675–685

    Article  Google Scholar 

  • Benenson Y (2012) Biomolecular computing systems: principles, progress and potential. Nat Rev Genet 13:455–468

    Article  Google Scholar 

  • Bergmeyer H-U (ed) (1974) Methods of enzymatic analysis. Verlag Chemie GmbH, Weinheim

    Google Scholar 

  • Binks BP, Murakami R, Armes SP, Fujii S (2005) Temperature-induced inversion of nanoparticle-stabilized emulsions. Angew Chem Int Ed 44:4795–4798

    Article  Google Scholar 

  • Bocharova V, Tam TK, Halámek J, Pita M, Katz E (2010) Reversible gating controlled by enzymes at nanostructured interface. Chem Commun 46:2088–2090

    Article  Google Scholar 

  • Bocharova V, Halámek J, Zhou J, Strack G, Wang J, Katz E (2011) Alert-type biological dosimeter based on enzyme logic system. Talanta 85:800–803

    Article  Google Scholar 

  • Bychkova V, Shvarev A, Zhou J, Pita M, Katz E (2010) Enzyme logic gate associated with a single responsive microparticle: scaling biocomputing to microsize systems. Chem Commun 46:94–96

    Article  Google Scholar 

  • Calude CS, Costa JF, Dershowitz N, Freire E, Rozenberg G (eds) (2009) Unconventional computation, Lecture notes in computer science, vol 5715. Springer, Berlin

    Google Scholar 

  • Chegel VI, Raitman OA, Lioubashevski O, Shirshov Y, Katz E, Willner I (2002) Redox-switching of electrorefractive, electrochromic and conducting functions of Cu2+/polyacrylic acid films associated with electrodes. Adv Mater 14:1549–1553

    Article  Google Scholar 

  • Chuang M-C, Windmiller JR, Santhosh P, Valdés-Ramírez G, Katz E, Wang J (2011) High-fidelity simultaneous determination of explosives and nerve agent threats via a Boolean biocatalytic cascade. Chem Commun 47:3087–3089

    Article  Google Scholar 

  • de Silva AP (2007) Molecular logic and computing. Nat Nanotechnol 2:399–410

    Article  ADS  Google Scholar 

  • de Silva AP (2013) Molecular logic-based computation. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Duan HW, Wang DY, Sobal NS, Giersig M, Kurth DG, Mohwald H (2005) Magnetic colloidosomes derived from nanoparticle interfacial self-assembly. Nano Lett 5:949–952

    Article  ADS  Google Scholar 

  • Dunford HB (1991) Horseradish peroxidase: structure and kinetic propeties, Chapter 1. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology, vol 2. CRC Press, Boca Raton, pp 1–24

    Google Scholar 

  • Evans AC, Thadani NN, Suh J (2016) Biocomputing nanoplatforms as therapeutics and diagnostics. J Control Release 240:387–393

    Article  Google Scholar 

  • Ezziane Z (2006) DNA computing: applications and challenges. Nanotechnology 17:R27–R39

    Article  ADS  Google Scholar 

  • Fraga H (2008) Firefly luminescence: a historical perspective and recent developments. Photochem Photobiol Sci 7:146–158

    Article  Google Scholar 

  • Fratto BE, Katz E (2015) Reversible logic gates based on enzyme-biocatalyzed reactions and realized in flow cells – modular approach. Chem Phys Chem 16:1405–1415

    Article  Google Scholar 

  • Fratto BE, Katz E (2016) Controlled logic gates – switch gate and Fredkin gate based on enzyme-biocatalyzed reactions realized in flow cells. Chem Phys Chem 17:1046–1053

    Article  Google Scholar 

  • Fujii S, Read ES, Binks BP, Armes SP (2005) Stimulus-responsive emulsifiers based on nanocomposite microgel particles. Adv Mater 17:1014–1017

    Article  Google Scholar 

  • Fujii S, Armes SP, Binks BP, Murakami R (2006) Stimulus-responsive particulate emulsifiers based on lightly cross-linked poly(4-vinylpyridine)-silica nanocomposite microgels. Langmuir 22:6818–6825

    Article  Google Scholar 

  • Guz N, Halámek J, Rusling JF, Katz E (2014) A biocatalytic cascade with several output signals – towards biosensors with different levels of confidence. Anal Bioanal Chem 406:3365–3370

    Article  Google Scholar 

  • Guz N, Fedotova TA, Fratto BE, Schlesinger O, Alfonta L, Kolpashchikov D, Katz E (2016) Bioelectronic interface connecting reversible logic gates based on enzyme and DNA reactions. ChemPhysChem 17:2247–2255

    Article  Google Scholar 

  • Halámek J, Windmiller JR, Zhou J, Chuang MC, Santhosh P, Strack G, Arugula MA, Chinnapareddy S, Bocharova V, Wang J, Katz E (2010a) Multiplexing of injury codes for the parallel operation of enzyme logic gates. Analyst 135:2249–2259

    Article  ADS  Google Scholar 

  • Halámek J, Bocharova V, Chinnapareddy S, Windmiller JR, Strack G, Chuang M-C, Zhou J, Santhosh P, Ramirez GV, Arugula MA, Wang J, Katz E (2010b) Multi-enzyme logic network architectures for assessing injuries: digital processing of biomarkers. Mol BioSyst 6:2554–2560

    Article  Google Scholar 

  • Halámek J, Bocharova V, Arugula MA, Strack G, Privman V, Katz E (2011a) Realization and properties of biochemical-computing biocatalytic XOR gate based on enzyme inhibition by a substrate. J Phys Chem B 115:9838–9845

    Article  Google Scholar 

  • Halámek J, Zhou J, Halámková L, Bocharova V, Privman V, Wang J, Katz E (2011b) Biomolecular filters for improved separation of output signals in enzyme logic systems applied to biomedical analysis. Anal Chem 83:8383–8386

    Article  Google Scholar 

  • Halámek J, Zavalov O, Halámková L, Korkmaz S, Privman V, Katz E (2012) Enzyme-based logic analysis of biomarkers at physiological concentrations: AND gate with double-sigmoid “filter” response. J Phys Chem B 116:4457–4464

    Article  Google Scholar 

  • Halámková L, Halámek J, Bocharova V, Wolf S, Mulier KE, Beilman G, Wang J, Katz E (2012) Analysis of biomarkers characteristic of porcine liver injury – from biomolecular logic gates to animal model. Analyst 137:1768–1770

    Article  ADS  Google Scholar 

  • Inzelt G (2008) Conducting polymers. Springer, Berlin

    Google Scholar 

  • Jia YM, Duan RX, Hong F, Wang BY, Liu NN, Xia F (2013) Electrochemical biocomputing: a new class of molecular-electronic logic devices. Soft Matter 9:6571–6577

    Article  ADS  Google Scholar 

  • Jin Z, Güven G, Bocharova V, Halámek J, Tokarev I, Minko S, Melman A, Mandler D, Katz E (2012) Electrochemically controlled drug-mimicking protein release from iron-alginate thin-films associated with an electrode. ACS Appl Mater Interfaces 4:466–475

    Article  Google Scholar 

  • Johannsmann D (2015) The quartz crystal microbalance in soft matter research: fundamentals and modeling. Springer, Heidelberg

    Book  Google Scholar 

  • Kahan M, Gil B, Adar R, Shapiro E (2008) Towards molecular computers that operate in a biological environment. Physica D 237:1165–1172

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kang ET, Neoh KG, Tan KL (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23:277–324

    Article  Google Scholar 

  • Katz E (ed) (2012a) Biomolecular information processing - from logic systems to smart sensors and actuators. Wiley-VCH, Weinheim

    Google Scholar 

  • Katz E (ed) (2012b) Molecular and supramolecular information processing – from molecular switches to unconventional computing. Willey-VCH, Weinheim

    Google Scholar 

  • Katz E (2015) Biocomputing – tools, aims, perspectives. Curr Opin Biotechnol 34:202–208

    Article  Google Scholar 

  • Katz E (2017) Enzyme-based logic gates and networks with output signals analyzed by various methods. ChemPhysChem 18:1688–1713

    Google Scholar 

  • Katz E, Halámek J (2014) New approach in forensic analysis – biomolecular computing based analysis of significant forensic biomarkers. Ann Forensic Res Analysis 1: article #1002

    Google Scholar 

  • Katz E, Minko S (2015) Enzyme-based logic systems interfaced with signal-responsive materials and electrodes. Chem Commun 51:3493–3500

    Article  Google Scholar 

  • Katz E, Pita M (2009) Biofuel cells controlled by logically processed biochemical signals: towards physiologically regulated bioelectronic devices. Chem Eur J 15:12554–12564

    Article  Google Scholar 

  • Katz E, Privman V (2010) Enzyme-based logic systems for information processing. Chem Soc Rev 39:1835–1857

    Article  Google Scholar 

  • Katz E, Lötzbeyer T, Schlereth DD, Schuhmann W, Schmidt H-L (1994) Electrocatalytic oxidation of reduced nicotinamide coenzymes at gold and platinum electrode surfaces modified with a monolayer of pyrroloquinoline quinone. Effect of Ca2+ cations. J Electroanal Chem 373:189–200

    Article  Google Scholar 

  • Katz E, Wang J, Privman M, Halámek J (2012) Multi-analyte digital enzyme biosensors with built-in Boolean logic. Anal Chem 84:5463–5469

    Article  Google Scholar 

  • Katz E, Minko S, Halámek J, MacVittie K, Yancey K (2013) Electrode interfaces switchable by physical and chemical signals for biosensing, biofuel and biocomputing applications. Anal Bioanal Chem 405:3659–3672

    Article  Google Scholar 

  • Katz E, Poghossian A, Schöning MJ (2017) Enzyme-based logic gates and circuits – analytical applications and interfacing with electronics. Anal Bioanal Chem 409:81–94

    Article  Google Scholar 

  • Konorov PP, Yafyasov AM, Bogevolnov VB (2006) Field effect in semiconductor-electrolyte interfaces. Princeton University Press, Princeton

    Google Scholar 

  • Krämer M, Pita M, Zhou J, Ornatska M, Poghossian A, Schöning MJ, Katz E (2009) Coupling of biocomputing systems with electronic chips: electronic interface for transduction of biochemical information. J Phys Chem C 113:2573–2579

    Article  Google Scholar 

  • Kramer F, Halámková L, Poghossian A, Schöning MJ, Katz E, Halámek J (2013) Biocatalytic analysis of biomarkers for forensic identification of ethnicity between caucasian and african american groups. Analyst 138:6251–6257

    Article  ADS  Google Scholar 

  • Küttel C, Stemmer A, Wei X (2009) Strain response of polypyrrole actuators induced by redox agents in solution. Sens Actuat B 141:478–484

    Article  Google Scholar 

  • Lahav M, Durkan C, Gabai R, Katz E, Willner I, Welland ME (2001) Redox activation of a polyaniline-coated cantilever: an electro-driven microdevice. Angew Chem Int Ed 40:4095–4097

    Article  Google Scholar 

  • Lasia A (2014) Semiconductors and Mott-Schottky plots, Chapter 10. In: Electrochemical impedance spectroscopy and its applications. Springer, New York, pp 251–255

    Google Scholar 

  • Luzinov I, Minko S, Tsukruk VV (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 29:635–698

    Article  Google Scholar 

  • Mailloux S, Guz N, Zakharchenko A, Minko S, Katz E (2014a) Majority and minority gates realized in enzyme-biocatalyzed systems integrated with logic networks and interfaced with bioelectronic systems. J Phys Chem B 118:6775–6784

    Article  Google Scholar 

  • Mailloux S, Zavalov O, Guz N, Katz E, Bocharova V (2014b) Enzymatic filter for improved separation of output signals in enzyme logic systems towards ‘sense and treat’ medicine. Biomater Sci 2:184–191

    Article  Google Scholar 

  • Mailloux S, Gerasimova YV, Guz N, Kolpashchikov DM, Katz E (2015) Bridging the two worlds: a universal interface between enzymatic and DNA computing systems. Angew Chem Int Ed 54:6562–6566

    Article  Google Scholar 

  • Manesh KM, Halámek J, Pita M, Zhou J, Tam TK, Santhosh P, Chuang MC, Windmiller JR, Abidin D, Katz E, Wang J (2009) Enzyme logic gates for the digital analysis of physiological level upon injury. Biosens Bioelectron 24:3569–3574

    Article  Google Scholar 

  • Melnikov D, Strack G, Pita M, Privman V, Katz E (2009) Analog noise reduction in enzymatic logic gates. J Phys Chem B 113:10472–10479

    Article  Google Scholar 

  • Mermin ND (2007) Quantum computer science: an introduction. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  • Minko S (2006) Responsive polymer brushes. J Macromol Sci Polym Rev 46:397–420

    Article  Google Scholar 

  • Molinnus D, Bäcker M, Iken H, Poghossian A, Keusgen M, Schöning MJ (2015) Concept for a biomolecular logic chip with an integrated sensor and actuator function. Phys Status Solidi A 212:1382–1388

    Article  Google Scholar 

  • Moore GE (1998) Cramming more components onto integrated circuits. Proc IEEE 86:82–85

    Article  Google Scholar 

  • Morin J-F (2017) Surface and solid-state nanomachines: preparation, assembly and testing. Wiley-VCH, Weinheim. in press (ISBN-13: 978-0470592427).

    Google Scholar 

  • Moseley F, Halámek J, Kramer F, Poghossian A, Schöning MJ, Katz E (2014) Enzyme-based reversible CNOT logic gate realized in a flow system. Analyst 139:1839–1842

    Article  ADS  Google Scholar 

  • Motornov M, Zhou J, Pita M, Gopishetty V, Tokarev I, Katz E, Minko S (2008) “Chemical transformers” from nanoparticle ensembles operated with logic. Nano Lett 8:2993–2997

    Google Scholar 

  • Motornov M, Zhou J, Pita M, Tokarev I, Gopishetty V, Katz E, Minko S (2009a) An integrated multifunctional nanosystem from command nanoparticles and enzymes. Small 5:817–820

    Article  Google Scholar 

  • Motornov M, Tam TK, Pita M, Tokarev I, Katz E, Minko S (2009b) Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes: Approaching “smart” drug delivery systems. Nanotechnology art. #434006

    Google Scholar 

  • Munkhjargal M, Matsuura Y, Hatayama K, Miyajima K, Arakawa T, Kudo Mitsubayashi HK (2013) Glucose-sensing and glucose-driven "organic engine" with co-immobilized enzyme membrane toward autonomous drug release systems for diabetes. Sens Actuat B 188:831–836

    Article  Google Scholar 

  • Niazov T, Baron R, Katz E, Lioubashevski O, Willner I (2006) Concatenated logic gates using four coupled biocatalysts operating in series. Proc Natl Acad Sci USA 103:17160–17163

    Article  ADS  Google Scholar 

  • Otero TF, Sansiñena JM (1995) Artificial muscles based on conducting polymers. Bioelectrochem Bioenerg 38:411–414

    Article  Google Scholar 

  • Otero TF, Sansiñena JM (1997) Bilayer dimensions and movement in artificial muscles. Bioelectrochem Bioenerg 42:117–122

    Article  Google Scholar 

  • Otero TF, Sansiñena JM (1998) Soft and wet conducting polymers for artificial muscles. Adv Mater 10:491–494

    Article  Google Scholar 

  • Passonneau JV, Lowry OH (1993) Chapter 1. In: Enzymatic analysis: a practical guide. Humana Press, Totowa, pp 3–22

    Chapter  Google Scholar 

  • Patolsky F, Zayats M, Katz E, Willner I (1999a) Precipitation of an insoluble product on enzyme-monolayer-electrodes for biosensor applications: characterization by faradaic impedance spectroscopy, cyclic voltammetry and microgravimetric quartz-crystal-microbalance analyses. Anal Chem 71:3171–3180

    Article  Google Scholar 

  • Patolsky F, Katz E, Bardea A, Willner I (1999b) Enzyme-linked amplified electrochemical sensing of oligonucleotide-DNA interactions by means of the precipitation of an insoluble product and using impedance spectroscopy. Langmuir 15:3703–3706

    Article  Google Scholar 

  • Pei Q, Inganläs O (1992) Conjugated polymers and the bending cantilever method: electrical muscles and smart devices. Adv Mater 4:277–278

    Article  Google Scholar 

  • Pischel U (2010) Advanced molecular logic with memory function. Angew Chem Int Ed 49:1356–1358

    Article  Google Scholar 

  • Pischel U, Andreasson J, Gust D, Pais VF (2013) Information processing with molecules – quo Vadis? ChemPhysChem 14:28–46

    Article  Google Scholar 

  • Pita M, Krämer M, Zhou J, Poghossian A, Schöning MJ, Fernández VM, Katz E (2008a) Optoelectronic properties of nanostructured ensembles controlled by biomolecular logic systems. ACS Nano 2:2160–2166

    Article  Google Scholar 

  • Pita M, Cui L, Gaikwad RM, Katz E, Sokolov I (2008b) Atomic force microscopy study of immunosensor surface to increase sensitivity and scale down size of ELISA-type sensor. Nanotechnology 19: art. # 375502

    Google Scholar 

  • Pita M, Privman V, Arugula MA, Melnikov D, Bocharova V, Katz E (2011) Towards biochemical filter with sigmoidal response to pH changes: buffered biocatalytic signal transduction. Phys Chem Chem Phys 13:4507–4513

    Article  Google Scholar 

  • Pita M, Privman M, Katz E (2012) Biocatalytic enzyme networks designed for binary-logic control of smart electroactive nanobiointerfaces. Top Catal 55:1201–1216

    Article  Google Scholar 

  • Poghossian AS (1992) The super-Nernstian pH sensitivity of Ta2O5-gare ISFETs. Sens Actuat B 7:367–370

    Article  Google Scholar 

  • Poghossian A, Krämer M, Abouzar MH, Pita M, Katz E, Schöning MJ (2009) Interfacing of biocomputing systems with silicon chips: enzyme logic gates based on field-effect devices. Procedia Chem 1:682–685

    Article  Google Scholar 

  • Poghossian A, Malzahn K, Abouzar MH, Mehndiratta P, Katz E, Schöning MJ (2011) Integration of biomolecular logic gates with field-effect transducers. Electrochim Acta 56:9661–9665

    Article  Google Scholar 

  • Poghossian A, Weil M, Cherstvy AG, Schöning MJ (2013) Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices. Anal Bioanal Chem 405:6425–6436

    Article  Google Scholar 

  • Poghossian A, Katz E, Schöning MJ (2015a) Enzyme logic AND-reset and OR-reset gates based on a field-effect electronic transducer modified with multi-enzyme membrane. Chem Commun 51:6564–6567

    Article  Google Scholar 

  • Poghossian A, Bäcker M, Mayer D, Schöning MJ (2015b) Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids. Nanoscale 7:1023–1031

    Article  ADS  Google Scholar 

  • Privman V, Katz E (2015) Can bio-inspired information processing steps be realized as synthetic biochemical processes? Phys Status Solidi A 212:219–228

    Article  Google Scholar 

  • Privman V, Strack G, Solenov D, Pita M, Katz E (2008) Optimization of enzymatic biochemical logic for noise reduction and scalability: how many biocomputing gates can be interconnected in a circuit? J Phys Chem B 112:11777–11784

    Article  Google Scholar 

  • Privman V, Arugula MA, Halámek J, Pita M, Katz E (2009a) Network analysis of biochemical logic for noise reduction and stability: a system of three coupled enzymatic AND gates. J Phys Chem B 113:5301–5310

    Article  Google Scholar 

  • Privman M, Tam TK, Pita M, Katz E (2009b) Switchable electrode controlled by enzyme logic network system: approaching physiologically regulated bioelectronics. J Am Chem Soc 131:1314–1321

    Article  Google Scholar 

  • Privman V, Zhou J, Halámek J, Katz E (2010a) Realization and properties of biochemical-computing biocatalytic XOR gate based on signal change. J Phys Chem B 114:13601–13608

    Article  Google Scholar 

  • Privman V, Halámek J, Arugula MA, Melnikov D, Bocharova V, Katz E (2010b) Biochemical filter with sigmoidal response: increasing the complexity of biomolecular logic. J Phys Chem B 114:14103–14109

    Article  Google Scholar 

  • Privman M, Tam TK, Bocharova V, Halámek J, Wang J, Katz E (2011) Responsive interface switchable by logically processed physiological signals – towards “smart” actuators for signal amplification and drug delivery. ACS Appl Mater Interfaces 3:1620–1623

    Article  Google Scholar 

  • Privman V, Zavalov O, Halámková L, Moseley F, Halámek J, Katz E (2013a) Networked enzymatic logic gates with filtering: new theoretical modeling expressions and their experimental application. J Phys Chem B 117:14928–14939

    Article  Google Scholar 

  • Privman V, Fratto BE, Zavalov O, Halámek J, Katz E (2013b) Enzymatic AND logic gate with sigmoid response induced by photochemically controlled oxidation of the output. J Phys Chem B 117:7559–7568

    Article  Google Scholar 

  • Privman V, Zavalov O, Halámková L, Moseley F, Halámek J, Katz E (2013c) Networked enzymatic logic gates with filtering: new theoretical modeling expressions and their experimental application. J Phys Chem B 117:14928–14939

    Article  Google Scholar 

  • Privman V, Domanskyi S, Mailloux S, Holade Y, Katz E (2014) Kinetic model for a threshold filter in an enzymatic system for bioanalytical and biocomputing applications. J Phys Chem B 118:12435–12443

    Article  Google Scholar 

  • Raitman OA, Katz E, Willner I, Chegel VI, Popova GV (2001) Photonic transduction of a three-state electronic memory and of electrochemical sensing of NADH using surface plasmon resonance spectroscopy. Angew Chem Int Ed 40:3649–3652

    Article  Google Scholar 

  • Raitman OA, Katz E, Bückmann AF, Willner I (2002) Integration of polyaniline/polyacrylic acid films and redox-enzymes on electrode supports: an in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems. J Am Chem Soc 124:6487–6496

    Article  Google Scholar 

  • Rehm HA (ed) (2009) Alginates: biology and applications. Springer, Heidelberg

    Google Scholar 

  • Rinaudo K, Bleris L, Maddamsetti R, Subramanian S, Weiss R, Benenson Y (2007) A universal RNAi-based logic evaluator that operates in mammalian cells. Nat Biotechnol 25:795–801

    Article  Google Scholar 

  • Saleh N, Phenrat T, Sirk K, Dufour B, Ok J, Sarbu T, Matyiaszewski K, Tilton RD, Lowry GV (2005) Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett 5:2489–2494

    Article  ADS  Google Scholar 

  • Schopf G, Koßmehl G (1997) Polythiophenes: electrically conductive polymers. Springer, Berlin

    Book  Google Scholar 

  • Shinwari MW, Deen MJ, Landheer D (2007) Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design. Microelectron Reliab 47:2025–2057

    Article  Google Scholar 

  • Siqueira JR, Abouzar MH, Bäcker M, Zucolotto V, Poghossian A, Oliveira ON, Schöning MJ (2009) Carbon nanotubes in nanostructured films: potential application as amperometric and potentiometric field-effect (bio-)chemical sensors. Phys Status Solidi A 206:462–467

    Article  ADS  Google Scholar 

  • Skotheim TA, Elsenbaumer RL, Reynolds JR (eds) (1998) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  • Smela E, Inganas O, Lundstrom I (1995) Controlled folding of micrometer-size structures. Science 268:1735–1738

    Article  ADS  Google Scholar 

  • Stojanovic MN, Stefanovic D (2011) Chemistry at a higher level of abstraction. J Comput Theor Nanosci 8:434–440

    Article  Google Scholar 

  • Stojanovic MN, Stefanovic D, Rudchenko S (2014) Exercises in molecular computing. Acc Chem Res 47:1845–1852

    Article  Google Scholar 

  • Strack G, Pita M, Ornatska M, Katz E (2008a) Boolean logic gates using enzymes as input signals. ChemBioChem 9:1260–1266

    Article  Google Scholar 

  • Strack G, Ornatska M, Pita M, Katz E (2008b) Biocomputing security system: concatenated enzyme-based logic gates operating as a biomolecular keypad lock. J Am Chem Soc 130:4234–4235

    Article  Google Scholar 

  • Strack G, Chinnapareddy S, Volkov D, Halámek J, Pita M, Sokolov I, Katz E (2009) Logic networks based on immunorecognition processes. J Phys Chem B 113:12154–12159

    Article  Google Scholar 

  • Strack G, Bocharova V, Arugula MA, Pita M, Halámek J, Katz E (2010) Artificial muscle reversibly controlled by enzyme reactions. J Phys Chem Lett 1:839–843

    Article  Google Scholar 

  • Stuart MAC, Huck TS W, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113

    Article  ADS  Google Scholar 

  • Szacilowski K (2008) Digital information processing in molecular systems. Chem Rev 108:3481–3548

    Article  Google Scholar 

  • Szacilowski K (2012) Infochemistry. Wiley, Chichester

    Book  Google Scholar 

  • Tam TK, Zhou J, Pita M, Ornatska M, Minko S, Katz E (2008a) Biochemically controlled bioelectrocatalytic interface. J Am Chem Soc 130:10888–10889

    Article  Google Scholar 

  • Tam TK, Ornatska M, Pita M, Minko S, Katz E (2008b) Polymer brush-modified electrode with switchable and tunable redox activity for bioelectronic applications. J Phys Chem C 112:8438–8445

    Article  Google Scholar 

  • Tam TK, Pita M, Katz E (2009a) Enzyme logic network analyzing combinations of biochemical inputs and producing fluorescent output signals: towards multi-signal digital biosensors. Sensors Actuators B 140:1–4

    Article  Google Scholar 

  • Tam TA, Pita M, Ornatska M, Katz E (2009b) Biofuel cell controlled by enzyme logic network – approaching physiologically regulated devices. Bioelectrochemistry 76:4–9

    Google Scholar 

  • Tam TK, Pita M, Motornov M, Tokarev I, Minko S, Katz E (2010a) Modified electrodes with switchable selectivity for cationic and anionic redox species. Electroanalysis 22:35–40

    Article  Google Scholar 

  • Tam TK, Pita M, Motornov M, Tokarev I, Minko S, Katz E (2010b) Electrochemical nanotransistor from mixed polymer brush. Adv Mater 22:1863–1866

    Article  Google Scholar 

  • Tam TK, Pita M, Trotsenko O, Motornov M, Tokarev I, Halámek J, Minko S, Katz E (2010c) Reversible “closing” of an electrode interface functionalized with a polymer brush by an electrochemical signal. Langmuir 26:4506–4513

    Article  Google Scholar 

  • Tokarev I, Gopishetty V, Zhou J, Pita M, Motornov M, Katz E, Minko S (2009) Stimuli-responsive hydrogel membranes coupled with biocatalytic processes. ACS Appl Mater Interfaces 1:532–536

    Article  Google Scholar 

  • Unger R, Moult J (2006) Towards computing with proteins. Proteins 63:53–64

    Article  Google Scholar 

  • Vlasov YG, Tarantov YA, Bobrov PV (2003) Analytical characteristics and sensitivity mechanisms of electrolyte-insulator-semiconductor system-based chemical sensors - a critical review. Anal Bioanal Chem 376:788–796

    Article  Google Scholar 

  • Wang J (2013) Nanomachines: fundamentals and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Wang J, Katz E (2010) Digital biosensors with built-in logic for biomedical applications – biosensors based on biocomputing concept. Anal Bioanal Chem 398:1591–1603

    Article  Google Scholar 

  • Wang J, Katz E (2011) Digital biosensors with built-in logic for biomedical applications. Israel J Chem 51:141–150

    Article  Google Scholar 

  • Wang Y, Knoll W (2006) In situ electrochemical and surface plasmon resonance (SPR) studies of aniline-carboxylated aniline copolymers. Anal Chim Acta 558:150–157

    Article  Google Scholar 

  • Wang L-X, Li X-G, Yang Y-L (2001) Preparation, properties and applications of polypyrroles. React Funct Polym 47:125–139

    Article  Google Scholar 

  • Wang X, Zhou J, Tam TK, Katz E, Pita M (2009) Switchable electrode controlled by Boolean logic gates using enzymes as input signals. Bioelectrochemistry 77:69–73

    Article  Google Scholar 

  • Weng WH, Wang CW, Pang ST, Pan TM (2016) Enzymatic glucose biosensor based on TbYxOy electrolyte-insulator-semiconductor. J Electrochem Soc 163:B445–B452

    Article  Google Scholar 

  • Willner I, Arad G, Katz E (1998) A biofuel cell based on pyrroloquinoline quinone and microperoxidase-11 monolayer-functionalized electrodes. Bioelectrochem Bioenerg 44:209–214

    Article  Google Scholar 

  • Wilson R, Turner APF (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7:165–185

    Article  Google Scholar 

  • Windmiller JR, Santhosh P, Katz E, Wang J (2011) Bioelectronic system for the control and readout of enzyme logic gates. Sens Actuat B 155:206–213

    Article  Google Scholar 

  • Yang J, Song ZC, Liu S, Zhang Q, Zhang C (2016) Dynamically arranging gold nanoparticles on DNA origami for molecular logic gates. ACS Appl Mater Interfaces 8:22451–22456

    Article  Google Scholar 

  • Yao DB, Li H, Guo YJ, Zhou X, Xiao SY, Liang HJ (2016) A pH-responsive DNA nanomachine-controlled catalytic assembly of gold nanoparticles. Chem Commun 52:7556–7559

    Article  Google Scholar 

  • Yu X, Lian WJ, Zhang JH, Liu HY (2016) Multi-input and -output logic circuits based on bioelectrocatalysis with horseradish peroxidase and glucose oxidase immobilized in multi-responsive copolymer films on electrodes. Biosens Bioelectron 80:631–639

    Article  Google Scholar 

  • Zavalov O, Bocharova V, Privman V, Katz E (2012) Enzyme-based logic: OR gate with double-sigmoid filter response. J Phys Chem B 116:9683–9689

    Article  Google Scholar 

  • Zhao J, Luo L, Yang X, Wang E, Dong S (1999) Determination of surface pKa of HS(CH2)10COOH SAMs using an electrochemical titration method. Electroanalysis 11:1108–1111

    Article  Google Scholar 

  • Zhou J, Arugula MA, Halámek J, Pita M, Katz E (2009a) Enzyme-based NAND and NOR logic gates with modular design. J Phys Chem B 113:16065–16070

    Article  Google Scholar 

  • Zhou J, Tam TK, Pita M, Ornatska M, Minko S, Katz E (2009b) Bioelectrocatylic system coupled with enzyme-based biocomputing ensembles performing Boolean logic operations: approaching “smart” physiologically controlled biointerfaces. ACS Appl Mater Interfaces 1:144–149

    Article  Google Scholar 

  • Zhou N, Windmiller JR, Valdés Ramírez G, Zhou M, Halámek J, Katz E, Wang J (2011a) Enzyme-based NAND gate for rapid electrochemical screening of traumatic brain injury in serum. Anal Chim Acta 703:94–100

    Article  Google Scholar 

  • Zhou J, Halámek J, Bocharova V, Wang J, Katz E (2011b) Bio-logic analysis of injury biomarker patterns in human serum samples. Talanta 83:955–959

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Katz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Katz, E. (2017). Enzyme-Based Logic Systems: Composition, Operation, Interfacing, and Applications. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_681-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_681-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics