Skip to main content

Stability of Electrochemical Systems

  • Chapter
  • First Online:
Self-Organization in Electrochemical Systems I

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 1253 Accesses

Abstract

General mathematical stability conditions described in chapter “Basic Principles of Nonlinear Dynamics” are applied to electrochemical systems. The stability analysis of such systems refers to the characteristics of the entire electric circuit, and not only to the working electrode–electrolyte interface. The decisive role of the negative differential resistance (NDR), either N-shaped (N-NDR) or S-shaped (S-NDR), in the current–potential characteristics of the electrochemical process, is shown. The sources of NDR in electrode processes are listed. The linear stability analysis of one-dimensional N-NDR system indicates that under potentiostatic conditions, the electric circuit has to possess an appropriate serial resistance to exhibit bistability, while under galvanostatic conditions bistability is directly recordable without additional external resistance. For the two-dimensional electrochemical system, the criteria are derived for the occurrence of oscillations in N-NDR systems under potentiostatic conditions and it is shown the impossibility of oscillations under galvanostatic control, the latter ones being possible for the systems with hidden N-NDR region (HN-NDR type). It is shown that in the N-NDR systems, the electrode potential is an autocatalytic variable (activator), while for the S-NDR system the electrode potential is a negative feedback variable (inhibitor). For the N-NDR systems, the experimental strategy of determination of the variables essential for the oscillatory behavior is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the irreversible cathodic process the elements a 11 and a 22 would have the same signs, while a 21 and a 12 will have opposite signs, since the dc ox/dE and dk f/dE derivates have the signs opposite to those of dc red/dE and dk b/dE derivates in anodic process.

References

  1. Gerischer H (1958) Passivität der Metalle. Angew Chem 10:285–298

    Article  Google Scholar 

  2. Koper MTM, Sluyters JH (1993) On the mathematical unification of a class of electrochemical oscillators and their design procedures. J Electroanal Chem 352:51–64

    Article  CAS  Google Scholar 

  3. Frumkin AN (1933) Wasserstoffüberspannung und Struktur der Doppelschicht. Z physik Chem 164A:121–133

    Google Scholar 

  4. Bard AJ, Faulkner L (2001) Electrochemical methods. Fundamentals and applications. Wiley, New York, pp 571–572

    Google Scholar 

  5. Śledziewski R (1978) Electronics for the physics students. PWN, Warsaw (in Polish), p 170

    Google Scholar 

  6. Feldberg SW (1969) Digital simulation: a general method for solving electrochemical diffusion-kinetic problems. In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, vol 3. Dekker, New York, pp 199–296

    Google Scholar 

  7. Speiser B (1996) Numerical simulation of electroanalytical experiments: recent advances in methodology. In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, vol 19. Dekker, New York, pp 1–108

    Google Scholar 

  8. Britz D (2005) Digital simulation in electrochemistry, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  9. Koper MTM, Sluyters JH (1991) Electrochemical oscillators: their description through a mathematical model. J Electroanal Chem 303:73–94

    Article  CAS  Google Scholar 

  10. Krischer K (1999) Principles of temporal and spatial pattern formation in electrochemical systems. In: Conway BE et al (eds) Modern aspects of electrochemistry, vol 32. Kluwer, New York

    Google Scholar 

  11. Koper MTM (1992) The theory of electrochemical instabilities. Electrochim Acta 37:1771–1778

    Article  CAS  Google Scholar 

  12. Krischer K (2001) Spontaneous formation of spatiotemporal patterns at the electrode|electrolyte interface. J Electroanal Chem 501:1–21

    Article  CAS  Google Scholar 

  13. Krischer K, Mazouz N, Flätgen G (2000) Pattern formation in globally coupled electrochemical systems with an S-shaped current–potential curve. J Phys Chem B 104:7545–7553

    Article  CAS  Google Scholar 

  14. Mazouz N, Krischer K (2000) A theoretical study on turing patterns in electrochemical systems. J Phys Chem 104:6081–6090

    CAS  Google Scholar 

  15. Epelboin I, Ksouri M, Lejay E, Wiart R (1975) A study of the elementary steps of electron-transfer during the electrocrystallization of zinc. Electrochim Acta 20:603–605

    Article  CAS  Google Scholar 

  16. Kiss IZ, Kazsu Z, Gáspár V (2005) Experimental strategy for characterization of essential dynamical variables in oscillatory systems: effect of double-layer capacitance on the stability of electrochemical oscillators. J Phys Chem A 109:9521–9527

    Article  CAS  Google Scholar 

  17. Clarke BL (1980) Stability of complex reaction networks. Adv Chem Phys 42:1–213

    Article  Google Scholar 

  18. Stephanopoulos G (1984) Chemical process control: an introduction to theory and practice. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  19. Lee MG, Jorné J (1992) On the kinetic mechanism of zinc electrodeposition in the region of negative polarization resistance. J Electrochem Soc 139:2841–2844

    Article  CAS  Google Scholar 

  20. Burger M, Körös E (1980) Conditions for the onset of chemical oscillation. J Phys Chem 84:496–500

    Article  CAS  Google Scholar 

  21. Ruoff E (1992) Introducing temperature-compensation in any reaction kinetic oscillator model. J Interdiscip Cycle Res 23:92–99

    Article  Google Scholar 

  22. Ruoff P, Loros JJ, Dunlap JC (2005) The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock. Proc Natl Acad Sci USA 102:17681–17686

    Article  CAS  Google Scholar 

  23. Nagao R, Epstein IR, Gonzalez ER, Varela H (2008) Temperature (over)compensation in an oscillatory surface reaction. J Phys Chem A 112:4617–4624

    Article  CAS  Google Scholar 

  24. Carbonio EA, Nagao R, Gonzalez ER, Varela H (2009) Temperature effects on the oscillatory electro-oxidation of methanol on platinum. Phys Chem Chem Phys 11:665–670

    Article  CAS  Google Scholar 

  25. Zhang JX, Datta R (2002) Sustained potential oscillations in proton exchange membrane fuel cells with PtRu as anode catalyst. J Electrochem Soc 149:A1423–A1431

    Article  CAS  Google Scholar 

  26. Kiss IZ, Pelster LN, Wickramasinghe M, Yablonsky GS (2009) Frequency of negative differential resistance electrochemical oscillators: theory and experiments. Phys Chem Chem Phys 11:5720–5728

    Article  CAS  Google Scholar 

  27. Strogatz SH (1994) Nonlinear dynamics and chaos. Perseus, Reading, MA

    Google Scholar 

  28. Koper MTM, Gaspard P (1992) The modeling of mixed-mode and chaotic oscillations in electrochemical systems. J Chem Phys 96:7797–7813

    Article  CAS  Google Scholar 

  29. Yablonsky GS, Mareels IMY, Lazman M (2003) The principle of critical simplification in chemical kinetics. Chem Eng Sci 58:4833–4842

    Article  CAS  Google Scholar 

  30. Kiss IZ, Sitta E, Varela H (2012) On the limit of frequency of electrochemical oscillators and its relationship to kinetic parameters. J Phys Chem C 116:9561–9567

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Orlik, M. (2012). Stability of Electrochemical Systems. In: Self-Organization in Electrochemical Systems I. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27673-6_2

Download citation

Publish with us

Policies and ethics