Skip to main content

Endogenous Retroviral-Like Aspartic Protease, SASPase as a Key Modulator of Skin Moisturization

  • Chapter
  • First Online:
Book cover Treatment of Dry Skin Syndrome
  • 2493 Accesses

Abstract

Approximately 360 million years ago (the late Devonian period), the first terrestrial vertebrate amphibian emerged from water and adapted to life on land. These animals evolved their surface skin epidermis into a keratinized stratified squamous epithelium to prevent water loss and to protect the body from sunlight. During the long history of this “epithelial evolution,” humans have evolved the epithelia to be more functional, baring the stratum corneum (SC) as the outermost layer, which acts as a barrier against the external environment. This layer is hydrated by endogenous substances to avoid desiccation; however, the mechanisms responsible for maintaining hydration of the SC remain unclear at the molecular level.

We have recently generated skin-specific retroviral-like aspartic protease (SASPase)-deficient “hairless” mice. The reduced activity of this enzyme in these mice results in dry skin with the accumulation of incorrectly processed profilaggrin and a marked decrease of filaggrin production. Missense human mutations that affect the protease activity have been detected in both atopic dermatitis patients and normal individuals.

In this chapter, these findings obtained from SASPase-deficient hairless mice will be summarized. Our results provide novel concepts to assist in determining the complex pathophysiology of atopic dry skin. This molecular mechanism should provide clues in revealing the role of the SC in terrestrial animals and how they have adapted to life on land during the evolution of mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alibardi L (2003) Adaptation to the land: the skin of reptiles in comparison to that of amphibians and endotherm amniotes. J Exp Zool B Mol Dev Evol 298(1):12–41. doi:10.1002/jez.b.24

    PubMed  Google Scholar 

  2. Barker JN, Palmer CN, Zhao Y et al (2007) Null mutations in the filaggrin gene (FLG) determine major susceptibility to early-onset atopic dermatitis that persists into adulthood. J Invest Dermatol 127:564–567

    Article  PubMed  CAS  Google Scholar 

  3. Barnes KC (2010) An update on the genetics of atopic dermatitis: scratching the surface in 2009. J Allergy Clin Immunol 125(1):16–29 e11–11; quiz 30–11. doi:S0091–6749(09)01722–9 [pii] 10.1016/j.jaci.2009.11.008

    Google Scholar 

  4. Bernard D, Mehul B, Thomas-Collignon A, Delattre C, Donovan M, Schmidt R (2005) Identification and characterization of a novel retroviral-like aspartic protease specifically expressed in human epidermis. J Invest Dermatol 125(2):278–287. doi:JID23816 [pii] 10.1111/j.0022-202X.2005.23816.x

    PubMed  CAS  Google Scholar 

  5. Barret AJ, Rawlings ND, Woessner JF (eds) (1998) Handbook of proteolytic enzymes. Academic, San Diego

    Google Scholar 

  6. Berry N, Charmeil C, Goujon C, Silvy A, Girard P, Corcuff P, Montastier C (1999) A clinical, biometrological and ultrastructural study of xerotic skin. Int J Cosmet Sci 21(4):241–252. doi:ICS196570 [pii] 10.1046/j.1467-2494.1999.196570.x

    Article  PubMed  CAS  Google Scholar 

  7. Blikstad V, Benachenhou F, Sperber GO, Blomberg J (2008) Evolution of human endogenous retroviral sequences: a conceptual account. Cell Mol Life Sci 65(21):3348–3365. doi:10.1007/s00018-008-8495-2

    Article  PubMed  CAS  Google Scholar 

  8. Bonnart C, Deraison C, Lacroix M, Uchida Y, Besson C, Robin A, Briot A, Gonthier M, Lamant L, Dubus P, Monsarrat B, Hovnanian A (2010) Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in netherton syndrome through filaggrin and lipid misprocessing. J Clin Invest 120(3):871–882. doi:41440 [pii] 10.1172/JCI41440

    Article  PubMed  CAS  Google Scholar 

  9. Brown SJ, McLean WH (2009) Eczema genetics: current state of knowledge and future goals. J Invest Dermatol 129:543–552

    Article  PubMed  CAS  Google Scholar 

  10. Brown SJ, McLean WH (2012) One remarkable molecule: filaggrin. J Invest Dermatol 132(3 Pt 2):751–762

    Google Scholar 

  11. Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6(4):328–340. doi:nrm1619 [pii] 10.1038/nrm1619

    Article  PubMed  CAS  Google Scholar 

  12. Candi E, Tarcsa E, Digiovanna JJ, Compton JG, Elias PM, Marekov LN, Steinert PM (1998) A highly conserved lysine residue on the head domain of type II keratins is essential for the attachment of keratin intermediate filaments to the cornified cell envelope through isopeptide crosslinking by transglutaminases. Proc Natl Acad Sci USA 95(5):2067–2072

    Article  PubMed  CAS  Google Scholar 

  13. Dale BA, Holbrook KA, Steinert PM (1978) Assembly of stratum corneum basic protein and keratin filaments in macrofibrils. Nature 276(5689):729–731

    Article  PubMed  CAS  Google Scholar 

  14. Dale BA, Resing KA, Haydock PV (1990) Filaggrins. In: Goldman RD, Steinert PM (eds) Cellular and molecular biology of intermediate filaments, 1st edn. Plenum Press, New York, London, pp 393–412

    Google Scholar 

  15. Dale BA, Resing KA, Lonsdale-Eccles JD (1985) Filaggrin: a keratin filament associated protein. Ann N Y Acad Sci 455:330–342

    Article  PubMed  CAS  Google Scholar 

  16. Darke PL (1994) Stability of dimeric retroviral proteases. Methods Enzymol 241:104–127

    Article  PubMed  CAS  Google Scholar 

  17. Denecker G, Hoste E, Gilbert B, Hochepied T, Ovaere P, Lippens S, Van den Broecke C, Van Damme P, D’Herde K, Hachem JP, Borgonie G, Presland RB, Schoonjans L, Libert C, Vandekerckhove J, Gevaert K, Vandenabeele P, Declercq W (2007) Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol 9(6):666–674. doi:ncb1597 [pii] 10.1038/ncb1597

    Article  PubMed  CAS  Google Scholar 

  18. Eckert RL (1989) Structure, function, and differentiation of the keratinocyte. Physiol Rev 69(4):1316–1346

    PubMed  CAS  Google Scholar 

  19. Eckert RL, Crish JF, Robinson NA (1997) The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation. Physiol Rev 77(2): 397–424

    PubMed  CAS  Google Scholar 

  20. Elias PM, Steinhoff M (2008) “Outside-to-inside” (and now back to “outside”) pathogenic mechanisms in atopic dermatitis. J Invest Dermatol 128:1067–1070

    Google Scholar 

  21. Engelke M, Jensen JM, Ekanayake-Mudiyanselage S, Proksch E (1997) Effects of xerosis and ageing on epidermal proliferation and differentiation. Br J Dermatol 137(2):219–225

    Article  PubMed  CAS  Google Scholar 

  22. Esparza-Gordillo J, Weidinger S, Folster-Holst R et al (2009) A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet 41:596–601

    Google Scholar 

  23. Fallon PG, Sasaki T, Sandilands A, Campbell LE, Saunders SP, Mangan NE, Callanan JJ, Kawasaki H, Shiohama A, Kubo A, Sundberg JP, Presland RB, Fleckman P, Shimizu N, Kudoh J, Irvine AD, Amagai M, McLean WH (2009) A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat Genet 41(5):602–608. doi:ng.358 [pii] 10.1038/ng.358

    Article  PubMed  CAS  Google Scholar 

  24. Gruber R, Elias PM, Crumrine D et al (2011) Filaggrin genotype in ichthyosis vulgaris predicts abnormalities in epidermal structure and function. Am J Pathol 178:2252–2263

    Google Scholar 

  25. Harding CR, Scott IR (1983) Histidine-rich proteins (filaggrins): structural and functional heterogeneity during epidermal differentiation. J Mol Biol 170(3):651–673

    Article  PubMed  CAS  Google Scholar 

  26. Harding CR, Watkinson A, Rawlings AV, Scott IR (2000) Dry skin, moisturization and corneodesmolysis. Int J Cosmet Sci 22:21–52

    Article  PubMed  CAS  Google Scholar 

  27. Hildenbrand M, Rhiemeier V, Hartenstein B, Lahrmann B, Grabe N, Angel P, Hess J (2010) Impaired skin regeneration and remodeling after cutaneous injury and chemically induced hyperplasia in taps-transgenic mice. J Invest Dermatol 130(7):1922–1930. doi:jid201054 [pii] 10.1038/jid.2010.54

    Article  PubMed  CAS  Google Scholar 

  28. Hoste E, Kemperman P, Devos M, Denecker G, Kezic S, Yau N, Gilbert B, Lippens S, De Groote P, Roelandt R, Van Damme P, Gevaert K, Presland RB, Takahara H, Puppels G, Caspers P, Vandenabeele P, Declercq W (2011) Caspase-14 is required for filaggrin degradation to natural moisturizing factors in the skin. J Invest Dermatol 131(11):2233–2241. doi:jid2011153 [pii] 10.1038/jid.2011.153

    Article  PubMed  CAS  Google Scholar 

  29. Ishida-Yamamoto A, Senshu T, Eady RA, Takahashi H, Shimizu H, Akiyama M, Iizuka H (2002) Sequential reorganization of cornified cell keratin filaments involving filaggrin-mediated compaction and keratin 1 deimination. J Invest Dermatol 118(2):282–287. doi:1671 [pii] 10.1046/j.0022-202x.2001.01671.x

    Article  PubMed  CAS  Google Scholar 

  30. Kamata Y, Taniguchi A, Yamamoto M, Nomura J, Ishihara K, Takahara H, Hibino T, Takeda A (2009) Neutral cysteine protease bleomycin hydrolase is essential for the breakdown of deiminated filaggrin into amino acids. J Biol Chem 284(19):12829–12836. doi:M807908200 [pii] 10.1074/jbc.M807908200

    Article  PubMed  CAS  Google Scholar 

  31. Krylov DM, Koonin EV (2001) A novel family of predicted retroviral-like aspartyl proteases with a possible key role in eukaryotic cell cycle control. Curr Biol 11(15):R584–R587. doi:S0960-9822(01), 00357-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  32. Leyvraz C, Charles RP, Rubera I, Guitard M, Rotman S, Breiden B, Sandhoff K, Hummler E (2005) The epidermal barrier function is dependent on the serine protease CAP1/Prss8. J Cell Biol 170(3):487–496. doi:jcb.200501038 [pii] 10.1083/jcb.200501038

    Article  PubMed  CAS  Google Scholar 

  33. List K, Szabo R, Wertz PW, Segre J, Haudenschild CC, Kim SY, Bugge TH (2003) Loss of proteolytically processed filaggrin caused by epidermal deletion of matriptase/MT-SP1. J Cell Biol 163(4):901–910. doi:10.1083/jcb.200304161 jcb.200304161 [pii]

    Article  PubMed  CAS  Google Scholar 

  34. Lower R, Lower J, Kurth R (1996) The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci USA 93(11):5177–5184

    Article  PubMed  CAS  Google Scholar 

  35. Matsui T, Kinoshita-Ida Y, Hayashi-Kisumi F, Hata M, Matsubara K, Chiba M, Katahira-Tayama S, Morita K, Miyachi Y, Tsukita S (2006) Mouse homologue of skin-specific retroviral-like aspartic protease involved in wrinkle formation. J Biol Chem 281(37):27512–27525. doi:M603559200 [pii] 10.1074/jbc.M603559200

    Article  PubMed  CAS  Google Scholar 

  36. Matsui T, Miyamoto K, Kubo A et al (2011) SASPase regulates stratum corneum hydration through profilaggrin-to-filaggrin processing. EMBO Mol Med 3:320–333

    Article  Google Scholar 

  37. McGrath JA, Uitto J (2008) The filaggrin story: novel insights into skin-barrier function and disease. Trends Mol Med 14(1):20–27. doi:S1471-4914(07), 00221-3 [pii] 10.1016/j.molmed.2007.10.006

    Article  PubMed  CAS  Google Scholar 

  38. Mechin MC, Enji M, Nachat R, Chavanas S, Charveron M, Ishida-Yamamoto A, Serre G, Takahara H, Simon M (2005) The peptidylarginine deiminases expressed in human epidermis differ in their substrate specificities and subcellular locations. Cell Mol Life Sci 62(17):1984–1995. doi:10.1007/s00018-005-5196-y

    Article  PubMed  CAS  Google Scholar 

  39. Montagna W, Parakkal PF (1974) The structure and function of skin. Academic Press, Orlando

    Google Scholar 

  40. Morar N, Willis-Owen SA, Moffatt MF, Cookson WO (2006) The genetics of atopic dermatitis. J Allergy Clin Immunol 118:24–34; quiz 35–36

    Google Scholar 

  41. Nachat R, Mechin MC, Takahara H, Chavanas S, Charveron M, Serre G, Simon M (2005) Peptidylarginine deiminase isoforms 1–3 are expressed in the epidermis and involved in the deimination of K1 and filaggrin. J Invest Dermatol 124(2):384–393. doi:JID23568 [pii] 10.1111/j.0022-202X.2004.23568.x

    Article  PubMed  CAS  Google Scholar 

  42. Nomura T, Akiyama M, Sandilands A, Nemoto-Hasebe I, Sakai K, Nagasaki A, Ota M, Hata H, Evans AT, Palmer CN, Shimizu H, McLean WH (2008) Specific filaggrin mutations cause ichthyosis vulgaris and are significantly associated with atopic dermatitis in Japan. J Invest Dermatol 128(6):1436–1441. doi:5701205 [pii] 10.1038/sj.jid.5701205

    Article  PubMed  CAS  Google Scholar 

  43. Norlen L, Al-Amoudi A (2004) Stratum corneum keratin structure, function, and formation: the cubic rod-packing and membrane templating model. J Invest Dermatol 123(4):715–732. doi:10.1111/j.0022-202X.2004.23213.x JID23213 [pii]

    Article  PubMed  CAS  Google Scholar 

  44. Ovaere P, Lippens S, Vandenabeele P, Declercq W (2009) The emerging roles of serine protease cascades in the epidermis. Trends Biochem Sci 34(9):453–463. doi:S0968-0004(09), 00136-4 [pii] 10.1016/j.tibs.2009.08.001

    Article  PubMed  CAS  Google Scholar 

  45. Palmer CN, Irvine AD, Terron-Kwiatkowski A, et al. (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38, 441–446

    Article  PubMed  CAS  Google Scholar 

  46. Paternoster L, Standl M, Chen CM et al (2011) Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat Genet 44:187–192

    Google Scholar 

  47. Pearton DJ, Nirunsuksiri W, Rehemtulla A, Lewis SP, Presland RB, Dale BA (2001) Proprotein convertase expression and localization in epidermis: evidence for multiple roles and substrates. Exp Dermatol 10(3):193–203. doi:exd100307 [pii]

    Article  PubMed  CAS  Google Scholar 

  48. Presland RB, Boggess D, Lewis SP, Hull C, Fleckman P, Sundberg JP (2000) Loss of normal profilaggrin and filaggrin in flaky tail (ft/ft) mice: an animal model for the filaggrin-deficient skin disease ichthyosis vulgaris. J Invest Dermatol 115(6):1072–1081. doi:jid178 [pii] 10.1046/j.1523-1747.2000.00178.x

    Article  PubMed  CAS  Google Scholar 

  49. Presland RB, Rothnagel JA, Lawrence OT (2006) Profilaggrin and the fused S100 family of calcium-binding proteins. In: Elias PM, Feingold KR (eds) Skin barrier. Taylor & Francis, New York, pp 111–140

    Google Scholar 

  50. Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17(12):1063–1072

    Article  PubMed  Google Scholar 

  51. Puente XS, Sanchez LM, Overall CM, Lopez-Otin C (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4(7):544–558. doi:10.1038/nrg1111 nrg1111 [pii]

    Article  PubMed  CAS  Google Scholar 

  52. Rao JK, Erickson JW, Wlodawer A (1991) Structural and evolutionary relationships between retroviral and eucaryotic aspartic proteinases. Biochemistry 30(19):4663–4671

    Article  PubMed  CAS  Google Scholar 

  53. Ratner L, Haseltine W, Patarca R, Livak KJ, Starcich B, Josephs SF, Doran ER, Rafalski JA, Whitehorn EA, Baumeister K et al (1985) Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313(6000):277–284

    Article  PubMed  CAS  Google Scholar 

  54. Rawlings AV, Harding CR (2004) Moisturization and skin barrier function. Dermatol Ther 17(Suppl 1):43–48. doi:04S1005 [pii]

    Article  PubMed  Google Scholar 

  55. Rawlings AV, Matts PJ (2005) Stratum corneum moisturization at the molecular level: an update in relation to the dry skin cycle. J Invest Dermatol 124:1099–1110

    Google Scholar 

  56. Resing KA, al-Alawi N, Blomquist C, Fleckman P, Dale BA (1993) Independent regulation of two cytoplasmic processing stages of the intermediate filament-associated protein filaggrin and role of Ca2+ in the second stage. J Biol Chem 268(33):25139–25145

    PubMed  CAS  Google Scholar 

  57. Resing KA, Johnson RS, Walsh KA (1993) Characterization of protease processing sites during conversion of rat profilaggrin to filaggrin. Biochemistry 32(38):10036–10045

    Article  PubMed  CAS  Google Scholar 

  58. Resing KA, Thulin C, Whiting K, al-Alawi N, Mostad S (1995) Characterization of profilaggrin endoproteinase 1. A regulated cytoplasmic endoproteinase of epidermis. J Biol Chem 270(47):28193–28198

    Article  PubMed  CAS  Google Scholar 

  59. Resing KA, Walsh KA, Haugen-Scofield J, Dale BA (1989) Identification of proteolytic cleavage sites in the conversion of profilaggrin to filaggrin in mammalian epidermis. J Biol Chem 264(3):1837–1845

    PubMed  CAS  Google Scholar 

  60. Rhiemeier V, Breitenbach U, Richter KH, Gebhardt C, Vogt I, Hartenstein B, Furstenberger G, Mauch C, Hess J, Angel P (2006) A novel aspartic proteinase-like gene expressed in stratified epithelia and squamous cell carcinoma of the skin. Am J Pathol 168(4):1354–1364. doi:168/4/1354 [pii]

    Article  PubMed  CAS  Google Scholar 

  61. Rodriguez E, Baurecht H, Herberich E et al (2009) Meta-analysis of filaggrin polymorphisms in eczema and asthma: robust risk factors in atopic disease. J Allergy Clin Immunol 123:1361–70 e7

    Google Scholar 

  62. Sandilands A, Sutherland C, Irvine AD, McLean WH (2009) Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci 122(Pt 9):1285–1294. doi:122/9/1285 [pii] 10.1242/jcs.033969

    Article  PubMed  CAS  Google Scholar 

  63. Sandilands A, Terron-Kwiatkowski A, Hull PR, O’Regan GM, Clayton TH, Watson RM, Carrick T, Evans AT, Liao H, Zhao Y, Campbell LE, Schmuth M, Gruber R, Janecke AR, Elias PM, van Steensel MA, Nagtzaam I, van Geel M, Steijlen PM, Munro CS, Bradley DG, Palmer CN, Smith FJ, McLean WH, Irvine AD (2007) Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet 39(5):650–654. doi:ng2020 [pii] 10.1038/ng2020

    Article  PubMed  CAS  Google Scholar 

  64. Scharschmidt TC, Man MQ, Hatano Y, Crumrine D, Gunathilake R, Sundberg JP, Silva KA, Mauro TM, Hupe M, Cho S, Wu Y, Celli A, Schmuth M, Feingold KR, Elias PM (2009) Filaggrin deficiency confers a paracellular barrier abnormality that reduces inflammatory thresholds to irritants and haptens. J Allergy Clin Immunol 124(3):496–506, 506 e491–496. doi:S0091–6749(09)01012–4 [pii] 10.1016/j.jaci.2009.06.046

    Google Scholar 

  65. Sandilands A, Brown SJ, Goh CS et al (2012) Mutations in the SASPase gene (ASPRV1) are not associated with atopic eczema or clinically dry skin. J Invest Dermatol. doi:10.1038/jid.2011.479

    Google Scholar 

  66. Schauber J, Gallo RL (2009) Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol 124(3 Suppl 2):R13–R18. doi:S0091-6749(09), 01124-5 [pii] 10.1016/j.jaci.2009.07.014 http://books.google.co.uk/books/about/Cellular_and_molecular_biology_of_interm.html?id =uYXwAAAAMAAJ&re dir_esc=y

    Google Scholar 

  67. Schempp C, Emde M, Wolfle U (2009) Dermatology in the Darwin anniversary. Part 1: evolution of the integument. J Dtsch Dermatol Ges 7(9):750–757. doi:DDG7193 [pii] 10.1111/j.1610–0387.2009.07193.x

    Google Scholar 

  68. Simpson CL, Patel DM, Green KJ (2011) Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 12:565–580

    Google Scholar 

  69. Steinert PM, Marekov LN (1995) The proteins elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornified cell envelope. J Biol Chem 270(30):17702–17711

    Article  PubMed  CAS  Google Scholar 

  70. Stocking C, Kozak CA (2008) Murine endogenous retroviruses. Cell Mol Life Sci 65(21):3383–3398. doi:10.1007/s00018-008-8497-0

    Article  PubMed  CAS  Google Scholar 

  71. Sun LD, Xiao FL, Li Y et al (2011) Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat Genet 43:690–694

    Google Scholar 

  72. Swartzendruber DC, Wertz PW, Madison KC, Downing DT (1987) Evidence that the corneocyte has a chemically bound lipid envelope. J Invest Dermatol 88(6):709–713

    Article  PubMed  CAS  Google Scholar 

  73. Tang J, Wong RN (1987) Evolution in the structure and function of aspartic proteases. J Cell Biochem 33(1):53–63. doi:10.1002/jcb.240330106

    Article  PubMed  CAS  Google Scholar 

  74. Tarcsa E, Marekov LN, Mei G, Melino G, Lee SC, Steinert PM (1996) Protein unfolding by peptidylarginine deiminase. Substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. J Biol Chem 271(48):30709–30716

    Article  PubMed  CAS  Google Scholar 

  75. Thulin CD, Taylor JA, Walsh KA (1996) Microheterogeneity of human filaggrin: analysis of a complex peptide mixture using mass spectrometry. Protein Sci 5(6):1157–1164. doi:10.1002/pro.5560050618

    Article  PubMed  CAS  Google Scholar 

  76. Thulin CD, Walsh KA (1995) Identification of the amino terminus of human filaggrin using differential LC/MS techniques: implications for profilaggrin processing. Biochemistry 34(27):8687–8692

    Article  PubMed  CAS  Google Scholar 

  77. Watt FM (1989) Terminal differentiation of epidermal keratinocytes. Curr Opin Cell Biol 1(6):1107–1115

    Article  PubMed  CAS  Google Scholar 

  78. Wilhelm KP, Cua AB, Maibach HI (1991) Skin aging. Effect on transepidermal water loss, stratum corneum hydration, skin surface pH, and casual sebum content. Arch Dermatol 127(12):1806–1809

    Article  PubMed  CAS  Google Scholar 

  79. Yamazaki M, Ishidoh K, Suga Y, Saido TC, Kawashima S, Suzuki K, Kominami E, Ogawa H (1997) Cytoplasmic processing of human profilaggrin by active mu-calpain. Biochem Biophys Res Commun 235(3):652–656. doi:S0006-291X(97), 96809-1 [pii] 10.1006/bbrc.1997.6809

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Itsumi Ohmori and Sayaka Katahira-Tayama for their technical assistance. I thank Keiko Mizuno and Kaoru Orihashi for critical reading of the manuscript. I thank Drs. Masayuki Amagai, Akiharu Kubo, Jun Kudoh and Kenichi Miyamoto (Keio University) and Dr. Johji Inazawa (Tokyo Medical and Dental University) for supporting this project and Mr. Yoshihiko Tsuda (Davinci Medical Illustration Office) for illustration of figures. I also thank KAN Research Insitute Inc. for provising materials. This work was supported by a Grant-in-Aid for Scientific Research to Takeshi Matsui, “Program for Improvement of Research Environment for Young Researchers” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan to Takeshi Matsui, research grants from the Nakatomi Foundation, the Cosmetology Research Foundation, and the Naito Foundation to Takeshi Matsui, and Health and Labour Sciences Research Grants for Research on Allergic Diseases and Immunology from the Ministry of Health, Labour, and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Matsui Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matsui, T. (2012). Endogenous Retroviral-Like Aspartic Protease, SASPase as a Key Modulator of Skin Moisturization. In: Lodén, M., Maibach, H. (eds) Treatment of Dry Skin Syndrome. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27606-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27606-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27605-7

  • Online ISBN: 978-3-642-27606-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics