Skip to main content

Effects on Blood Supply and on Arterial and Venous Tonus

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Pharmacological Assays

Abstract

The Mongolian gerbil (Meriones unguiculatus) is extremely susceptible to carotid occlusion because of the peculiar anatomical occurrence of an incomplete circle of Willis without posterior communicating artery and a frequently rudimentary anterior communicating artery. Clamping of both carotid arteries induces a bilateral temporary brain ischemia (Levine and Sohn 1969; Bosma et al. 1981; Mršulja et al. 1983; Hossman et al. 1983; Chandler et al. 1985). This pathological animal model allows the simulation of circulatory disturbances in the human brain. The hippocampus is one of the most vulnerable regions of the brain to ischemia and anoxia. The gerbil is known to develop selective neuronal damage in the CA1 sector of the hippocampus following brief periods of forebrain ischemia. This damage differs from conventionally described ischemic neuronal injury because of its slow development (Ito et al. 1975; Kirono 1982; Hossman et al. 1983). The occlusion time can be varied allowing determination of various parameters, e.g., ischemia-induced amnesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

Cerebral Ischemia by Carotid Artery Occlusion in Mongolian Gerbils

  • Bosma HJ, Paschen W, Hossman KA (1981) Cerebral ischemia in gerbils using a modified vascular occlusion model. In: Meyer JS, Lechner H, Reivich M, Ott EO, Aranibar A (eds) Cerebral vascular disease 3. Excerpta Medica, Amsterdam, pp 280–285

    Google Scholar 

  • Chandler MJ, DeLeo J, Carney JM (1985) An unanesthetized-gerbil model of cerebral ischemia-induced behavioral changes. J Pharmacol Meth 14:137–146

    CAS  Google Scholar 

  • Delbarre G, Delbarre B, Barrau Y (1988) A suitable method to select gerbils with incomplete circle of Willis. Stroke 19:126

    CAS  PubMed  Google Scholar 

  • DeLeo J, Toth L, Schubert P, Rudolphi K, Kreutzberg GW (1987) Ischemia-induced neuronal cell death, calcium accumulation, and glial response in the hippocampus of the Mongolian gerbil and protection by propentofylline (HWA 285). J Cerebr Blood Flow Metab 7:745–751

    CAS  Google Scholar 

  • Dux E, Fastbo J, Ungerstedt U, Rudolphi K, Fredholm BB (1990) Protective effect of adenosine and a novel xanthine derivative propentofylline on the cell damage after bilateral carotid occlusion in the gerbil hippocampus. Brain Res 516:248–256

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Dunwiddie TV, Bergman B, Lindström K (1984) Levels of adenosine and adenine nucleotides in slices of rat hippocampus. Brain Res 295:127–136

    CAS  PubMed  Google Scholar 

  • Graeber MB, Kreutzberg GW (1986) Astrocytes increase in glial fibrillary acidic protein during retrograde changes of facial motor neurons. J Neurocytol 15:363–373

    CAS  PubMed  Google Scholar 

  • Hossman KA, Mies G, Paschen W, Matsuoka Y, Schuier FJ, Bosma HJ (1983) Experimental infarcts in cats, gerbils and rats. In: Stefanovich V (ed) Stroke: animal models. Pergamon Press, Oxford/New York, pp 123–137

    Google Scholar 

  • Ito M, Spatz M, Walker JT, Klatzo I (1975) Experimental cerebral ischemia in Mongolian gerbils. 1. Light microscopic observations. Acta neuropathol (Berl) 32:209–223

    CAS  Google Scholar 

  • Kashiwa HK, Atkinson WG (1963) The applicability of a new Schiff base glyoxal bis (2-hydroxy-anil), for the cytochemical localization of ionic calcium. J Histochem Cytochem 11:258–264

    CAS  Google Scholar 

  • Kindy MA, Bhat AN, Bhat NR (1992) Transient ischemia stimulates glial fibrillary acid protein and vimentine gene expression in the gerbil neocortex, striatum and hippocampus. Mol Brain Res 13:199–206

    CAS  PubMed  Google Scholar 

  • Kirono T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Google Scholar 

  • Levine S, Sohn D (1969) Cerebral ischemia in infant and adult gerbils. Arch Pathol 87:315–317

    CAS  PubMed  Google Scholar 

  • Lundy EF, Solik BS, Frank RS, Lacy PS, Combs DJ, Zelenok GB, D’Alecy LG (1986) Morphometric evaluation of brain infarcts in rats and gerbils. J Pharmacol Meth 16:201–214

    CAS  Google Scholar 

  • McRae A, Rudolphi KA, Schubert P (1994) Propentofylline depresses amyloid and Alzheimer’s CSF antigens after ischemia. Neuro Rep 5:1193–1196

    CAS  Google Scholar 

  • MrÅ¡ulja BB, Micíc DV, Djuricic BM (1983) Gerbil stroke model: an approach to the study of therapeutic aspects of postischemic brain edema. In: Stefanovich V (ed) Stroke: animal models. Pergamon Press, Oxford/New York, pp 45–62

    Google Scholar 

  • Nurse S, Corbett D (1996) Neuroprotection after several days of mild, drug-induced hypothermia. J Cerebr Blood Flow Metab 16:474–480

    CAS  Google Scholar 

  • Rudolphi KA, Keil M, Hinze HJ (1987) Effect of theophylline on ischemically induced hippocampal damage in Mongolian gerbils: a behavioral and histopathological study. J Cerebr Blood Flow Metab 7:74–81

    CAS  Google Scholar 

  • Sasaki M, Naritomi H, Kanashiro M, Nishimura H, Sawada T (1989) Effects of propentofylline on energy metabolism of the ischemic brain studied by in vivo 31P nuclear magnetic resonance spectroscopy. Arzneim Forsch/Drug Res 39:886–889

    CAS  Google Scholar 

  • Zetterström T, Vernet L, Ungerstedt U, Tossman U, Jonzon B, Fredholm BB (1982) Purine levels in the intact rat brain. Studies with an implanted hollow fibre. Neurosci Lett 29:111–115

    PubMed  Google Scholar 

Forebrain Ischemia in Rats

  • Andjus RK, Suhara K, Sloviter HA (1967) An isolated, perfused rat brain preparation, its spontaneous and stimulated activity. J Appl Physiol 22:1033–1039

    CAS  PubMed  Google Scholar 

  • Gilboe DD, Cotanch WW, Glover MB (1965) Isolation and mechanical maintenance of the dog brain. Nature 206:94–96

    Google Scholar 

  • Himori N, Watanabe H, Akaike N, Kurasawa M, Itoh J, Tanaka Y (1990) Cerebral ischemia model with conscious mice. Involvement of NMDA receptor activation and derangement of learning and memory ability. J Pharmacol Meth 23:311–327

    CAS  Google Scholar 

  • Kochhar A, Zivin JA, Lyden PD, Mazzarella V (1988) Glutamate antagonist therapy reduces neurologic deficits produced by focal central nervous system ischemia. Arch Neurol 45:148–153

    CAS  PubMed  Google Scholar 

  • Krieglstein J, Peruche B (1991) Pharmakologische Grundlagen der Therapie der zerebralen IschÀmie. Arzneim Forsch/Drug Res 31:303–309

    Google Scholar 

  • Krieglstein G, Krieglstein J, Stock R (1972) Suitability of the isolated perfused rat brain for studying effects on cerebral metabolism. Naunyn-Schmiedeberg’s Arch Pharmacol 275:124–134

    CAS  Google Scholar 

  • Nuglisch J, Karkoutly C, Mennel HD, Roßberg C, Krieglstein J (1990) Protective effect of nimodipine against neuronal damage in rat hippocampus without changing postischemic cerebral blood flow. J Cerebr Blood Flow Metab 10:654–659

    CAS  Google Scholar 

  • Nuglisch J, Rischke R, Krieglstein J (1991) Preischemic administration of flunarizine or phencyclidine reduces local cerebral glucose utilization in rat hippocampus seven days after ischemia. Pharmacology 42:333–339

    CAS  PubMed  Google Scholar 

  • Oberpichler H, Sauer D, Roßberg C, Mennel HD, Krieglstein J (1990) PAF antagonist ginkgolide B reduces postischemic neuronal damage in rat brain hippocampus. J Cerebr Blood Flow Metab 10:133–135

    CAS  Google Scholar 

  • Peruche B, Klaassens H, Krieglstein J (1995) Quantitative analysis of the electrocorticogram after forebrain ischemia in the rat. Pharmacology 50:229–237

    CAS  PubMed  Google Scholar 

  • Pradillo JM, Fernández-López D, García-Yébenes I, Sobrado M, Hurtado O, Moro MA, Lizasoain I (2009) Toll-like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. J Neurochem 109(1):287–294

    CAS  PubMed  Google Scholar 

  • Prehn JHM, Backhauß C, Karkoutly C, Nuglisch J, Peruche B, Roßberg C, Krieglstein J (1991) Neuroprotective properties of 5-HT1A receptor agonists in rodent models of focal and global cerebral ischemia. Eur J Pharmacol 203:213–222

    CAS  PubMed  Google Scholar 

  • Rischke R, Krieglstein J (1990) Effects of Vinpocetin on local cerebral blood flow and glucose utilization seven days after forebrain ischemia in the rat. Pharmacology 41:153–160

    CAS  PubMed  Google Scholar 

  • Rischke R, Krieglstein J (1991) Postischemic neuronal damage causes astroglial activation and increase in local cerebral glucose utilization in rat hippocampus. J Cerebr Blood Flow Metab 11:106–113

    CAS  Google Scholar 

  • Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin O, Sokoloff L (1978) Measurement of local cerebral blood flow with iodo[14C]-antipyrine. Am J Physiol 234:H59–H66

    Google Scholar 

  • Seif el Nasr M, Peruche B, Roßberg C, Mennel HD, Krieglstein J (1990) Neuroprotective effect of memantine demonstrated in vivo and in vitro. Eur J Pharmacol 185:19–24

    CAS  PubMed  Google Scholar 

  • Seif el Nasr M, Nuglisch J, Krieglstein J (1992) Prevention of ischemia-induced cerebral hypothermia by controlling the environmental temperature. J Pharmacol Meth 27:23–26

    CAS  Google Scholar 

  • Smith ML, Auer RN, Siesjö BK (1984a) The density and distribution of ischemic brain injury in the rat following 2–10 min of forebrain ischemia. Acta Neuropathol (Berl) 64:319–332

    CAS  Google Scholar 

  • Smith ML, Bendek G, Dahlgren N, Rosén I, Wieloch T, Siesjö BK (1984b) Models for studying long-term recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model. Acta Neurol Scand 69:385–401

    CAS  PubMed  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Google Scholar 

Hypoxia Tolerance Test in Rats

  • Hossman KA, Mies G, Paschen W, Matsuoka Y, Schuier FJ, Bosma HJ (1983) Experimental infarcts in cats, gerbils and rats. In: Stefanovich V (ed) Stroke: animal models. Pergamon Press, Oxford/New York, pp 123–137

    Google Scholar 

Middle Cerebral Artery Occlusion in Rats

  • Backhauß C, Karkoutly C, Welsch M, Krieglstein J (1992) A mouse model of focal cerebral ischemia for screening neuroprotective drug effects. J Pharmacol Meth 27:27–32

    Google Scholar 

  • Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986a) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472–476

    CAS  PubMed  Google Scholar 

  • Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM (1986b) Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 17:1304–1308

    CAS  PubMed  Google Scholar 

  • Christoforidis GA, Rink C, Kontzialis MS, Mohammad Y, Koch RM, Abduljalil AM, Bergdall VK, Roy S, Khanna S, Slivka AP, Knopp MV, Sen CK (2011) An endovascular canine middle cerebral artery occlusion model for the study of leptomeningeal collateral recruitment. Invest Radiol 46(1):34–40

    PubMed Central  PubMed  Google Scholar 

  • De Ley G, Weyne J, Demeester G, Stryckman K, Goethals P, Van de Velde E, Leusen I (1988) Experimental thromboembolic stroke studied by positron emission tomography: immediate versus delayed reperfusion by fibrinolysis. J Cerebr Blood Flow Metab 8:539–545

    Google Scholar 

  • Du C, Hu R, Csernansky CA, Liu XZ, Hsu CY, Choi DW (1996) Additive neuroprotective effects of dextrorphan and cycloheximide in rats subjected to transient focal cerebral ischemia. Brain Res 718:233–236

    CAS  PubMed  Google Scholar 

  • Engel O, Kolodziej S, Dirnagl U, Prinz V (2011) Modeling stroke in mice – middle cerebral artery occlusion with the filament model. J Vis Exp 47:2423

    PubMed  Google Scholar 

  • Germano IM, Pitts LH, Meldrum BS, Bartkowski HM, Simon RP (1987) Kynurenate inhibition of cell excitation decreases stroke size and deficits. Ann Neurol 22:730–734

    CAS  PubMed  Google Scholar 

  • Ginsberg MD, Busto R (1989) Rodent models of cerebral ischemia. Stroke 20:1627–1642

    CAS  PubMed  Google Scholar 

  • Gotti B, Duverger G, Bertin J, Carter C, Dupont R, Frost J, Gaudilliere B, MacKenzie ET, Rousseau J, Scatton B, Wick A (1988) Ifenprodil and SL 82.0715 as cerebral antiischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia. J Pharm Exp Ther 247:1211–1221

    CAS  Google Scholar 

  • Hara H, Huang PL, Panahian N, Fishman MC, Moskowitz MA (1996) Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J Cerebr Blood Flow Metab 16:605–611

    CAS  Google Scholar 

  • Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, Huang Z, Shimizu-Sasamata M, Yuan J, Moskowitz MA (1997) Inhibition of interleukin 1β converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci U S A 94:2007–2012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hossmann KA (1982) Treatment of experimental cerebral ischemia. J Cerebr Blood Flow Metab 2:275–297

    CAS  Google Scholar 

  • Hossmann KA, Schuier FJ (1980) Experimental brain infarcts in cats. I Pathophysiological observations. Stroke 11:583–592

    CAS  PubMed  Google Scholar 

  • Huang PL, Dawson PM, Bredt DS, Snyder SH, Fishman MC (1994) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75:1273–1286

    Google Scholar 

  • Nsihimura A, Hamada T, Fukuzaki K, Miyajima H, Nagata R, Kito G (1998) A new model of experimental thromboembolic stroke in cynomolgus monkey. Naunyn-Schmiedeberg’s Arch Pharmacol 358(Suppl 1):R70

    Google Scholar 

  • Park CK, Rudolphi KA (1994) Antiischemic effects of propentofylline (HWA 285) against focal cerebral infarction in rats. Neurosci Lett 178:235–238

    CAS  PubMed  Google Scholar 

  • Park CK, McCulloch J, Kang JK, Choi CR (1992) Efficacy of DCPPene, a competitive N-methyl-d-aspartate antagonist in focal cerebral ischemia in the rat. Neurosci Lett 147:41–44

    CAS  PubMed  Google Scholar 

  • Salom JB, Barberá MD, Centeno JM, Ortí M, Torregrosa G, Alborch E (1999) Relaxant effects of sodium nitroprusside and NONOates in goat middle cerebral artery: delayed impairment by global ischemia-reperfusion. Nitric Oxide 3:85–93

    CAS  PubMed  Google Scholar 

  • Shigeno T, Teasdale GM, McCulloch J, Graham DI (1985) Recirculation model following MCA occlusion in rats. Cerebral blood flow, cerebrovascular permeability, and brain edema. J Neurosurg 63:272–277

    CAS  PubMed  Google Scholar 

  • Shimamura N, Matsuda N, Katayama K, Ohkuma H (2009) Novel rat middle cerebral artery occlusion model: trans-femoral artery approach combined with preservation of the external carotid artery. J Neurosci Methods 184(2):195–198

    PubMed  Google Scholar 

  • Smith SE, Meldrum BS (1992) Cerebroprotective effect of a non-N-methyl-d-aspartate antagonist, GYKI 52466, after focal ischemia in the rat. Stroke 23:861–864

    CAS  PubMed  Google Scholar 

  • Sundt TM, Waltz AG (1966) Experimental cerebral infarction: retro-orbital, extradural approach for occluding the middle cerebral artery. Mayo Clin Proc 41:159–168

    PubMed  Google Scholar 

  • Tamura A, Graham DI, McCulloch J, Teasdale GM (1981) Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cerebr Blood Flow Metab 1:53–60

    CAS  Google Scholar 

  • Van Winkle JA, Chen B, Lei IF, Pereira B, Rajput PS, Lyden PD (2013) Concurrent middle cerebral artery occlusion and intra-arterial drug infusion via ipsilateral common carotid artery catheter in the rat. J Neurosci Methods 213(1):63–69

    PubMed Central  PubMed  Google Scholar 

  • Welsh FA, Sakamoto T, McKee AE, Sims RE (1987) Effect of lactacidosis on pyridine nucleotide stability during ischemia in mouse brain. J Neurochem 49:846–851

    CAS  PubMed  Google Scholar 

  • Wu YP, McRae A, Rudolphi K, Ling EA (1999) Propentofylline attenuates microglial reaction in the rat spinal cord induced by middle cerebral artery occlusion. Neurosci Lett 280:17–20

    Google Scholar 

  • Yamamoto S, Golanov EV, Berger SB, Reis DJ (1992) Inhibition of nitric oxide synthesis increases focal ischemic infarction in rat. J Cerebr Blood Flow Metab 12:717–726

    CAS  Google Scholar 

  • Yang GY, Chen SF, Kinouchi H, Chan PH, Weinstein PR (1992) Edema, cation content and ATPase activity after middle cerebral artery occlusion in rats. Stroke 23:1331–1336

    CAS  PubMed  Google Scholar 

  • Zu QQ, Liu S, Xu XQ, Lu SS, Sun L, Shi HB (2013) An endovascular canine stroke model: middle cerebral artery occlusion with autologous clots followed by ipsilateral internal carotid artery blockade. Lab Invest 93(7):760–767

    PubMed  Google Scholar 

Photochemically Induced Focal Cerebral Ischemia in Rats

  • Boquillon M, Boquillon JP, Bralet J (1992) Photochemically induced, graded cerebral infarction in the mouse by laser irradiation. Evolution of brain edema. J Pharm Meth 27:1–6

    CAS  Google Scholar 

  • Grome JJ, Gojowczyk G, Hofmann W (1990) Effect of chronic intravenous administration of propentofylline (HWA 285) on the volume of focal ischemic damage in the rat. Stroke 21(Suppl I):I-134–I-135, PS-12–11

    Google Scholar 

  • Kim HS, Kim D, Kim RG, Kim JM, Chung E, Neto PR, Lee MC, Kim HI (2014) A rat model of photothrombotic capsular infarct with a marked motor deficit: a behavioral, histologic, and microPET study. J Cereb Blood Flow Metab 34(4):683–689

    CAS  PubMed  Google Scholar 

  • Matsuno H, Uematsu T, Umemura K, Tagiguchi Y, Asai Y, Murakana Y, Nakashima M (1993) A simple and reproducible cerebral thrombosis model in rats induced by a photochemical reaction and the effect of a plasmin-plasminogen activator chimera in this model. J Pharm Toxicol Meth 29:165–173

    CAS  Google Scholar 

  • Stieg PE, Sathi S, Warach S, Le DA, Lipton SA (1999) Neuroprotection by the NMDA receptor-associated open-channel blocker memantine in a photothrombotic model of cerebral focal ischemia in neonatal rat. Eur J Pharmacol 375:115–120

    CAS  PubMed  Google Scholar 

Microdialysis and Neuroprotection Experiments After Global Ischemia in Rats

  • Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374

    CAS  PubMed  Google Scholar 

  • Block F, Schmitt W, Schwarz M (1996) Pretreatment but not post-treatment with GYKI 52466 reduces functional deficits and neuronal damage after global ischemia in rats. J Neurol Sci 139:167–172

    CAS  PubMed  Google Scholar 

  • Choi DW (1990) Methods for antagonizing glutamate neurotoxicity. Cerebrovasc Brain Metab 2:105–147

    CAS  Google Scholar 

  • Hagberg H, Andersson P, Lacarewicz J, Jacobson I, Butcher S, Sandberg M (1987) Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J Neurochem 49:227–231

    CAS  PubMed  Google Scholar 

  • Hagberg H, Andiné P, Fredholm B, Rudolphi K (1990) Effect of the adenosine uptake inhibitor propentofylline on the extracellular adenosine and glutamate and evaluation of its neuroprotective efficacy after ischemia in neonatal and adult rats. In: Krieglstein J, Oberpichler (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, pp 427–437

    Google Scholar 

  • Lindroth P, Hamberger A, Sandberg M (1985) Liquid chromatographic determination of amino acids after precolumn fluorescence derivatization. In: Boulton AA, Baker GB, Wood JD (eds) Neuromethods. Amino acids, vol 3. HUMANA Press, pp 97–116 http://link.springer.com/protocol/10.1385%2F0-89603-077-6%3A97

  • Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272

    CAS  PubMed  Google Scholar 

  • Sandberg M, Butcher SP, Hagberg H (1986) Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 47:178–184

    CAS  PubMed  Google Scholar 

Hypoxia/Hypoglycemia in Hippocampal Slices

  • Dunwiddie TV (1986) The use of in vitro brain slices in neuropharmacology. In: Electrophysiological techniques in pharmacology. Alan R. Liss, pp 65–90

    Google Scholar 

  • Hagberg H, Andiné P, Fredholm B, Rudolphi K (1990) Effect of the adenosine uptake inhibitor propentofylline on the extracellular adenosine and glutamate and evaluation of its neuroprotective efficacy after ischemia in neonatal and adult rats. In: Krieglstein J, Oberpichler (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, pp 427–437

    Google Scholar 

Measurement of Local Cerebral Blood Flow and Glucose Utilization in Rats

  • Bouwens A, Bolmont T, Szlag D, Berclaz C, Lasser T (2014) Quantitative cerebral blood flow imaging with extended-focus optical coherence microscopy. Opt Lett 39(1):37–40

    PubMed  Google Scholar 

  • Choi SR, Magata Y, Saji H, Tajima K, Kitano H, Konishi J, Yokoyama A (1997) Effect of ginseng pretreatment on cerebral glucose metabolism in ischemic rats using animal positron emission tomography (PET) and ([18F]-FDG). Phytother Res 11:437–440

    CAS  Google Scholar 

  • De la Sayette T, Chavoix C, Brouillet A, Hantraye P, Kunimoto M, Khalili-Varasteh M, Guibert B, Prenant C, MaziÚre M (1991) In vivo benzodiazepine receptor occupancy by CL 218,872 visualized by positron emission tomography in the brain of the living baboon: modulation by GABAergic transmission and relation with anticonvulsant activity. Exp Brain Res 83:397–402

    PubMed  Google Scholar 

  • Grome J, Stefanovich V (1985) Differential effects of xanthine derivatives on local cerebral blood flow and glucose utilization in the conscious rat. In: Stefanovich V, Rudolphi K, Schubert P (eds) Adenosine: receptors and modulation of cell function. IRL Press, Oxford, pp 453–458

    Google Scholar 

  • Hawkins RA, Choi Y, Scates S, Rege S, Hoh CK, Glaspy J, Phelps ME (1993) An animal model for in vivo evaluation of tumor glycolytic rates with positron emission tomography. J Surg Oncol 53:104–109

    CAS  PubMed  Google Scholar 

  • Hume SP, Brown DJ, Ashwoth S, Hirani E, Luthra SK, Lammertsma AA (1997) In vivo saturation kinetics of two dopamine transporter probes measured using a small animal positron emission tomography scanner. J Neurosci Meth 76:45–51

    CAS  Google Scholar 

  • Ito K, Sawada Y, Ishizuka H, Sugiyama Y, Suzuki H, Iga T, Hanano M (1990) Measurement of cerebral glucose utilization from brain uptake of [14C]2-deoxyglucose and [3H]3-O-methylglucose in the mouse. J Pharmacol Meth 23:129–140

    CAS  Google Scholar 

  • Jones HA, Rhodes CR, Law MP, Becket JM, Clark JC, Boobis AR, Taylor GW (1991) Rapid analysis of 11C-labelled drugs: fate of [11C]-S-4-(tert.-butylamino-2-hydroxypropoxy)-benzimidazol-2-one in the dog. J Chromatogr Biomed Appl 570:361–370

    CAS  Google Scholar 

  • Ku T, Choi C (2012) Noninvasive optical measurement of cerebral blood flow in mice using molecular dynamics analysis of indocyanine green. PLoS One 7(10):e48383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kung HF (1993) SPECT and PET ligands for CNS imaging. Neurotransmissions 9(4):1–6

    Google Scholar 

  • Lacombe B, Meric P, Seylaz J (1980) Validity of cerebral blood flow measurements obtained with quantitative tracer techniques. Brain Res Rev 2:105–169

    Google Scholar 

  • Magata Y, Saji H, Choi SR, Tajima K, Takagaki T, Sasayama S, Yonekura Y, Kitano H, Watanabe M, Okada H, Yoshikawa E, Yamashita T, Yokoyama A, Konishi J (1995) Noninvasive measurement of cerebral blood flow and glucose metabolic rate in the rat with high-resolution animal positron emission tomography (PET): a novel in vivo approach for assessing drug action in the brains of small animals. Biol Pharm Bull 18:753–756

    CAS  PubMed  Google Scholar 

  • McCulloch J, Kelly PAT, Ford I (1982) Effect of apomorphine on the relationship between local cerebral glucose utilization and local cerebral blood flow (with an appendix on its statistical analysis). J Cerebr Blood FlowMetab 2:487–499

    CAS  Google Scholar 

  • Rogers GA, Stone-Elander S, Ingvar M, Eriksson L, Parsons SM, Widen L (1994) 18F-labelled vesamicol derivates: syntheses and preliminary in vivo small animal positron emission tomography evaluation. Nucl Med Biol 21:219–230

    CAS  PubMed  Google Scholar 

  • Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin O, Sokoloff L (1978) Measurement of local cerebral blood flow with iodo(14C)-antipyrine. Am J Physiol 234:H59–H66

    Google Scholar 

  • Smith CB (1981) Age-related changes in local rates of cerebral glucose utilization in the rat. In: Enna SJ et al (eds) Brain neurotransmitters and receptors in aging and age-related disorders. Aging, vol 17. Raven Press, New York, pp 195–201

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Google Scholar 

  • Winn HR, Rubio GR, Berne RM (1981) The role of adenosine in the regulation of cerebral blood flow. J Cerebr Blood Flow Metab 1:239–244

    CAS  Google Scholar 

  • Wolfson LI, Sakurada O, Sokoloff L (1977) Effects of γ -butyrolactone on local cerebral glucose utilization in the rat. J Neurochem 29:777–783

    CAS  PubMed  Google Scholar 

Cerebrovascular Resistance in Anesthetized Baboons

  • Clozel M, Watanabe H (1993) BQ-123, a peptidic endothelin ETA receptor antagonist, prevents the early cerebral vasospasm following subarachnoid hemorrhage after intracisternal but not after intravenous injection. Life Sci 52:825–834

    CAS  PubMed  Google Scholar 

  • Grome JJ, Rudolphi K, Harper AM (1985) Cerebrovascular effects of a xanthine derivative propentofylline (HWA 285). Drug Dev Res 5:111–121

    CAS  Google Scholar 

  • HÞedt-Rasmussen K, Sveinsdottir E, Lassen NA (1966) Regional cerebral blood flow in man determined by intraarterial injection of radioactive inert gas. Circ Res 18:237

    PubMed  Google Scholar 

  • Hughes S, Brain S, Williams G, Williams T (1994) Assessment of blood flow changes at multiple sites in rabbit skin using a 133xenon clearance technique. J Pharmacol Toxicol Meth 32:41–47

    CAS  Google Scholar 

  • Imaizumi S, Shimizu H, Ahmad I, Kaminuma T, Tajima M, Yoshimoto T, Megyesi J, Findlay JM, Kikuchi H, Nozaki K (1996) Effect of calcitonin gene-related peptide on delayed vasospasm after experimental subarachnoid hemorrhage in rabbits. Surg Neurol 46:263–271

    CAS  PubMed  Google Scholar 

  • Inoue T, Shimizu H, Kaminuma T, Tajima M, Watabe K, Yoshimoto T, Dacey RG Jr, Solomon RA, Selman WR (1996) Prevention of cerebral vasospasm by calcitonin gene-related peptide slow-release tablet after subarachnoidal hemorrhage in monkeys. Neurosurgery 39:984–990

    CAS  PubMed  Google Scholar 

  • Kozniewska E, Oseka M, Stys T (1992) Effects of endothelium derived nitric oxide on cerebral circulation during normoxia and hypoxia in the rat. J Cerebr Blood Flow Metab 12:311–317

    CAS  Google Scholar 

  • Lacombe P, Meric P, Seylaz J (1980) Validity of cerebral blood flow measurements obtained with quantitative tracer techniques. Brain Res Rev 2:105–169

    Google Scholar 

  • Lin CL, Calisaneller T, Utica N, Dumont AS, Kassell NF, Lee KS (2003) A murine model of subarachnoid hemorrhage-induced cerebral vasospasm. J Neurosci Meth 123:89–97

    Google Scholar 

  • Nielsen SL, Lassen NA, Elmqvist D (1975) Muscle blood flow in man studied with the local radioisotope method. In: Kunze K, Desmedt JE (eds) Studies on neuromuscular diseases. Proceedings of the international symposium, Giessen 1973, Karger, Basel, pp 79–81

    Google Scholar 

  • Solomon RA, Antunes JL, Chen RYZ, Bland L, Chien S (1985) Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: a new animal model. Stroke 16:58–64

    CAS  PubMed  Google Scholar 

  • Varsos VG, Liszczak TM, Han DH, Kistler JP, Vielma J, Black PM, Heros RC, Zervas NT (1983) Delayed cerebral vasospasm is not reversible by aminophylline, nifedipine, or papaverine in a “two-hemorrhage” canine model. J Neurosurg 58:11–17

    CAS  PubMed  Google Scholar 

  • Veall N, Mallett BL (1966) Regional cerebral blood flow determination by 133Xe inhalation and external recording: the effect of arterial recirculation. Clin Sci 30:353

    CAS  PubMed  Google Scholar 

  • Wang Q, Paulson OB, Lassen NA (1992) Effect of nitric oxide blockade by N G-nitro-l-arginine on cerebral blood flow response to changes in carbon dioxide tension. J Cerebr Blood Flow Metab 12:947–953

    CAS  Google Scholar 

Effect on Cerebral Blood Flow in Cats (Fluvography)

  • Betz E (1965) Local heat clearance from the brain as a measure of blood flow in acute and chronic experiments. Acta Neurol Scand Suppl 14:29–37

    CAS  PubMed  Google Scholar 

  • Golenhofen K, Hensel H, Hildebrandt G (1963) Durchblutungsmessungen mit Waerme-Elementen. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Lacombe P, Meric P, Seylaz J (1980c) Validity of cerebral blood flow measurements obtained with quantitative tracer techniques. Brain Res Rev 2:105–169

    Google Scholar 

Effect on Cerebral Blood Flow and in Ischemic Skeletal Muscle in Rats (Laser-Doppler-Effect)

  • Benessiano J, Levy BI, Michel JB (1985) Instantaneous aortic blood flow measurement with range-gated Doppler flowmeter in anesthetized rat. J Pharmacol Meth 14:99–110

    CAS  Google Scholar 

  • Iadecola C (1992) Does nitric oxide mediate the increases in cerebral blood flow elicited by hypercapnia? Proc Natl Acad Sci U S A 89:3913–3916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kunze K, Berk H (1975) Oxygen supply and muscle blood flow in normal and diseased muscle. In: Kunze K, Desmedt JE (eds) Studies on neuromuscular diseases. Proceedings of the international symposium, Giessen 1973, Karger, Basel, pp 82–91

    Google Scholar 

  • LeNoble JLML, Struyker-Boudier HAJ, Smits JFM (1987) Differential effects of general anesthetics on regional vasoconstrictor responses in the rat. Arch Int Pharmacodyn 289:82–92

    CAS  Google Scholar 

  • Partridge BL (1991) The effects of local anesthetics and epinephrine on rat sciatic nerve blood flow. Anesthesiology 75:243–251

    CAS  PubMed  Google Scholar 

  • Prado R, Watson BD, Kuluz J, Dietrich WD (1992) Endothelium-derived nitric oxide synthase inhibition. Effects on cerebral blood flow, pial artery diameter, and vascular morphology in rats. Stroke 23:1118–1124

    CAS  PubMed  Google Scholar 

  • Raszkiewicz JL, Linville DG, Kerwin JF, Wagenaar F, Arneric SP (1992) Nitric oxide synthase is critical in mediating basal forebrain regulation of cortical cerebral circulation. J Neurosci Res 33:129–135

    CAS  PubMed  Google Scholar 

  • Rudquist I, Smith QR, Michel ME, Ask P, Öberg P, Rapoport SI (1985) Sciatic nerve blood flow measured by laser Doppler flowmetry and [14C]iodoantipyrine. Am J Physiol 248:H311–H317

    Google Scholar 

Traumatic Brain Injury

  • Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139:244–256

    CAS  PubMed  Google Scholar 

  • Bemana I, Nagao S (1998) Effects of Niravoline (RU 51599), a selective kappa-opioid receptor agonist on intracranial pressure in gradually expanding extradural mass lesion. J Neurotrauma 15:117–124

    CAS  PubMed  Google Scholar 

  • Denny-Brown D, Russell WR (1941) Experimental cerebral percussion. Brain 64:93–164

    Google Scholar 

  • Dixon CE, Clifton GL, Lighthall JW, Yagjmai AA, Haynes RL (1991) A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Meth 39:253–262

    CAS  Google Scholar 

  • Faddis B, Vijayan VK (1988) Application of glial fibrillary acidic protein histochemistry in the quantification of astrocytes in the rat brain. Am J Anat 183:316–322

    CAS  PubMed  Google Scholar 

  • Faden AI (1993) Comparison of single and combination drug treatment strategies in experimental brain trauma. J Neurotrauma 10:91–100

    CAS  PubMed  Google Scholar 

  • Faden AI, Demediuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798–800

    CAS  PubMed  Google Scholar 

  • Fox GB, Fan L, Lavasseur RA, Faden AI (1998) Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled impact brain injury in the mouse. J Neurotrauma 15:599–614

    CAS  PubMed  Google Scholar 

  • Gruner JA (1992) A monitored contusion model of spinal cord injury in the rat. J Neurotrauma 9:123–128

    CAS  PubMed  Google Scholar 

  • Gurdjian ES, Lissner HR, Webster JE (1954) Studies on experimental concussion. Relation of physiological effect to time duration of intracranial pressure increase at impact. Neurology 4:674–681

    CAS  PubMed  Google Scholar 

  • Hall ED, Yonkers PA, McCall JM (1988) Effects of the 21-amino-steroid U74006F on experimental head injury in mice. J Neurosurg 68:456–461

    CAS  PubMed  Google Scholar 

  • Hayes RL, Lewelt W, Yeatts ML (1983) Metabolic, behavioral and electrophysiological correlates of experimental brain injury in the cat. J Cerebr Blood Flow Metab 3:38–40

    Google Scholar 

  • Hayes RL, Pechura CM, Katayama Y, Povlishock JT, Giebel ML, Becker DP (1984) Activation of pontine cholinergic sites implicated in unconsciousness following cerebral percussion in cats. Science 223:301–303

    CAS  PubMed  Google Scholar 

  • Kooijman E, Nijboer CH, van Velthoven CT, Kavelaars A, Kesecioglu J, Heijnen CJ (2014) The rodent endovascular puncture model of subarachnoid hemorrhage: mechanisms of brain damage and therapeutic strategies. J Neuroinflammation 11:2

    PubMed Central  PubMed  Google Scholar 

  • Laurer HL, Lenzlinger PM, McIntosh TK (2000) Models of traumatic brain injury. Eur J Trauma 26:95–100

    Google Scholar 

  • Lindgren S, Rinder L (1969) Production and distribution of intracranial and intraspinal pressure changes at sudden extradural fluid volume input in rabbits. Acta Physiol Scand 76:340–351

    CAS  PubMed  Google Scholar 

  • Maegele M, Gruener-Lippert M, Ester-Bode T, Garbe J, Bouillon B, Neugebauer E, Klug N, Lefering R, Neiss WF, Angelov DN (2005) Multimodal early onset stimulation combined with enriched environment is associated with reduced CNS lesion volume and enhanced reversal of neuromotor dysfunction after traumatic brain injury in rats. Eur J Neurosci 21:2406–2418

    PubMed  Google Scholar 

  • Marmarou A, Foda MAAE, van den Brink W, Campell J, Kita H, Demetriadu K (1994) A new model of diffuse brain injury in rats. J Neurosurg 80:291–300

    CAS  PubMed  Google Scholar 

  • McIntosh TK, Vink R, Noble L, Yamakami I, Fernyak S, Soares H, Faden AL (1989) Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neurosci 28:233–244

    CAS  Google Scholar 

  • McIntosh TK, Vink R, Soares H, Hayes R, Simon R (1990) Effect of noncompetitive blockade of N-methyl-d-aspartate receptors on the neurochemical sequelae of experimental brain injury. J Neurochem 55:1170–1179

    CAS  PubMed  Google Scholar 

  • Mésenge C, Verrecchia C, Allix M, Boulu RR, Plotkine M (1996) Reduction of the neurological deficit in mice with traumatic brain injury by nitric oxide synthase inhibitors. J Neurotrauma 13:209–214

    PubMed  Google Scholar 

  • Morganti-Kossmann MC, Yan E, Bye N (2010) Animal models of traumatic brain injury: is there an optimal model to reproduce human brain injury in the laboratory? Injury 41(Suppl 1):S10–S13

    PubMed  Google Scholar 

  • Nilsson B, Ponten U, Voigt G (1977) Experimental head injury in the rat. Part 1. Mechanics, pathophysiology, and morphology in an impact acceleration trauma model. J Neurosurg 47(2):241–251

    Google Scholar 

  • Ommaya AK, Gennarelli TA (1974) Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations on blunt head injuries. Brain 97:633–654

    CAS  PubMed  Google Scholar 

  • Petty MA, Poulet P, Haas A, Namer IJ, Wagner J (1996) Reduction of traumatic brain injury-induced cerebral oedema by a free radical scavenger. Eur J Pharmacol 307:149–155

    CAS  PubMed  Google Scholar 

  • Shohami E, Novikov M, Bass R (1995) Long-term effect of HU211, a novel non-competitive NMDA antagonist, on motor and memory functions after closed head injury in the rat. Brain Res 674:55–62

    CAS  PubMed  Google Scholar 

  • Springer JE, Azbill RD, Mark RJ, Begley JG, Waeg G, Mattson MP (1997) 4-Hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake. J Neurochem 68:2469–2476

    CAS  PubMed  Google Scholar 

  • Sullivan HG, Martinez J, Becker DP, Miller JD, Griffith R, Wist AO (1976) Fluid-percussion model of mechanical brain injury in the cat. J Neurosurg 45:520–534

    Google Scholar 

  • Sun FY, Faden AI (1995) Neuroprotective effects of 619C89, a use-dependent sodium channel blocker, in rat traumatic brain injury. Brain Res 673:133–140

    CAS  PubMed  Google Scholar 

  • Tang Y-P, Noda Y, Hasegawa T, Nabeshima T (1997) A concussive-like brain injury model in mice: impairment in learning and memory. J Neurotrauma 14:851–862

    CAS  PubMed  Google Scholar 

Cerebral Blood Flow Measured by MRI

  • Banfi C, Sironi L, de Simoni G, Gelosa P, Barcella S, Perego C, Gianazza E, Guetrini U, Tremoli E, Mussoni L (2004) Pentoxifylline prevents spontaneous brain ischemia in stroke-prone rats. J Pharmacol Exp Ther 310:890–895

    CAS  PubMed  Google Scholar 

  • Beckmann N, Tigani B, Mazzoni L, Fozzard JR (2003) Techniques: magnetic resonance imaging of the lung provides potential for non-invasive preclinical evaluation of drugs. Trends Pharmacol Sci 24:550–554

    CAS  PubMed  Google Scholar 

  • Beckmann N, Laurent D, Tigani B, Panizzutti R, Rudin M (2004) Magnetic resonance imaging in drug discovery: lessons from disease areas. Drug Dis Today 9:35–42

    CAS  Google Scholar 

  • Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg MD (1996) Middle cerebral artery occlusion in the rat by intraluminal suture: neurological and pathological evaluation of an improved model. Stroke 27:1616–1623

    CAS  PubMed  Google Scholar 

  • Cash D, Beech JS, Rayne RC, Bath PMW, Meldrum BS, Williams SCR (2001) Neuroprotective effect of aminoguanidine on transient focal ischaemia in the rat brain. Brain Res 905:91–103

    CAS  PubMed  Google Scholar 

  • Cherry SR, Phelps ME (1996) Imaging brain function with positron emission tomography. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods. Academic, New York, pp 191–221

    Google Scholar 

  • Elger B, Seega J, Raschack M (1994a) Oedema reduction by levemopamil in focal cerebral ischaemia of spontaneously hypertensive rats studied by magnetic resonance imaging. Eur J Pharmacol 254:65–71

    CAS  PubMed  Google Scholar 

  • Elger B, Seega J, Brendel R (1994b) Magnetic resonance imaging study on the effect of levemopamil on the size of intracerebral hemorrhage in rats. Stroke 25:1836–1841

    CAS  PubMed  Google Scholar 

  • Franke C, van Dorsten FA, Olah L, Schwindt W, Hoehn M (2000) Arterial spin tagging perfusion imaging of rat brain: dependency on magnetic field strength. Magn Reson Imaging 18:1109–1113

    CAS  PubMed  Google Scholar 

  • Henderson LA, Macey PM, Richard CA, Runquist ML, Harper RM (2004) Functional magnetic resonance imaging during hypotension in the developing animal. J Appl Physiol 97:2248–2257

    PubMed  Google Scholar 

  • Hoehn-Berlage M, Norris DG, Kohno K, Mies G, Leibfritz D, Hossmann KA (1995) Evolution of regional changes in apparent diffusion coefficient during focal ischemia of rat brain: the relationship of quantitative diffusion NMR imaging to reduction of cerebral blood flow and metabolic disturbances. J Cereb Blood Flow Metab 15:1002–1011

    CAS  PubMed  Google Scholar 

  • Kerskens CM, Hoehn-Berlage M, Schmitz B, Busch E, Bock C, Gyngell ML, Hossmann KA (1996) Ultrafast perfusion weighted MRI of functional brain activation in rats during forepaw stimulation: comparison with T2*-weighted MRI. NMR Biomed 8:20–23

    Google Scholar 

  • Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  Google Scholar 

  • Leslie RA, James MF (2000) Pharmacological magnetic resonance imaging: a new application for functional MRI. Trends Pharmacol Sci 21:314–318

    CAS  PubMed  Google Scholar 

  • Ohlstein EH, Romanic AM, Clark LV, Kapadia RD, Sarkar SK, Gagnon R, Chandra S (2000) Application of in vivo and ex vivo magnetic resonance imaging for the evaluation of tranilast on neointima formation following balloon angioplasty of the rat coronary artery. Cardiovasc Res 47:759–768

    CAS  PubMed  Google Scholar 

  • Paczynski RP, Venkatesan R, Diringer MN, He YY, Hsu CY, Lin W (2000) Effects of fluid management on edema volume and midline shift in a rat model of ischemic stroke. Stroke 31:1702–1708

    CAS  PubMed  Google Scholar 

  • Petty MA, Neumann-Haefelin C, Kalisch J, Sarhan S, Wettstein JG, Juretschke HP (2003) In vivo neuroprotective effects of ACEA 1021 confirmed by magnetic resonance imaging in ischemic stroke. Eur J Pharmacol 474:53–62

    CAS  PubMed  Google Scholar 

  • Pevsner PH, Eichenbaum JW, Miller DC, Pivawer G, Eichenbaum KD, Stern A, Zakian KL, Koutcher JA (2001) A photothrombotic model of small early ischemic infarcts in the rat brain with histologic and MRI correlation. J Pharm Toxicol Meth 45:227–233

    CAS  Google Scholar 

  • Reese T, Bjelke B, Porszacz R, Baumann D, Bochelen D, Sauter A, Rudin M (2000) Regional brain activation by bicuculline visualized by functional magnetic resonance imaging. Time-resolved assessment of bicuculline-induced changes in local cerebral blood volume using an intravascular contrast agent. NMR Biomed 13:43–49

    CAS  PubMed  Google Scholar 

  • Seega J, Elger B (1993) Diffusion- and T 2-weighted imaging: evaluation of oedema reduction in focal cerebral ischaemia by the calcium and serotonin antagonist levemopamil. Magnet Reson Imag 11:401–409

    CAS  Google Scholar 

  • Shirhan MD, Moochala SM, Ng PY, Lu J, Ng KC, Teo L, Yap E, Ng I, Hwang P, Lim T, Sitoh YY, Rumpel H, Jose R, Ling E (2004) Spermine reduces infarction and neurological deficit following a rat model of middle cerebral artery occlusion: a magnetic resonance imaging study. Neuroscience 124:299–304

    CAS  PubMed  Google Scholar 

  • Swain RA, Harris AB, Wiener EC, Dutka MV, Morris HD, Theien BE, Konda S, Engberg K, Lauterbur PC, Greenough WT (2003) Prolonged exercise induces angiogenesis and increases cerebral blood flow in primary motor cortex of the rat. Neuroscience 117:1037–1046

    CAS  PubMed  Google Scholar 

  • Zea Longa E, Weinstein PR, Carlson S, Cummins RW (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Google Scholar 

Perfused Hindquarter Preparation with Sympathetic Nerve Stimulation in Rats

  • Bhattacharya BK, Dadkar NK, Dohadwalla AN (1977) Vascular reactivity of perfused vascular bed in spontaneously hypertensive and normotensive rats. Br J Pharmacol 59:243–246

    Google Scholar 

  • Bomzon A, Naidu SG (1985) Perfusion of the isolated rat hind limb. An analysis of the technique. J Pharmacol Meth 14:285–296

    CAS  Google Scholar 

  • Brody MJ, Shaffer RA, Dixon RL (1963) A method for the study of peripheral vascular responses in the rat. J Appl Physiol 18:645–647

    Google Scholar 

  • Champion HC, Duperier CD, Fitzgerald WE, Lambert DG, Murphy WA, Coy DH, Kadowitz PJ (1996) [Mpr14]-rADM(14–50), a novel analog of adrenomedullin, possesses potent vasodilator activity in the hindlimb vascular bed of the cat. Life Sci 59:PL1–PL7

    CAS  PubMed  Google Scholar 

  • Champion HC, Akers DL, Santiago JA, Lambert DG, McNamara DB, Kadowitz PJ (1997) Analysis of the responses to human synthetic adrenomedullin and calcitonin gene-related peptides in the hindlimb vascular bed of the cat. Mol Cell Biochem 176:5–11

    CAS  PubMed  Google Scholar 

  • Dadkar NK, Dohadwalla AN, Bhattacharya BK (1977) The effect of tyramine on peripheral vasculature of the spontaneously hypertensive rat. J Pharm Pharmacol 29:48–49

    CAS  PubMed  Google Scholar 

  • Folkow B, HallbÀck M, Lundgren Y, Weiss L (1970) Background of increased flow resistance and vascular reactivity in spontaneously hypertensive rats. Acta Physiol Scand 80:93–106

    CAS  PubMed  Google Scholar 

  • Kitzen JM, Long JP, Cannon JG (1978) Pharmacology of 6,7-dihydroxy-2-dimethylaminotetralin (TL-99). I Cardiovascular activity in the dog and cat. J Pharm Exp Ther 206:239–247

    CAS  Google Scholar 

  • Reitan JA, Kien ND, Martucci RW, Thorup SJ, Dennis PJ (1991) Development of a near anesthetic-free isolated canine hindlimb model. The effects of halothane and atropine sulfate on vascular resistance. J Pharmacol Meth 26:223–232

    CAS  Google Scholar 

  • Ross BD (1972) Hind-limb perfusion. In: Perfusion techniques in biochemistry. A laboratory manual in the use of isolated perfused organs in biochemical experimentation. Clarendon Press, Oxford, pp 308–320

    Google Scholar 

  • Ruderman NB, Houghton CRS, Hems R (1971) Evaluation of the isolated perfused rat hind-quarter for the study of muscle metabolism. Biochem J 124:639–651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santiago JA, Garrison EA, Kadowith PJ (1994) Analysis of responses to bradykinin: effects of Hoe-140 in the hindquarters vascular bed of the cat. Am J Physiol 267(Heart Circ Physiol 36):H828–H836

    CAS  PubMed  Google Scholar 

  • Thimm F, Baum K (1987) Response of chemosensitive nerve fibres of group III and IV to metabolic changes in rat muscles. Pflugers Arch 410:143–152

    CAS  PubMed  Google Scholar 

  • Thimm F, Carvalho M, Babka M, Meier zu Verl E (1984) Reflex increases in heart-rate induced by perfusing the hind leg of the rat with solutions containing lactic acid. Pflugers Arch 400:286–293

    CAS  PubMed  Google Scholar 

  • Werber AH, Fink GD (1985) Continuous measurement of hindquarter resistance changes to nerve stimulation and intra-arterial drug administration in rats. J Pharmacol Meth 13:67–82

    CAS  Google Scholar 

  • Wiegershausen B, Deptalla H (1969) Der Einfluß einiger LokalanÀsthetika auf die erregende Wirkung von Bradykinin am glatten Muskel. 1. Mitteilung: Die VerstÀrkung der vasokonstriktorischen Wirkung von Bradykinin an der isolierten Hinterpfote der Katze. Arch Int Pharmacodyn 177:278–286

    CAS  PubMed  Google Scholar 

Effect on Peripheral Blood Flow in Rats

  • Beattie DT, Beresford IJM, Connor HE, Marshall FH, Hawcock AB, Hagen RM, Bowers J, Birch PJ, Ward P (1995) The pharmacology of GR203040, a novel, potent and selective tachykinin NK1 receptor antagonist. Br J Pharmacol 116:3149–3157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartman JC, Olszanski DA, Hullinger TG, Brunden MN (1994) In vivo validation of a transit-time ultrasonic volume flow meter. J Pharmacol Toxicol Meth 31:153–160

    CAS  Google Scholar 

  • Heiss WD, Traupe H (1981) Comparison between hydrogen clearance and microsphere technique for rCBF measurement. Stroke 12:161–167

    CAS  PubMed  Google Scholar 

  • Hof RP, Wyler F, Stalder G (1980) Validation studies for the use of the microsphere method in cats and young minipigs. Basic Res Cardiol 75:747–756

    CAS  PubMed  Google Scholar 

  • Lappe RW, Todt JA, Wendt RL (1986) Effect of fenoldopam on regional vascular resistance in conscious spontaneously hypertensive rats. J Pharm Exp Ther 236:187–191

    CAS  Google Scholar 

  • Lepore DA, Kozlov AV, Stewart AG, Hurley JV, Morrison WA, Tomasi A (1999) Nitric oxide synthase-independent generation of nitric oxide in rat skeletal muscle ischemic-perfusion injury. Nitric Oxide: Biol Chem 3:75–84

    CAS  Google Scholar 

  • Marcus ML, Heistad DD, Ehrhardt JC, Abboud FM (1976) Total and regional cerebral blood flow measurements with 7–10, 15, 25 and 50 50 ÎŒm mu;m microspheres. J Appl Physiol 40:501–507

    CAS  PubMed  Google Scholar 

  • Shaffer RA, Medvedev OS (1991) New applications of a 20-Mhz Doppler ultrasonic flowmeter. In: 7th Freiburg focus on Biomeasurement. Cardiovascular and respiratory in vivo studies. Biomesstechnik-Verlag March GmbH, 79232 March, pp 142–147

    Google Scholar 

  • Vetterlein F, Halfter R, Schmidt G (1979) Regional blood flow determination in rats by the microsphere method during i.v. infusion of vasodilating agents. Arzneim-Forsch/Drug Res 29:747–751

    CAS  Google Scholar 

Effect on Peripheral Blood Flow in Anesthetized Dogs

  • Buckberg GD, Luck JC, Payne DB, Hoffmann JIE, Archie JP, Fixler DE (1971) Some sources of error in measuring blood flow with radioactive microspheres. J Appl Physiol 31:589–604

    Google Scholar 

  • Ebara T, Miura K, Okumura M, Matsuura T, Kim S, Yukimura T, Iwao H (1994) Effect of adrenomedullin on renal hemodynamics and function in dogs. Eur J Pharmacol 263:69–73

    CAS  PubMed  Google Scholar 

  • Glenny RW, Bernard S, Brinkley M (1993) Validation of fluorescent-labeled microspheres for measurement of regional organ perfusion. J Appl Physiol 74:2585–2597

    CAS  PubMed  Google Scholar 

  • Hales JRS, Cliff WJ (1977) Direct observations of the behavior of microspheres in the microvasculature. Bibliotheca Anatom 15:87–91

    Google Scholar 

  • Prinzen FW, Glenny RW (1994) Development of non-radioactive microsphere technique for blood flow measurement. Cardiovasc Res 28:1467–1475

    CAS  PubMed  Google Scholar 

  • Raab S, Thein N, Harris AG, Messmer K (1999) A new sample-processing unit for the fluorescent microsphere method. Am J Physiol 276(Heart Circ Physiol 45):H1801–H1806

    CAS  PubMed  Google Scholar 

  • Rudolph A, Heyman MA (1967) The circulation of the fetus in utero; methods for studying distribution of cardiac output and organ blood flow. Circ Res 21:163–184

    CAS  PubMed  Google Scholar 

  • Thein E, Raab S, Harris AG, Messmer K (2000) Automation of the use of fluorescent microspheres for the determination of blood flow. Comp Meth Progr Biomed 61:11–21

    CAS  Google Scholar 

  • Turner RA (1971) β-adrenergic blocking agents. In: Turner RA, Hebborn P (eds) Screening methods in pharmacology. vol II. Academic, New York/London, pp 21–40

    Google Scholar 

  • Van Oosterhout MF, Willigers HM, Reneman RS (1995) Fluorescent microspheres to measure organ perfusion: validation of o simplified sample processing technique. Am J Physiol 269(Heart Circ Physiol 38):H725–H733

    PubMed  Google Scholar 

Effect on Peripheral Blood Supply Measured by Local Oxygen Pressure

  • Dawson JM, Okyayuz-Baklouti I, Hudlická O (1990) Skeletal muscle microcirculation: the effects of limited blood flow and treatment with torbafylline. Int J Microcirc Exp 9:385–400

    CAS  Google Scholar 

  • Ehrly AM, Schroeder W (1976) Sauerstoffdruckwerte im ischaemischen Muskelgewebe von Patienten mit chronischen arteriellen Verschlußerkrankungen. Verh Dtsch Ges Kreislaufforsch 42:380–384

    CAS  PubMed  Google Scholar 

  • Kessler M, Grunewald W (1969) Possibilities of measuring oxygen pressure fields in tissue by multiwire platinum electrodes. Progr Resp Res 3:147–152

    Google Scholar 

  • Kessler M, Hoeper J, Krumme BA (1976) Monitoring of tissue perfusion and cellular function. Anesthesiology 45:184–197

    CAS  PubMed  Google Scholar 

  • Kunze K, Berk H (1975) Oxygen supply and muscle blood flow in normal and diseased muscle In: Kunze K, Desmedt JE (eds) Studies on neuromuscular diseases. Karger, Basel, pp 82–91

    Google Scholar 

  • Luebbers DW, BaumgÀrtl H, Fabel H, Huch A, Kessler M, Kunze K, Riemann H, Seiler D, Schuchardt S (1969) Principle of construction and application of various platinum electrodes. Progr Resp Res 3:136–146

    Google Scholar 

Effect on Mesenteric Blood Flow in Rats

  • Bhattacharya BK, Dadkar NK, Dohadwalla AN (1977) Vascular reactivity of perfused mesenteric vascular bed in spontaneously hypertensive and normotensive rats. Br J Pharmacol 59:243–246

    Google Scholar 

  • Brown RA, O’Connor SE, Smith GW, Verity A (1983) The rabbit isolated arterially perfused intestinal segment preparation: a model for vascular dopamine receptors. J Pharmacol Meth 9:137–145

    CAS  Google Scholar 

  • Chu ZM, Beilin LJ (1994) Effects of HOE 140 on systemic depressor responses to bradykinin and mesenteric vascular reactivity in vivo in pregnant Wistar–Kyoto rats. Clin Exp Pharmacol Physiol 21:137–140

    CAS  PubMed  Google Scholar 

  • Eikenburg DC (1984) Functional characterization of the pre- and postjunctional α-adrenoceptors in the in situ perfused rat mesenteric vascular bed. Eur J Pharmacol 105:161–165

    CAS  PubMed  Google Scholar 

  • Foy JM, Nuhu SZ (1985) Effect of three ‘loop’ diuretics and prostaglandins E2 & I2 on the isolated perfused rat mesenteric vasculature. Arch Int Pharmacodyn 273:237–250

    CAS  PubMed  Google Scholar 

  • Hsueh W, Gonzalez-Crussi F, Arroyave JL (1986) Release of leukotriene C4 by isolated, perfused rat small intestine in response to platelet-activating factor. J Clin Invest 78:108–114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson EK, Inagami T (1990) Blockade of the pre- and postjunctional effects of angiotensin in vivo with a non-peptide angiotensin receptor antagonist. Life Sci 46:945–953

    CAS  PubMed  Google Scholar 

  • Kawasaki H, Takasaki K (1984) Vasoconstrictor response induced by 5-hydroxytryptamine released from vascular adrenergic nerves by periarterial nerve stimulation. J Pharm Exp Ther 229:816–822

    CAS  Google Scholar 

  • Komidori H, Yamamoto R, Nickols GA, Takasaki K (1992) Characterization of the isolated rat mesenteric vascular-intestinal loop preparation. J Pharmacol Meth 27:59–65

    CAS  Google Scholar 

  • Laher I, Triggle CR (1984) Pharmacological studies of smooth muscle from Dahl salt-sensitive and salt-resistant rats. Can J Physiol Pharmacol 62:101–104

    CAS  PubMed  Google Scholar 

  • Longhurst PA, Head JH (1985) Responses of the isolated perfused mesenteric vasculature from diabetic rats: the significance of appropriate control tissues. J Pharm Exp Ther 235:45–49

    CAS  Google Scholar 

  • Longhurst PA, Stitzel RE, Head RJ (1986) Perfusion of the intact and partially isolated mesenteric vascular bed: application to vessels from hypertensive and normotensive rats. Blood Vessels 23:288–296

    CAS  PubMed  Google Scholar 

  • Manzini S, Perretti F (1988) Vascular effects of capsaicin in isolated perfused rat mesenteric bed. Eur J Pharmacol 148:153–159

    CAS  PubMed  Google Scholar 

  • McAdams RP (1984) The effect of temperature on the α-adrenoceptor antagonist potency of indoramin and labetalol in the rat perfused mesenteric vascular bed. J Pharm Pharmacol 36:628–629

    CAS  PubMed  Google Scholar 

  • McGregor DD (1965) The effect of sympathetic nerve stimulation on vasoconstrictor responses in perfused mesenteric blood vessels of the rat. J Physiol (London) 177:21–30

    CAS  Google Scholar 

  • Mulavi NJ, Halpern W (1977) Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res 41:19–26

    Google Scholar 

  • Nassar BA, Huang YS, McDonald ATJ, Jenkins KD, Horrobin DF (1988) The influence of phenelzine and tranylcypromine on the release of prostaglandins from the rat mesenteric vascular bed. Can J Physiol Pharmacol 66:1206–1209

    CAS  PubMed  Google Scholar 

  • Nuki C, Kawasaki H, Takasaki K, Wada A (1994) Structure-activity study of chicken calcitonin gene-related peptide (CGRP) on vasorelaxation in rat mesenteric resistance vessels. Jpn J Pharmacol 65(2):99–105

    Google Scholar 

  • Pelissier T, Miranda HF, Bustamante D, Paeile C, Pinardi G (1992) Removal of the endothelial layer in perfused mesenteric vascular bed of the rat. J Pharmacol Meth 27:41–44

    CAS  Google Scholar 

  • Qiu HY, Valtier B, Struyker-Boudier HAJ, Levy BI (1995) Mechanical and contractile properties of in situ localized mesenteric arteries in normotensive and spontaneously hypertensive rats. J Pharmacol Toxicol Meth 33:159–170

    CAS  Google Scholar 

  • Randall MD, Hiley CR (1988) Effect of phenobarbitone pretreatment upon endothelium-dependent relaxation to acetylcholine in rat superior mesenteric arterial bed. Br J Pharmacol 94:977–983

    CAS  PubMed Central  PubMed  Google Scholar 

  • Randall MD, Douglas SA, Hiley CR (1989) Vascular activities of endothelin-1 and some alanyl substituted analogues in resistance beds of the rat. Br J Pharmacol 98:685–699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santiago JA, Osei SY, Kadowith PJ (1993) Inhibitory effects of Hoe 140 on vascular responses to bradykinin in the mesenteric vascular bed of the cat. Eur J Pharmacol 236:315–318

    CAS  PubMed  Google Scholar 

  • Santiago JA, Garrison E, Purnell WL, Smith RE, Champion HC, Coy DH, Murphy WA, Kadowitz PJ (1995) Comparison of responses to adrenomedullin and adrenomedullin analogs in the mesenteric vascular bed of the cat. Eur J Pharmacol 272:115–118

    CAS  PubMed  Google Scholar 

  • Soma M, Manku DK, Horrobin DF (1985) Prostaglandins and thromboxane outflow from the perfused mesenteric vascular bed in spontaneously hypertensive rats. Prostaglandins 29:323–333

    CAS  PubMed  Google Scholar 

Effect on Pulmonary Blood Flow

  • Baum MD, Kot PA (1972) Responses of pulmonary vascular segments to angiotensin and norepinephrine. J Thorac Cardiovasc Surg 63:322–328

    CAS  PubMed  Google Scholar 

  • Byron PR, Roberts NSR, Clark AR (1986) An isolated perfused rat lung preparation for the study aerosolized drug deposition and absorption. J Pharmaceut Sci 75:168–171

    CAS  Google Scholar 

  • DeWitt BJ, Cheng DY, McMahon TJ, Nossaman BD, Kadowitz PJ (1994a) Analysis of responses to bradykinin in the pulmonary vascular bed of the cat. Am J Physiol Heart Circ Physiol 266:H2256–H2267

    CAS  Google Scholar 

  • DeWitt BJ, Cheng DY, Caminiti GN, Nossaman BD, Coy DH, Murphy WA, Kadowitz PJ (1994b) Comparison of responses to adrenomedullin and calcitonin gene-related peptide in the pulmonary vascular bed of the cat. Eur J Pharmacol 257:303–306

    CAS  PubMed  Google Scholar 

  • Drake R, Gaar KA, Taylor AE (1978) Estimation of the filtration coefficient of pulmonary exchange vessels. Am J Physiol 234:H266–H274

    CAS  PubMed  Google Scholar 

  • Franks PJ, Hooper RH, Humphries RG, Jones PRM, O’Connor SE (1990) Effective pulmonary flow, aortic flow and cardiac output: in vitro and in vivo comparison in the dog. Exper Physiol 75:95–106

    CAS  Google Scholar 

  • Heaton J, Lin B, Chang J-K, Steinberg S, Hyman A, Lippton H (1995) Pulmonary vasodilation to adrenomedullin: a novel peptide in humans. Am J Physiol 268(Heart Circ Physiol 37):H2211–H2215

    CAS  PubMed  Google Scholar 

  • Hyman AL, Kadowitz PJ, Lippton HL (1989) Methylene blue selectively inhibits pulmonary vasodilator response in cats. J Appl Physiol 66:1513–1517

    CAS  PubMed  Google Scholar 

  • Lippton HL, Nandiwada PA, Hyman AL, Kadowitz PJ (1984) Influence of cyclooxygenase blockade on responses to isoproterenol, bradykinin and nitroglycerin in the feline pulmonary vascular bed. Prostaglandins 28:253–270

    CAS  PubMed  Google Scholar 

  • Lippton H, Chang J-K, Hao Q, Summer W, Hyman AL (1994) Adrenomedullin dilates the pulmonary vascular bed in vivo. J Appl Physiol 76:2154–2156

    CAS  PubMed  Google Scholar 

  • Liu SF, Dewar A, Crawley DE, Barnes PJ, Evans TW (1992) Effect of tumor necrosis factor on hypoxic pulmonary vasoconstriction. J Appl Physiol 72:1044–1049

    CAS  PubMed  Google Scholar 

  • McMahon TJ, Kadowitz PJ (1993) Analysis of responses to substance P in the pulmonary vascular bed of the cat. Am J Physiol 264(Heart Circ Physiol 33):H394–H402

    CAS  PubMed  Google Scholar 

  • Mor L, Bomzon A, Frenkel R, Youdim MBH (1990) Angiotensin-converting enzyme activity in the isolated perfused guinea pig lung. J Pharmacol Meth 23:141–153

    CAS  Google Scholar 

  • Nossaman BD, Feng CJ, Cheng DY, Dewitt BJ, Coy DH, Murphy WA, Kadowitz PJ (1995) Comparative effects of adrenomedullin, an adrenomedullin analog, and CGRP in the pulmonary vascular bed of the cat and the rat. Life Sci 56:63–66

    Google Scholar 

  • Tanaka H, Tajimi K, Matsumoto A, Kobayashi K (1992) Effects of milrinone on lung water content in dogs with acute pulmonary hypertension. J Pharmacol Toxicol Meth 28:201–208

    CAS  Google Scholar 

Effect on Contractile Force of Ischemic Muscle

  • Angersbach D, Ochlich P (1984) The effect of 7-(2′-oxopropyl)-1,3-di-n-butyl-xanthine (BRL 30892 on ischaemic skeletal muscle pO2, pH and contractility in cats and rats. Arzneim. Forsch/Drug Res 34:1274–1278

    CAS  Google Scholar 

  • Le Tallec N, Lacroix P, de Certaines JD, Chagneau F, Lavasseur R, Le Rumeur E (1996) Effects of dimethylformamide on in vivo fatigue and metabolism in rat skeletal muscle measured by 31P-NMR. J Pharmacol Toxicol Meth 35:139–143

    Google Scholar 

  • Okyayuz-Baklouti I (1989) The effects of torbafylline on blood flow, pO2, and function of rat ischemic skeletal muscle. Eur J Pharmacol 166:75–86

    CAS  PubMed  Google Scholar 

  • Okyayuz-Baklouti I, Konrad-Clement S, Reifert P, Schmitt T, Schuck D (1992) Novel immobilization model in the rat: functional, histomorphological and biochemical changes in atrophying skeletal muscle. J Musc Res Mot 14:259–260

    Google Scholar 

  • Ward A, Clissold SP (1987) Pentoxifylline, a review of its pharmacodynamic and pharmacokinetic properties. Drugs 34:50–97

    CAS  PubMed  Google Scholar 

  • Weselcouch EO, Demusz CD (1990) Drug effects on function in the ferret ischemic hindlimb. J Pharmacol Meth 23:255–264

    CAS  Google Scholar 

Effect on Perfusion of Rabbit Ear (Pissemski Method)

  • Allen GS, Rand MJ, Story DF (1973) Techniques for studying adrenergic transmitter release in an isolated perfused artery. Cardiovasc Res 7:423–428

    CAS  PubMed  Google Scholar 

  • Aoki T, Chiba S (1993) A new cannula-inserting method for measuring vascular responsiveness. Separate intraluminal and extraluminal perfusion of canine basilar artery. J Pharmacol Toxicol Meth 29:21–27

    CAS  Google Scholar 

  • Budai D, Buchholz JN, Duckles SP (1990) Low volume perfusion-superfusion system for measurement of transmitter release from blood vessels in vitro. J Pharmacol Meth 23:41–49

    CAS  Google Scholar 

  • De la Lande IS, Rand MJ (1965) A simple isolated nerve-blood vessel preparation. Aust J Exp Biol Med 43:639–656

    Google Scholar 

  • De la Lande IS, Frewin D, Waterson JG (1967) The influence of sympathetic innervation on vascular sensitivity to noradrenaline. Br J Pharmac Chemother 31:82–93

    Google Scholar 

  • Green AF, Boura ALA (1964) Depressants of peripheral sympathetic nerve function. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 369–430

    Google Scholar 

  • Griesbacher T, Lembeck F (1987) Actions of bradykinin antagonists on bradykinin-induced plasma extravasation, venoconstriction, prostaglandin E2 release, nociceptor stimulation and contraction of the iris sphincter muscle of the rabbit. Br J Pharmacol 92:333–340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krawkow NP (1913) Über die Wirkung von Giften auf die GefÀsse isolierter Fischkiemen. PflÃŒger’s Arch 151:583–603

    Google Scholar 

  • Lembeck F, Griesbacher T, Eckhardt M, Henke S, Breipohl G, Knolle J (1991) New, long-acting, potent bradykinin antagonists. Br J Pharmacol 102:297–304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyahara H, Imayama S, Hori Y, Suzuki H (1993) Cellular mechanisms of the steroid-induced vascular responses in the rabbit ear artery. Gen Pharmacol 24:1155–1162

    CAS  PubMed  Google Scholar 

  • Pissemski SA (1914) Über den Einfluss der Temperatur auf die peripherischen GefÀsse. PflÃŒger’s Arch 156:426–442

    Google Scholar 

  • Schlossmann H (1927) Untersuchungen ÃŒber den Adrenalingehalt des Blutes. Naunyn Schmiedeberg’s Arch Exp Path Pharmakol 121:160–203

    CAS  Google Scholar 

  • Schneider G (1935) Einfluß von Novalgin und kolloidalem Eisen auf die Odembildung am isolierten Kaninchenohr. Naunyn-Schmiedeberg’s Arch exp Path Pharmakol 179:56–60

    CAS  Google Scholar 

  • Steinsland OS, Furchgott RF, Kirpekar SM (1973) Inhibition of adrenergic transmission by parasympathicomimetics in the rabbit ear artery. J Pharmacol Exp Ther 184:346–356

    CAS  PubMed  Google Scholar 

  • Turner RA (1965) The perfused rabbit ear. In: Screening methods in pharmacology. Chapter 12: sympatholytic agents. Academic, New York/London, pp 150–151

    Google Scholar 

Effect on Venous Tonus In Situ in Dogs

  • Rice AJ, Leeson CR, Long JP (1966) Localisation of venoconstrictor responses. J Pharmacol Exp Ther 154:539–545

    CAS  PubMed  Google Scholar 

General Considerations

  • Anidjar S, Salzmann JL, Gentric D, Lagneau P, Camilleri JP, Michel JB (1990) Elastase-induced experimental aneurysms in rats. Circulation 82:973–981

    CAS  PubMed  Google Scholar 

  • Boucher P, Gotthardt M, Li WP, Anderson RG, Herz J (2003) LRP: role in vascular wall integrity and protection from atherosclerosis. Science 3000:329–332

    Google Scholar 

  • Brophy CM, Tilson JE, Braverman IM, Tilson MD (1988) Age of onset, pattern of distribution, and histology of aneurysm development in a genetically predisposed mouse. J Vasc Surg 8:45–48

    CAS  PubMed  Google Scholar 

  • Carrell TW, Smith A, Bumand KG (1999) Experimental techniques and models in the study of the development and treatment of abdominal aortic aneurysm. Br J Surg 86:305–312

    CAS  PubMed  Google Scholar 

  • Chiou AC, Chiu B, Pearce WH (2001) Murine aortic aneurysm produced by periarterial application of calcium chloride. J Surg Res 99:371–376

    CAS  PubMed  Google Scholar 

  • Daugherty A, Cassis LA (2004) Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 24:429–434

    CAS  PubMed  Google Scholar 

  • Dobrin PB (1989) Pathophysiology and pathogenesis of aortic aneurysms. Current concepts. Surg Clin North Am 69:687–703

    CAS  PubMed  Google Scholar 

  • Dobrin PB (1999) Animal models of aneurysms. Ann Vasc Surg 13:641–648

    CAS  PubMed  Google Scholar 

  • Ernst CB (1993) Abdominal aortic aneurysm. N Engl J Med 328:1167–1172

    CAS  PubMed  Google Scholar 

  • Freestone T, Turner RJ, Higman DJ, Lever MJ, Powell JT (1997) Influence of hypercholesterolemia and adventitial inflammation on the development of aortic aneurysms in rabbits. Arterioscler Thromb Vasc Biol 17:10–17

    CAS  PubMed  Google Scholar 

  • Gertz SD, Kurgan A, Eisenberg D (1988) Aneurysms of the rabbit common carotid artery induced by periarterial application of calcium chloride in vivo. J Clin Invest 81:649–656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108:779–784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK (1994) Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 93:1885–1893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knowles JW, Reddick RL, Jenette JC, Smithies O, Maeda N (2000) Enhanced atherosclerosis and kidney dysfunction in eNOS(−)/(−)Apo(−)/(−) mice are ameliorated by enalapril treatment. J Clin Invest 105:451–458

    Google Scholar 

  • Kuhlencordt PJ, Gyurko R, Han F, Scherrer-Crosbie M, Aretz TH, Hajjar R, Picard MH, Huang PL (2001) Accelerated atherosclerosis, aortic aneurysms formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 104:44–454

    Google Scholar 

  • Lee JK, Borhani M, Ennis TL, Upchurch GR Jr, Thompson RW (2001) Experimental abdominal aortic aneurysms in mice lacking expression of inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol 21:1391–1401

    Google Scholar 

  • Longo GW, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT (2002) Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest 110:625–632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maki JM, Rasanen J, Tikkanen H, Sormunen R, Makikallio K, Kivirikko KI, Soininen R (2002) Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation 106:2503–2509

    PubMed  Google Scholar 

  • Nishijo N, Sugiyama F, Kimoto K, Taniguchi K, Murakami K, Suzuki S, Fukamizu A, Yagami K (1998) Salt-sensitive aortic aneurysms and rupture in hypertensive transgenic mice that overproduce angiotensin II. Lab Invest 78:1059–1066

    CAS  PubMed  Google Scholar 

  • Nomoto T, Nishina T, Tsuneyoshi H, Miwa S, Nishimura K, Komeda M (2003) Effects of two inhibitors of renin-angiotensin system on attenuation of postoperative remodeling after left ventricular aneurysm repair in rats. J Card Surg 18(Suppl 2):S61–S68

    PubMed  Google Scholar 

  • Prescott MF, Sawyer WK, Von Linden Reed J, Jeune M, Chou M, Caplan SL, Jeng AY (1999) Effect of matrix metalloproteinase inhibition on progression of atherosclerosis and aneurysm in LDL receptor-deficient mice overexpressing MMP-3, MMP-12, and MMP-13 and on restenosis in rats after balloon injury. Ann N Y Acad Sci 878:179–190

    CAS  PubMed  Google Scholar 

  • Pyo R, Lee HK, Shipley M, Curci JA, Mao D, Ziporin SJ, Ennis TL, Shapiro SD, Senior RM, Thompson RW (2000) Targeted disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental aortic aneurysms. J Clin Invest 105:1641–1649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reilly JM, Savage EB, Brophy CM, Tilson MD (1990) Hydrocortisone rapidly induces aortic rupture in a genetically susceptible mouse. Arch Surg 125:707–709

    CAS  PubMed  Google Scholar 

  • Silence J, Lupu F, Collen D, Lijnen HR (2001) Persistence of atherosclerotic plaque but reduced aneurysm formation in mice with stromelysin-1 (MMP-3) gene inactivation. Arterioscler Thromb Vasc Biol 21:1440–1445

    CAS  PubMed  Google Scholar 

  • Silence J, Collen D, Lijnen HR (2002) Reduced atherosclerotic plaque but enhanced aneurysm formation in mice with inactivation of the tissue inhibitor of metalloproteinase-1 (T1MP-1) gene. Circ Res 90:897–903

    CAS  PubMed  Google Scholar 

Angiotensin II-Induced Aortic Aneurysm in Mice

  • Daugherty A, Manning MW, Cassis LA (2000) Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 195:1605–1612

    Google Scholar 

  • Daugherty A, Manning MW, Cassis LA (2001) Antagonism of AT2 receptors augments angiotensin II-induced abdominal aortic aneurysms and atherosclerosis. Br J Pharmacol 134:865–870

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deng GG, Martin-McNulty B, Sukovich DA, Freay A, Halks- Miller M, Thinnes T, Loskutoff DJ, Carmeliet P, Dole WP, Wang YX (2003) Urokinase-type plasminogen activator plays a critical role in angiotensin II-induced abdominal aortic aneurysm. Circ Res 92:510–517

    CAS  PubMed  Google Scholar 

  • Feng Q, Song W, Lu X, Hamilton JA, Lei M, Peng T, Yee SP (2002) Development of heart failure and congenital septal defects in mice lacking endothelial nitric oxide synthase. Circulation 106:873–879

    CAS  PubMed  Google Scholar 

  • Johnston KW, Rutherford RB, Tilson MD, Shah DM, Hollier L, Stanley JC (1991) Suggested standards for reporting on arterial aneurysms: Subcommittee on Reporting Standards for Arterial Aneurysms, Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery and North American Chapter, International Society for Cardiovascular Surgery. J Vasc Surg 13:452–458

    CAS  PubMed  Google Scholar 

  • Knowles JW, Reddick RL, Jenette JC, Smithies O, Maeda N (2000) Enhanced atherosclerosis and kidney dysfunction in eNOS(−)/(−)Apo(−)/(−) mice are ameliorated by enalapril treatment. J Clin Invest 105:451–458

    Google Scholar 

  • Manning MW, Cassis LA, Huang J, Szilvassy SJ, Daugherty A (2002) Abdominal aortic aneurysms: fresh insights from a novel animal model of the disease. Vasc Med 7:45–54

    PubMed  Google Scholar 

  • Manning MW, Cassis LA, Daugherty A (2003) Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 23:483–488

    CAS  PubMed  Google Scholar 

  • Martin-McNulty B, Tham DM, da Cunha V, Ho JJ, Wilson DW, Rutledge JC, Deng GG, Vergona R, Sullivan ME, Wang YX (2003) 17 β-estradiol attenuates development of angiotensin II-induced aortic abdominal aneurysm in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 23:1627–1632

    CAS  PubMed  Google Scholar 

  • Saraff K, Babamusta F, Cassis LAS, Daugherty A (2003) Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 23:1621–1626

    CAS  PubMed  Google Scholar 

  • Song W, Lu X, Feng Q (2000) Tumor necrosis factor-alpha induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes. Cardiovasc Res 45:595–602

    CAS  PubMed  Google Scholar 

  • Wang YX, Halks-Miller M, Vergona R, Sullivan ME, Fitch R, Mallari C, Martin-McNulty B, da Cunha V, Freay A, Rubanyi GM, Kauser K (2000) Increased aortic stiffness assessed by pulse wave velocity in apolipoprotein E-deficient mice. Am J Physiol 278:H428–H434

    CAS  Google Scholar 

  • Wang YX, Martin-McNulty B, Feay AD, Sujowich DA, Halks- Miller M, Li AA, Vergona R, Sullivan ME, Morser J, Dole WP, Deng GG (2001) Angiotensin II increases urokinase-type plasminogen activator expression and induces aneurysms in the abdominal aorta of apolipoprotein E-deficient mice. Am J Pathol 159:1455–1464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang YX, Martin-McNulty B, da Cinha V, Vincelette J, Lu X, Feng Q, Hlaks-Miller M, Mahmoudo M, Schroeder M, Subramanyam B, Tseng JL, Deng GD, Schirm S, Johns A, Kauser K, Dole WP, Light DR (2005) Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis. Circulation 111:2219–2226

    CAS  PubMed  Google Scholar 

General Considerations

  • Babic AM, Kireeva ML, Kolesnikova TV, Lau LF (1998) CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci U S A 95:6355–6360

    Google Scholar 

  • Barrie R, Woltering EA, Hajarizadeh H, Mueller C, Ure T, Fletcher WS (1993) Inhibition of angiogenesis by somatostatin and somatostatin-like compounds is structurally dependent. J Surgical Res 55:446–450

    Google Scholar 

  • Couffinhal T, Siver M, Zheng LP, Kearney M, Witzenbichler B, Isner JM (1998) Mouse model of angiogenesis. Am J Pathol 152:1667–1679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dhanabal M, Volk R, Ramchandran R, Simons M, Sukhatme VP (1999) Cloning, expression, and in vitro activity of human endostatin. Biochem Biophys Res Commun 258:345–352

    CAS  PubMed  Google Scholar 

  • Esch F, Baird A, Ling N, Ueno N, Hill F, Denoroy L, Klepper R, Gospodarowicz D, Bohlen P, Gillemin R (1985) Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc Natl Acad Sci U S A 82:6507–6511

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ezekowitz RA, Mulliken JB, Folkman J (1992) Interferon alfa-2a therapy for life-threatening hemangiomas in infancy. New Engl J Med 326:1456–1463

    CAS  PubMed  Google Scholar 

  • Fan TPD, Brem S (1992) In: Waring MJ, Ponder B (eds) The search for new anticancer drugs: cancer biology series, vol 3. Kluwer, Lancaster, pp 185–229

    Google Scholar 

  • Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25

    CAS  PubMed  Google Scholar 

  • Fett JW, Strydom DJ, Lobb RR, Aldeman EM, Bethune JL, Riordan JF, Vallee BL (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24:5480–5486

    CAS  PubMed  Google Scholar 

  • Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447

    CAS  PubMed  Google Scholar 

  • Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    CAS  PubMed  Google Scholar 

  • Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A 87:6624–6628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gospodarowicz D, Bialecki H, Thakral GK (1979) The angiogenic activity of the fibroblast and epidermal growth factor. Exp Eye Res 28:501–514

    CAS  PubMed  Google Scholar 

  • Klagsbrun M, D’Amore PA (1991) Regulators of angiogenesis. Ann Rev Physiol 53:217–239

    CAS  Google Scholar 

  • Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N (1987) Macrophage-induced angiogenesis is mediated by tumor necrosis factor alpha. Nature 329:630–632

    CAS  PubMed  Google Scholar 

  • Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1990) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Google Scholar 

  • O’Brien ER, Garvin MR, Dev R, Stewart DK, Hinohara T, Simpson JB, Shwartz SM (1994) Angiogenesis in human coronary atherosclerotic plaques. Am J Pathol 145:883–894

    PubMed Central  PubMed  Google Scholar 

  • O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin, a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328

    PubMed  Google Scholar 

  • O’Reilly MS, Holmgren L, Chen C, Folkman J (1996) Angiostatin induces and sustains dormancy of human primary tumors in mice. Nature Med 2:689–692

    PubMed  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Google Scholar 

  • Pike SE, Yao L, Jones KD, Cherney B, Appella E, Sakaguchi K, Nakhasi H, Teruya-Feldstein J, Wirth P, Gupta G, Tosato G (1998) Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 188:2349–2356

    Google Scholar 

  • Schreiber AB, Winkler ME, Derynk R (1986) Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor. Science 232:1251–1253

    Google Scholar 

  • Thomas KA (1996) Vascular endothelial growth factor, a potent and selective angiogenic agent. J Biol Chem 271:603–606

    CAS  PubMed  Google Scholar 

  • Yang EY, Moses HL (1990) Transforming growth factor 1- induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J Cell Biol 111:731–741

    CAS  PubMed  Google Scholar 

  • Zhu WH, Iurlaro M, MacIntyre A, Fogel E, Nicosia RF (2003) The mouse aorta model: influence of genetic background and aging on bFG- and VEGF-induced angiogenic sprouting. Angiogenesis 6:193–199

    CAS  PubMed  Google Scholar 

Endothelial Cell Proliferation

  • Benelli U, Lepri A, Nardi M, Danesi R, Del Tacca M (1995) Tradipil inhibits endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane and in the rat cornea. J Ocular Pharmacol 11:157–166

    Google Scholar 

  • Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini R, Gaudino G, Tamagnone L, Coffer A, Comoglio PM (1992) Hepatocyte growth factor is a potent angiogenic growth factor which stimulates endothelial cell motility and growth. J Cell Biol 119:629–641

    CAS  PubMed  Google Scholar 

  • Cao R, Wu HL, VeitonmÀki N, Linden P, Farnebo J, Shi GY, Cao Y (1999) Suppression of angiogenesis and tumor growth by the inhibitor K1–5 generated by plasmin- mediated proteolysis. Proc Natl Acad Sci 96:5728–5733

    Google Scholar 

  • Clapp C, Martial JA, Guzman RC, Rentier-Delrue F, Weiner RI (1993) The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 133:1292–1299

    Google Scholar 

  • Danesi R, Agen C, Benelli U, Di Paolo A, Nardini D, Bocci G, Basolo F, Camapgni A, Del Tacca M (1997) Inhibition of angiogenesis by the somatostatin analogue octreotide acetate (SMS 201–995). Clin Cancer Res 3:265–272

    Google Scholar 

  • Folkman J, Haundenschild CC, Zetter BR (1979) Long-term culture of capillary endothelial cells. Proc Natl Acad Sci U S A 76:5217–5221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu G-F (1998) Neomycin inhibits angiogenin-induced angiogenesis. Proc Natl Acad Sci U S A 95:9791–9795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iurlaro M, Vacca A, Minischetti M, Ribatti D, Pellegrino A, Sardanelli A, Giacchetta F, Dammacco F (1998) Antiangiogenesis by cyclosporine. Exp Hematology 26:1215–1222

    Google Scholar 

  • Oikawa T, Hasegawa M, Shimamura M, Ashino H, Murota SI, Morita I (1991) Eponemycin, a novel antibiotic, is a highly powerful angiogenesis inhibitor. Biochem Biophys Res Commun 181:1070–1076

    CAS  PubMed  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Google Scholar 

  • Pike SE, Yao L, Jones KD, Cherney B, Appella E, Sakaguchi K, Nakhasi H, Teruya-Feldstein J, Wirth P, Gupta G, Tosato G (1998) Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 188:2349–2356

    Google Scholar 

  • Vacca A, Iurlaro M, Ribatti D, Minischetti M, Nico B, Ria R, Pellegrino A, Dammacco F (1999) Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 94:4143–4155

    Google Scholar 

  • Xin X, Yang S, Kowalski J, Gerritsen ME (1999) Peroxisome proliferator-activated receptor γ ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 274:9116–9121

    Google Scholar 

Chorioallantoic Membrane Assay

  • Auerbach R, Kubai L, Knighton D, Folkman J (1974) A simple procedure for the long-term cultivation of chicken embryos. Dev Biol 41:391–394

    CAS  PubMed  Google Scholar 

  • Barrie R, Woltering EA, Hajarizadeh H, Mueller C, Ure T, Fletcher WS (1993) Inhibition of angiogenesis by somatostatin and somatostatin-like compounds is structurally dependent. J Surgical Res 55:446–450

    Google Scholar 

  • Benelli U, Lepri A, Nardi M, Danesi R, Del Tacca M (1995) Tradipil inhibits endothelial cell proliferation and angiogenesis in the chick chorioallantoic membrane and in the rat cornea. J Ocular Pharmacol 11:157–166

    Google Scholar 

  • Cao R, Wu HL, VeitonmÀki N, Linden P, Farnebo J, Shi GY, Cao Y (1999) Suppression of angiogenesis and tumor growth by the inhibitor K1–5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci 96:5728–5733

    Google Scholar 

  • Clapp C, Martial JA, Guzman RC, Rentier-Delrue F, Weiner RI (1993) The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 133:1292–1299

    Google Scholar 

  • Crum R, Szabo S, Folkman J (1985) A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230:1375–1378

    Google Scholar 

  • Danesi R, Agen C, Benelli U, Di Paolo A, Nardini D, Bocci G, Basolo F, Camapgni A, Del Tacca M (1997) Inhibition of angiogenesis by the somatostatin analogue octreotide acetate (SMS 201–995). Clin Cancer Res 3:265–272

    Google Scholar 

  • Gagliardi A, Collins DC (1993) Inhibition of angiogenesis by antiestrogens. Cancer Res 53:533–535

    CAS  PubMed  Google Scholar 

  • Giannopoulou E, Katsoris P, Kardamakin D, Papadimitiou E (2003) Amifostine inhibits angiogenesis in vivo. J Pharmacol Exp Ther 304:729–737

    CAS  PubMed  Google Scholar 

  • Klauber N, Browne F, Anand-Apte B, D’Amato RJ (1996) New activity of spironolactone. Inhibition of angiogenesis in vitro and in vivo. Circulation 94:2566–2571

    Google Scholar 

  • Iurlaro M, Vacca A, Minischetti M, Ribatti D, Pellegrino A, Sardanelli A, Giacchetta F, Dammacco F (1998) Antiangiogenesis by cyclosporine. Exp Hematology 26:1215–1222

    Google Scholar 

  • McNatt LG, Lane D, Clark AF (1992) Angiostatic activity and metabolism of cortisol in the chorioallantoic membrane (CAM) of the chick embryo. J Steroid Biochem Molec Biol 42:687–693

    CAS  PubMed  Google Scholar 

  • McNatt LG, Weimer L, Yanni J, Clark AF (1999) Angiostatic activity of steroids in the chick embryo CAM and rabbit cornea models of neovascularization. J Ocular Pharmacol 15:413–423

    Google Scholar 

  • Oh SJ, Jeltsch MM, BirkenhÀger R, McCarthy JEG, Weich HA, Christ B, Alitalo K, Wilting J (1997) VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 188:96–109

    CAS  PubMed  Google Scholar 

  • Oikawa T, Shimamura M (1996) Potent inhibition of angiogenesis by wortmannin, a fungal metabolite. Eur J Pharmacol 318:93–96

    CAS  PubMed  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Google Scholar 

  • Ribatti D, Urbinati C, Nico B, Rusnati M, Roncali L, Presta M (1995) Endogenous basic fibroblast growth factor is implicated in the vascularization of the chick chorioallantoic membrane. Dev Biol 170:39–49

    CAS  PubMed  Google Scholar 

  • Ribatti D, Presta M, Vacca A, Ria R, Giulani R, Dell’Era P, Nico B, Roncali R, Damacco F (1999) Human erythropoietin induces a proangiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93:2627–2636

    CAS  PubMed  Google Scholar 

  • Taylor S, Folkman J (1982) Protamine is an inhibitor of angiogenesis. Nature 297:307–312

    CAS  PubMed  Google Scholar 

  • Vacca A, Iurlaro M, Ribatti D, Minischetti M, Nico B, Ria R, Pellegrino A, Dammacco F (1999) Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 94:4143–4155

    Google Scholar 

  • Vu MT, Smith CF, Burger PC, Klintworth GK (1985) An evaluation of methods to quantitate the chick chorioallantoic membrane assay in angiogenesis. Lab Invest 53:499–508

    CAS  PubMed  Google Scholar 

Cornea Neovascularization

  • Babic AM, Kireeva ML, Kolesnikova TV, Lau LF (1998) CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci U S A 95:6355–6360

    Google Scholar 

  • BenEzra D, Hemo I, Maftzir G (1987) The rabbit cornea. A model for the study of angiogenic factors. In: Ezra D, Ryan SJ, Glaser B, Murphy R (eds) Ocular circulation and neovascularization, Documenta Ophthalmologia proceedings, series 50. Martinus Nijhoff, Dordrecht, pp 335–340

    Google Scholar 

  • BenEzra D, Griffin BW, Maftzir G, Aharanov O, Sharif NA, Clark AF (1997) Topical formulations of novel angiostatic steroids inhibit rabbit corneal neovascularization. Invest Ophthalmol Vis Sci 38:1954–1962

    CAS  PubMed  Google Scholar 

  • Cao R, Wu HL, Veitonmâki N, Linden P, Farnebo J, Shi GY, Cao Y (1999c) Suppression of angiogenesis and tumor growth by the inhibitor K1–5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci 96:5728–5733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crum R, Szabo S, Folkman J (1985) A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230:1375–1378

    Google Scholar 

  • Damms T, Ross JR, Duplessie MD, Klintwort GK (1997) Intracorneal bovine albumin: an immunologic model of corneal angiogenesis. Graefe’s Arch Clin Exp Ophthalmol 235:662–666

    CAS  Google Scholar 

  • Foschi D, Castoldi L, Corsi F, Radaelli E, Trabucchi E (1994) Inhibition of inflammatory angiogenesis in rats by locoregional administration of hydrocortisone and protamine. Agents Actions 42:40–43

    CAS  PubMed  Google Scholar 

  • Gimbrone MA, Cotran RS, Leapman SB, Folkman J (1974) Tumor growth and neo-vascularization: an experimental model using the rabbit cornea. J Nat Cancer Inst 52:413–427

    PubMed  Google Scholar 

  • Joussen AM, Kruse FE, Völcker HE, Kirchhof B (1999) Topical application of methotrexate for inhibition of corneal angiogenesis. Graefe’s Arch Clin Exp Ophthalmol 237:920–927

    CAS  Google Scholar 

  • Kenyon BM, Voest EE, Chen CC, Flynn E, Folkman J, D’Amato RJ (1996) A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 37:1625–1632

    CAS  PubMed  Google Scholar 

  • Klauber N, Browne F, Anand-Apte B, D’Amato RJ (1996) New activity of spironolactone. Inhibition of angiogenesis in vitro and in vivo. Circulation 94:2566–2571

    Google Scholar 

  • McNatt LG, Weimer L, Yanni J, Clark AF (1999) Angiostatic activity of steroids in the chick embryo CAM and rabbit cornea models of neovascularization. J Ocular Pharmacol 15:413–423

    Google Scholar 

  • Xin X, Yang S, Kowalski J, Gerritsen ME (1999) Peroxisome proliferator-activated receptor γ ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 274:9116–9121

    Google Scholar 

Rat Subcutaneous Air Sac Model

  • Edwards JC, Sedgwick AD, Willoughby DA (1981) The formation of a structure with the features of synovial lining by subcutaneous injection of air. An in vivo tissue culture system. J Pathol 134:147–156

    CAS  PubMed  Google Scholar 

  • Funahashi Y, Wakabayashi T, Semba T, Sonoda J, Kitoh K, Yoshimatsu K (1999) Establishment of a quantitative mouse dorsal air sac model and its application to evaluate a new angiogenesis inhibitor. Oncol Res 11:319–329

    CAS  PubMed  Google Scholar 

  • Kowanko IC, Gordon TP, Rosenbilds AM, Brooks PM, Roberts- Thompson PJ (1986) The subcutaneous air pouch model of synovium and the inflammatory response to heat aggregated gammaglobulin. Agents Actions 18:421–428

    CAS  PubMed  Google Scholar 

  • Lichtenberg J, Hansen CA, Skak-Nilsen T, Bay C, Mortensen JT, Binderup L (1997) The rat subcutaneous air sac model: a new and simple method for in vivo screening of antiangiogenesis. Pharmacol Toxicol 81:280–284

    CAS  PubMed  Google Scholar 

  • Lichtenberg J, Hjarnaa PJV, Kristjansen PEG, Hansen D, Binderup L (1999) The rat subcutaneous air sac model: a quantitative assay of antiangiogenesis in induced vessels. Pharmacol Toxicol 84:34–40

    CAS  PubMed  Google Scholar 

  • Nakamura M, Katsuki Y, Shibutani Y, Oikawa T (1999) Dienogest, a synthetic steroid, suppresses both embryonic and tumor-cell-induced angiogenesis. Eur J Pharmacol 386:33–40

    CAS  PubMed  Google Scholar 

  • Schreiber AB, Winkler ME, Derynk R (1986) Transforming growth factor-α: a more potent angiogenic factor than epidermal growth factor. Science 232:1250–1253

    Google Scholar 

Mesenteric Window Angiogenesis Model

  • Norrby K (1995) Evidence of a dual role of endogenous histamine in angiogenesis. Int J Exp Pathol 76:87–92

    CAS  PubMed Central  PubMed  Google Scholar 

  • Norrby K, Jakobsson A, Sörbo J (1986) Mast cell-mediated angiogenesis. A novel experimental model using the rat mesentery. Virchow’s Arch B, Cell Pathol 52:195–206

    CAS  Google Scholar 

  • Norrby K, Jakobsson A, Sörbo J (1990) Quantitative angiogenesis in spreads of intact mesenteric windows. Microvasc Res 39:341–348

    CAS  PubMed  Google Scholar 

  • Zweifach BW (1973) The microcirculation in the intestinal mesentery. Microvasc Res 5:363–367

    CAS  PubMed  Google Scholar 

Quantification of Vascular Endothelial Growth Factor-C

  • Clauss M (1998) Functions of the VEGF receptor-1 (FLT-1) in the vasculature. Trends Cardiovasc Med 8:241–245

    CAS  PubMed  Google Scholar 

  • Enholm B, Jussila L, Karkkainen M, Alitalo K (1998) Vascular endothelial growth factor-C: a growth factor for lymphatic and blood vascular endothelial cell. Trends Cardiovasc Med 8:292–297

    CAS  PubMed  Google Scholar 

  • Ferrara N, LeCouter J, Lin R, Peale F (2004) EG-VEGF and Bv8: a novel family of tissue-restricted angiogenic factors. Biochim Biophys Acta 1654:69–78

    CAS  PubMed  Google Scholar 

  • Hamada K, Oike Y, Takakura N, Ito Y, Jussila L, Dumont DJ, Alitalo K, Suda T (2000) VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood 96:3793–3800

    CAS  PubMed  Google Scholar 

  • Hornig C, Behn T, Bartsch W, Yayon A, Weich HA (1999) Detection and quantification of complexed and free soluble human vascular endothelial growth factor receptor-1 (sVEDFR-1) by ELISA. J Immunol Meth 226:169–177

    CAS  Google Scholar 

  • Joukov V, Kaipainen A, Jeltsch M, Jajusola K, Olofsson B, Kumar V, Erikssan U, Alitalo K (1997) Vascular endothelial growth factors VEGF-B and VEGF-C. J Cell Physiol 1732:211–215

    Google Scholar 

  • Kirkin V, Mazitschek R, Krishnan J, Steffen A, Waltenberger J, Pepper MS, Giannis A, Sleeman J (2001) Characterization of indolinones which preferentially inhibit VEGF-C and VEGF-D-induced activation of VEGFR-3 rather than VEGFR-2. Eur J Biochem 286:5530–5540

    Google Scholar 

  • Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI, Kholová I, Keuppinen RAS, Achan MG, Stacker SA, Alitalo K, YlÀ-Herttula S (2003) VeGF-D is the strongest angiogenesis and lymphangiogenetic factor among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92:1098–1106

    CAS  PubMed  Google Scholar 

  • Weich HA, Bando H, Brokelmann M, Baumann P, Toi M, Barleon B, Alitalo K, Sipos B, Sleeman J (2004) Quantification of vascular endothelial growth factor-C (VEGF-C) by a novel ELISA. J Immunol Meth 285:145–155

    CAS  Google Scholar 

Inhibitors of Vascular Endothelial Growth Factor

  • Baka S, Clamp AR, Jayson GC (2006) A review on the latest clinical compounds that inhibit VEGF in pathological angiogenesis. Expert Opin Ther Targets 10:867–876

    CAS  PubMed  Google Scholar 

  • Byrne AT, Ross L, Holash J, Nakanishi M, Hu L, Hofmann JI, Yancopoulos GD, Jaffe RB (2003) Vascular endothelial growth factor-Trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin Cancer Res 9:5721–5728

    CAS  PubMed  Google Scholar 

  • Fernandez M, Vizzutti F, Garcia-Pagan JC, Rodes J, Bosch J (2004) Anti-VEGF receptor-2 monoclonal antibody prevents portal-system collateral vessel formation in hypertensive mice. Gastrooenterology 126:886–894

    CAS  Google Scholar 

  • Fraser HM, Wilson H, Morris KD, Swanston I, Wiegand SJ (2005) Vascular endothelial growth factor Trap suppresses ovarian function at all stages of the luteal phase in the macaque. J Clin Endocrinol Metab 90:5811–5818

    CAS  PubMed  Google Scholar 

  • Fukusawa M, Korc M (2004) Vascular endothelial growth factor-Trap suppresses tumorigenicity of multiple pancreatic cancer cell lines. Clin Cancer Res 10:3327–3332

    Google Scholar 

  • Gingrich DE, Reddy DR, Iqbal MA, Singh J, Almone LD, Angeles TS, Albom M, Yang S, Ator MA, Meyer SL, Robinson C, Ruggeri BA, Dionne CA, Vaught JL, Mallamo JP, Hudkins RL (2003) A new class of potent vascular endothelial growth factor receptor tyrosine kinase inhibitors. Structure-activity relationships for a series of 9-alkoxymethyl-12-(3-hydroxypropyl)indeno[2,1-a]pyrrolo[3,4-c]carbazole-5-ones and the identification of CEP-52144 and its dímethylglycine ester prodrug clinical candidate CEP-7055. J Mol Chem 46:5375–5388

    CAS  Google Scholar 

  • Grignani F, Kinsella T, Mencarelli A, Valtieri M, Riganelli D, Grignani F, Lanfrancone L, Peschle C, Nolan GP, Pelicci PG (1998) High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res 58:14–19

    CAS  PubMed  Google Scholar 

  • Hamma-Kourbali Y, Di Benedetto M, Ledoux D, Oudar O, Leroux Y, Lecouvey M, Kraemer M (2003) A novel non-containing-nitrogen bisphosphonate inhibits both in vitro and in vivo angiogenesis. Biochem Biophys Res Commun 310:816–823

    CAS  PubMed  Google Scholar 

  • Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Buorova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yankopoulos GD, Rudge JS (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A 99:11393–11398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hood JD, Cheresh DA (2003) Building a better trap. Proc Natl Acad Sci U S A 100:8624–8625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu L, Hofmann J, Lu Y, Mills GB, Jaffe RB (2002) Inhibition of phosphatidylinositol 3′-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res 62:1087–1092

    CAS  PubMed  Google Scholar 

  • Hu L, Hofmann J, Holash J, Yancopoulos GD, Sood AK, Jaffe RB (2005) Vascular endothelial growth factor Trap combined with Paclitaxel strikingly inhibits tumor and ascites, prolonging survival in a human ovarian cancer model. Clin Cancer Res 11:6966–6971

    CAS  PubMed  Google Scholar 

  • Kim ES, Serur A, Huang J, Manley CA, McCrudden KW, Frischer JS, Soffer SZ, Ring L, New T, Zabski S, Rudge JS, Holash J, Yancopoulos GD, Kandel JJ, Yamashiro DJ (2002) Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc Natl Acad Sci U S A 99:11399–11404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lau SC, Rosa DD, Jayson G (2005) Technology evaluation: VEGF Trap (cancer). Regeneron/Sanofi-aventis. Current Opinion in Molecular Therapeutics 7(5):493–501

    Google Scholar 

  • Roberts DM, Anderson AL, Hidaka M, Swetenburg RL, Patterson C, Stanford WL, Bautch VL (2004) A vascular gene trap screen defines RasGRP3 as an angiogenesis-regulated gene required for the endothelial response to phorbol esters. Mol Cell Biol 24:10515–10528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rommel C, Clarke B, Zimmermann S, Nunez L, Rossman R, Reid K, Moelling K, Yancopoulos GD, Glass DJ (1999) Differentiation stage-specific inhibition of the Raf-MEKERK pathway by Akt. Science 286:1738–1741

    CAS  PubMed  Google Scholar 

  • Saishin Y, Saishin Y, Takahashi K, Lima-e-Silva R, Hylton D, Rudge JS, Wiegand SJ, Campochiaro PA (2003) VEGF-Trap (R1R2) suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J Cell Physiol 195:241–248

    CAS  PubMed  Google Scholar 

  • Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD, Glazer N, Holash J, McDonald DM, Yancopoulos G (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6:460–463

    CAS  PubMed  Google Scholar 

  • Verheul HMW, Pinedo HM (2003) Vascular endothelial growth factor and its inhibitors. Drug Today 39(Suppl C):81–93

    CAS  Google Scholar 

  • Whittles CE, Pocock TM, Wedge SR, Kendrew J, Hennequin LF, Harper SJ, Bates DO (2002) ZM32881, a novel inhibitor of vascular endothelial growth factor-receptor-2 tyrosine kinase activity. Microcirculation 9:513–522

    CAS  PubMed  Google Scholar 

  • Wulff C, Wilson H, Rudge JS, Wiegand SJ, Lunn SF, Fraser HM (2001) Luteal angiogenesis: prevention and intervention by treatment with vascular endothelial growth factor TrapA40. J Lin Endocrinol Metab 86:3377–3386

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gralinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Gralinski, M., Neves, L.A.A., Tiniakova, O. (2014). Effects on Blood Supply and on Arterial and Venous Tonus. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27728-3_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27728-3_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27728-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics