
Efficient codon optimization with motif
engineering

Anne Condon and Chris Thachuk

Department of Computer Science, University of British Columbia,
Vancouver, BC, Canada V6T 1Z4
{condon,cthachuk}@cs.ubc.ca

Abstract. It is now common to add protein coding genes into cloning
vectors for expression within non-native host organisms. Codon opti-
mization supports translational efficiency of the desired protein product,
by exchanging codons which are rarely found in the host organism with
more frequently observed codons. Motif engineering, such as removal of
restriction enzyme recognition sites or addition of immuno-stimulatory
elements, is also often necessary. We present an algorithm for optimiz-
ing codon bias of a gene with respect to a well motivated measure of
bias, while simultaneously performing motif engineering. The measure
is the previously studied codon adaptation index, which favors the use,
in the gene to be optimized, of the most abundant codons found in the
host genome. We demonstrate the efficiency and effectiveness of our al-
gorithm on the GENCODE dataset and provide a guarantee that the
solution found is always optimal.

1 Introduction

Gene synthesis is now an economical and technically viable option for the con-
struction of non-natural genes. Synthetic genes can be novel or derivatives of
those found in nature. In either case, the expression levels of these genes, when
inserted into the genome of a host organism, depend on many factors. One im-
portant factor is the bias of codon usage, relative to the host organism [16, 7, 10].
Note that for each amino acid in a protein, there may be many (up to six) valid
codons, as given by the genetic code. Loosely speaking, the codon bias of a gene
for the protein measures how well – or poorly – codons used in the gene match
codon usage in the genome of a host organism (we describe specific measures
later in this paper). Several studies have indicated that [10, 3, 11] codon opti-
mization is necessary to ensure designed genes are maximally expressed within
the host.

In addition to optimizing the codon bias of a gene relative to the genome of
a host, it is often desirable to add or remove certain motifs via silent mutation,
whereby DNA sequence is altered without changing the expressed amino acid
sequence. Removal or addition of motifs can be treated as optimization crite-
ria to be minimized or maximized. For example, with immuno-regulatory CpG

2

motifs in mammalian expression vectors [13] it is desirable to minimize immuno-
inhibitory elements and maximize immuno-stimulatory motifs. In the remainder
of this work, we will refer to inclusion or exclusion of motifs, via silent mutation,
as motif engineering.

A number of published software tools are capable of codon optimization,
including DNA Works [8], Codon Optimizer [2], GeMS [9], Gene Designer [17],
JCat [4], OPTIMIZER [12], the Synthetic Gene Designer [18], UpGene [3] and
a method by Satya et. al [13]. Some of these methods also consider the other
problem considered here, motif engineering. Of these, only the method of Satya
et. al provides a mathematical guarantee of finding an optimal solution when
one exists. However, their method – based on the graph theoretic approach of
finding a critical path – runs in O(n2) time and space, where n is the length of
the DNA sequence being optimized. In this work, we propose the first linear time
and space codon optimization algorithm, which is guaranteed to find an optimal
solution that also satisfies motif engineering constraints. We have focused our
attention on optimizing codon usage according to the Codon Adaptation Index
(CAI). The index, originally proposed by Sharp and Li [14], is based on the
premise of each amino acid having a ‘best’ codon for a particular organism. This
perspective evolved from the observation that protein expression is higher in
genes using codons of high fitness and lower in genes using rare codons [6]. It is
believed that this is due to the relative availability of tRNAs within a cell.

We also provide an experimental study of the performance of our algo-
rithm on a biological data set comprising 3,157 coding sequence regions of the
GENECODE subset of the Encode dataset [15].

The remainder of this paper is structured as follows. In the Preliminaries
section, we formally define the problem of codon optimization. We detail the
general objectives of the problem, and formalize the goals of motif engineering.
We then present our algorithm, providing a proof of correctness and time and
space analysis. In the Empirical Results section, we describe the performance
of our algorithm, both in terms of run-time efficiency and also in terms of the
quality of optimization achieved. Finally, we conclude with a summary of our
major findings and directions for future work.

2 Preliminaries

A DNA strand is a string over the alphabet of DNA. A codon is a triple over
the DNA alphabet and therefore there are at most 43 = 64 distinct codons.
An amino acid sequence is a string over the alphabet of amino acids, ΣAA =
{Ala, Arg, Asn,. . . ,Tyr,V al,stop}, with each symbol representing an amino acid
and the special symbol ‘stop’ denoting a string terminal. We assume there is a
predetermined ordering of amino acids, for example, lexicographic.

Therefore, we can represent an amino acid sequence A as a sequence of in-
tegers, with A = α1, α2, . . . , α|A|, where 1 ≤ αk ≤ 21, for 1 ≤ k ≤ |A|. We

denote the ith amino acid by λ(i). The genetic code is a mapping between amino
acids and codons. However, as there are 64 possible codons and only 20 amino

3

Trp His Arg Trp

TGG CAC

CAT

AGA

AGG

CGA

CGC

CGG

CGT

TGG

Fig. 1. Shown above is an instance consisting of four amino acids, a forbidden set
F = { CGC, CGA, CGG, ACC, TAG }, a desired set D = { TTG, GGT, CCG }, and therefore
k = 1. Arginine has six corresponding codons, however, three of them appear in F and
are shown with red boxes. A valid codon assignment for this instance must contain no
occurrence of a forbidden motif and one occurrence of a desired motif. There are two
valid codon assignments for this problem instance, shown as paths with bold edges.
The top (bottom) path denotes an assignment containing the desired motif GGT (TTG).

acids (plus one stop symbol), the code is degenerate, resulting in a one-to-many
mapping from each amino acid to a set of corresponding codons.

We define |λ(i)| to be the number of codons corresponding to the ith amino
acid and λj(i) to be the jth such codon, 1 ≤ j ≤ |λ(i)|, where again we use
lexicographic ordering. Therefore, we can define a codon design, with respect
to an amino acid sequence, as a sequence of codon indices. Again consider the
problem instance in Figure 1. For the Arginine amino acid (Arg) which is the
second amino acid in lexicographic order, |λ(2)| = 6 and λ3(2) is the codon CGA.
The DNA sequence TGA CAC CGA TGG can be represented by the codon index
sequence S = 1, 1, 3, 1.

A codon’s frequency is the number of times that it appears in nature, divided
by the total number of times that all codons corresponding to the same amino
acid appear in nature. By “in nature”, we mean codon frequencies present in
some reference sequence or set of sequences such as a genome or set of genomes.
As an example, if for some amino acid index i, |λ(i)| = 2, and the codon λ1(i) is
observed 37 times in nature, while λ2(i) is observed 63 times, we can define the
frequency of λ1(i) to be 37

37+63 = 0.37. Let ρj(i) denote the frequency of the jth

codon of the ith amino acid, 1 ≤ j ≤ |λ(i)|. Note that
∑|λ(i)|
j=1 ρj(i) = 1.0, for any

i, assuming λ(i) is in the reference set. In the example above, we say that λ2(i)

4

is the most frequent codon. Note that it is possible for more than one codon to
have this property.

A codon’s fitness is the number of times that it appears in nature, divided by
the number of occurrences of the corresponding most frequent codon (originally
referred to as the relative adaptiveness of a codon [14]). Let τj(i) denote the
fitness value of the jth codon of the ith amino acid. Returning to our previous
example, if the ith amino acid has two codons with frequencies ρ1(i) = 0.37 and
ρ2(i) = 0.63, then their fitness values, denoted by τ1(i) and τ2(i) respectively,
are 0.37/0.63 ≈ 0.59 and 0.63/0.63 = 1.0. Note that a most frequent codon will
always have a fitness value of 1.0.

Motif engineering We focus our attention on designing codon sequences which
minimize occurrences of forbidden motifs from a predetermined set, F , while
maximizing occurrences of desired motifs from a predetermined set, D. A codon
design – a sequence of codon assignments – is said to be valid with respect to an
amino acid sequence it codes for if it satisfies the following constraints, in order:
the DNA sequence corresponding to the codon design (1) contains the minimum
possible number of forbidden motifs, and (2) contains the maximum possible
number of desired motifs, given that (1) is satisfied. It is important to recognize
that a valid design does not necessarily guarantee that the number of occurrences
of desired motifs is the maximum number possible, of all possible codon designs.
Again, consider the problem instance of Figure 1. Two codon designs result in
a minimum number of forbidden motif occurrences (none), shown with paths
having bold edges. Both of these paths also contain one occurrence of a desired
motif. The top (bottom) path denotes an assignment containing the desired motif
GGT (TTG). Therefore, a valid codon design for this instance, by our previous
definition, contains no forbidden motifs and one desired motif. Notice that the
DNA sequence TGG CAC CGG TGG, corresponding to a codon design S = 1, 1, 5, 1,
actually contains more desired motifs (two) than a valid codon design; however,
it does contain one forbidden motif and therefore cannot be valid.

We now develop some notation for motif engineering. For a sequence of
amino acid indices A = α1, α2, . . . , α|A|, a corresponding codon design S =
c1, c2, . . . , c|A|, a set of forbidden motifs F and a set of desired motifs D, let
MF (λci(αi) . . . λcj (αj)) and MD(λci(αi) . . . λcj (αj)) be the number of occur-
rences of forbidden motifs and desired motifs, respectively, in the DNA sequence
λci(αi) . . . λcj (αj), where j ≥ i. For convenience in our algorithms, we also in-
troduce M ′F (λci(αi) . . . λcj (αj)) and M ′D(λci(αi) . . . λcj (αj)) which respectively
determine the number of forbidden and desired motifs in λci(αi) . . . λcj (αj) that
end within the last codon position (the last 3 bases), here indexed by j. For
instance consider the codon design S = 1, 1, 5, 1 of the problem instance in Fig-
ure 1. MD(TGGCACCGGTGG) = 2 as it contains the motifs CCG and GGT, however,
M ′D(TGGCACCGGTGG) = 1 as only the motif GGT ends within the last codon.

In practice, forbidden and desired motifs are short and we assume their length
is bounded by a constant, g [13].

5

Observation 1 If the largest forbidden or desired motif is of length g, then any
forbidden or desired motif can span at most k + 1 consecutive codons, where
k = dg/3e.

Codon optimization The codon adaption index (CAI) is a metric defined in
terms of the relative fitness of codons constituting a codon design. For some
codon design S = c1, c2, . . . , c|A|, which correctly codes for a desired amino acid
sequence A = α1, α2, . . . , α|A|, the CAI value for S with respect to A, CAI(S,A),
can be calculated as in Eqn. (1). Based on this definition, if S consists only of
most frequent codons, it would have a CAI value of 1.0. Intuitively, the higher
the CAI value, the better.

CAI(S,A) =

 |A|∏
i=1

τci(αi)

 1
|A|

(1)

With the previously defined definitions, notation, and optimization criteria,
we now formally define the problem of codon optimization with motif engineer-
ing.

The CAI codon optimization problem with motif engineering
Instance: Amino acid sequence represented by the sequence of indices A =
α1, α2, . . . , α|A|, a set of forbidden motifs F , and a set of desired motifs D.

Problem: Find a codon design S∗, with |S∗| = |A|, corresponding to A such that
S∗ is valid, with respect to F and D, and CAI(S∗, A) = max{CAI(S,A)|S ∈
S(A)}, where S(A) is the set of all valid codon designs corresponding to A. S∗

is an optimal codon design with respect to the CAI measure.

3 A DP algorithm for CAI optimization

We now propose a linear time and space dynamic programming algorithm guar-
anteed to maximize the CAI measure, such that the codon design is valid. In
terms of efficiency, this is a direct improvement in both run-time and space over
the current state-of-the-art, previously proposed by Satya et al. [13]. Although
we have chosen to first ensure forbidden motifs are minimized, then desired mo-
tifs maximized and finally the CAI value maximized, it should be clear that the
algorithm we present can be adapted to optimize these criteria in any order.

One necessary feature of a codon optimization algorithm is an efficient means
to detect if a forbidden motif from F , or a desired motif from D, is present in a
potential design. For both algorithms proposed in this work, we utilize an Aho-
Corasick search for this purpose. Briefly, the Aho-Corasick algorithm builds a
keyword tree (trie) for F and transforms the structure into an automaton with
the addition of failure links. Space and time complexity for building the initial
structure is O(h), where h is the sum of the lengths of the motifs in F . Queries

6

to determine if a sequence b contains any forbidden motif take O(|b|) time [1].
Likewise, a second tree is constructed for the desired motifs in D. For a detailed
description of the algorithm and existing applications of its use in computational
biology, see Gusfield [5]. We note that Satya et. al [13] use the same approach for
motif detection in their θ(n2) algorithm. We note that any dictionary matching
algorithm can be employed for the same task; however, Aho-Corasick automata
were chosen due to their simpler implementation.

We first define three quantities that will be important in describing our algo-
rithm. The first quantity, F ici−k+1,...,ci−1,ci , denotes the minimum possible number
of forbidden motifs in a DNA sequence which codes for an amino acid sequence
A = α1, α2, . . . , αi, given that the last k codons (of i total codons) have indices
denoted as ci−k+1, . . . , ci−1, ci. Similarly, the second quantity, Di

ci−k+1,...,ci−1,ci ,
denotes the maximum possible number of desired motifs, among those sequences
which contain a minimum number of forbidden motifs. P ici−k+1,...,ci−1,ci denotes
the maximum possible CAI score among all valid sequences.

Our algorithm stores a k-dimensional entry for each position i, k ≤ i ≤ |A|, of
the input amino acid sequence, where k = dg/3e and g is the constant bounding
the length of any forbidden or desired motif. The base case occurs when i = k
and is computed as follows. Every combination of codons for the first k amino
acids is evaluated to determine, independently, the number of forbidden and
desired motifs fully contained within the k consecutive codons (Eqn. (2) and
Eqn. (3), respectively) and the CAI value (Eqn. (4)).

F kc1,c2,...,ck−1,ck
= MF

(
λc1(α1)λc2(α2) . . . λck−1

(αk−1)λck(αk)
)

(2)

Dk
c1,c2,...,ck−1,ck

= MD
(
λc1(α1)λc2(α2) . . . λck−1

(αk−1)λck(αk)
)

(3)

P kc1,c2,...,ck−1,ck
=

k∏
i=1

(τci(αi)) (4)

The recursive case occurs for i > k. By Observation 1, a forbidden motif
could span k + 1 codons. Therefore, it is necessary to evaluate the last k + 1
codons of a potential design to ensure codons are selected which 1) minimize
forbidden motifs, then 2) maximize desired motifs, then 3) maximize the CAI
score.

For any arbitrary assignment of the last k codons, we select the codon pre-
ceding them, denoted by the index ci−k, such that the sum of forbidden motifs
ending at position i− 1, F i−1ci−k,...,ci−2,ci−1

, and the count of new forbidden motifs
which end in the new codon ci, determined by the function M ′F , is minimized.
The number of forbidden motifs is recorded.
F ici−k+1,...,ci−1,ci = min1≤ci−k≤|λ(αi−k)|{

F i−1ci−k,...,ci−2,ci−1
+M ′F

(
λci−k

(αi−k) . . . λci−1(αi−1)λci(αi)
)}

(5)

Similarly,D is calculated in the same manner, after ensuring that the minimal
number of forbidden motifs criteria is first satisfied.

7

Di
ci−k+1,...,ci−1,ci = max1≤ci−k≤|λ(αi−k)|
−∞ , if F i−1ci−k,...,ci−2,ci−1

+

M ′F
(
λci−k

(αi−k) . . . λci−1
(αi−1)λci(αi)

)
6= F ici−k+1,...,ci−1,ci

Di−1
ci−k,...,ci−2,ci−1

+M ′D
(
λci−k

(αi−k) . . . λci(αi)
) , otherwise


(6)

Likewise, P is calculated to first ensure forbidden motifs are minimized, fol-
lowed by desired motifs being maximized. Of these possible codon assignments,
the one with the highest CAI value is selected and the score recorded.
P ici−k+1,...,ci−1,ci = max1≤ci−k≤|λ(αi−k)|
−∞ , if

F i−1ci−k,...,ci−2,ci−1
+

M ′F
(
λci−k

(αi−k) . . . λci(αi)
)
6= F ici−k+1,...,ci−1,ci

∨Di−1
ci−k,...,ci−2,ci−1

+M ′D
(
λci−k

(αi−k) . . . λci(αi)
)
6= Di

ci−k+1,...,ci−1,ci

τci(αi)× P i−1ci−k,...,ci−2,ci−1
, otherwise


(7)

Eqn. (10) determines the optimal CAI score up to position i of the input
amino acid sequence. Therefore, the optimal CAI value of some input sequence

A of length |A| is given by P̃
|A|
k , where

F̃ ik = min
1≤ci≤|λ(αi)|

1≤ci−1≤|λ(αi−1)|
...

1≤ci−k+1≤|λ(αi−k+1)|

{
F ici−k+1,...,ci−1,ci

}
(8)

D̃i
k = max

1≤ci≤|λ(αi)|
1≤ci−1≤|λ(αi−1)|

...
1≤ci−k+1≤|λ(αi−k+1)|

{
Di
ci−k+1,...,ci−1,ci , if F ici−k+1,...,ci−1,ci = F̃ ik
−∞ , otherwise

}
(9)

P̃ ik = max
1≤ci≤|λ(αi)|

1≤ci−1≤|λ(αi−1)|
...

1≤ci−k+1≤|λ(αi−k+1)|

P ici−k+1,...,ci−1,ci

, if F ici−k+1,...,ci−1,ci = F̃ ik

∧Di
ci−k+1,...,ci−1,ci = D̃i

k

−∞ , otherwise

 (10)

The correctness of the algorithm can be shown by induction on the position in
the amino acid sequence. Lemma 1 shows that Eqn. (7) gives an optimal score

8

under the assumption that the previous k codons are fixed. Since Eqn. (10)
evaluates all combinations of the previous k codons, Theorem 1 states that an
optimal design must be found, if one exists.

Lemma 1. P ici−k+1,,...,ci−1,ci of Eqn. (7) correctly determines the score of the

optimal valid codon design up to the ith codon position, having the codon assign-
ment ci−k+1, . . . , ci−1, ci for the last k codons, given that the maximum length
of any motif is 3k.

Proof. We will argue by induction. The base case (i = k) is trivially valid as
Eqn. (4) correctly determines the CAI score of the first k codons, by definition.

Assume P i−1c′i−k,...,c
′
i−2,c

′
i−1

correctly determines the score of an optimal valid

codon assignment, up to position i−1, having the codon assignment c′i−k, . . . , c
′
i−2,

c′i−1 for the last k codons. Similarly, assume F i−1 and Di−1 are also correct for
the corresponding codon assignment. When moving one position ahead, from
i − 1 to i, we must consider the case of any new motifs we may introduce. By
Observation 1, any new motif which ends within codon ci could not extend
past codon ci−k. There are at most 6 possible codon assignments to position
ci−k that can directly precede a specific codon assignment ci−k+1, . . . , ci−1, ci
ending at position i as there are at most 6 codons for any amino acid. There-
fore, the optimal assignment(s) to ci−k must be a subset of these possibilities.
M ′F

(
λci−k

(αi−k) . . . λci−1(αi−1)λci(αi)
)

calculates the number of new forbidden
motifs introduced in the codon assignment ci−k, . . . , ci−1, ci which end in codon
ci. By our assumption, F i−1ci−k,...,ci−2,ci−1

correctly determines the minimum num-
ber of forbidden motifs having codon assignment ci−k, . . . , ci−2, ci−1, ending
at position i − 1. Therefore, the sum of these two quantities correctly deter-
mines the minimum number of forbidden motifs. As codons ci−k+1, . . . , ci−1, ci
are fixed, and Eqn. (5) evaluates every possible assignment to ci−k to deter-
mine a minimum, then it must be the case that F ici−k+1,...,ci−1,ci is the mini-
mum number of forbidden motifs up to position i, having the codon assignment
ci−k+1, . . . , ci−1, ci for the last k codons. We argue similarly for Di

ci−k+1,...,ci−1,ci
in Eqn. (6) with the addition that any assignment of ci−k also be forbidden motif
minimal ensured by line 1 of the equation.

Finally, consider P ici−k+1,...,ci−1,ci . Line 1 of Eqn. (10) assigns the value −∞ if
the codon assignment ci−k, . . . , ci−1, ci is not valid. For all assignments which are
valid, the equation (line 2) determines the CAI score by multiplying the optimal
score up to position i−1 (guaranteed optimal by our assumption) with the fitness
of the codon represented by ci for amino acid αi. Since every assignment to codon
ci−k is evaluated and the maximum is determined, then it must be the case that
P ici−k+1,...,ci−1,ci correctly determines the score of the optimal valid codon design

up to the ith codon position, having the codon assignment ci−k+1, . . . , ci−1, ci
for the last k codons, given that the maximum length of any motif is 3k. ut

Theorem 1. P̃ ik of Eqn. (10) correctly determines the score of an optimal valid
codon design, with respect to CAI value, up to the ith codon, given that the
maximum length of any motif is 3k.

9

Proof. Lemma 1 guarantees that P ici−k+1,...,ci−1,ci correctly determines the score

of the optimal valid codon design up to the ith codon, having the codon assign-
ment ci−k+1, . . . , ci−1, ci for the last k codons, given that the maximum length
of any motif is 3k. Therefore, if every possible assignment of the last k codons
is evaluated, a maximum of 6k possibilities, the score of an optimal valid codon
design ending at position i can easily be determined.

First, consider that F̃ ik correctly determines the minimum number of for-
bidden motifs possible, up to position i, by evaluating all possible assignments

of that last k codons. Similarly, D̃i
k evaluates the maximum number of desired

motifs possible, by first ensuring that the minimum number of forbidden motifs
criteria is satisfied. Finally, by evaluating all possible codon assignments of the
last k codons, and determining the maximum score of all those which are valid,

P̃ ik must determine the optimal valid CAI score, up to position i. ut

Under the assumption that the maximum length of any motif is constant,
Theorem 2 proves that the overall time and space complexity is linear.

Theorem 2. The dynamic programming algorithm for CAI optimization finds
a valid nucleic acid sequence design for an amino acid sequence A in O(|A|+h)
time and O(|A| + h) space, where h is the total length of forbidden and desired
motifs and all motifs are of constant length.

4 Empirical Results

Data set We use a filtered set of the 3,891 CDS (coding DNA sequence) regions
of the GENECODE subset of the Encode dataset [15] (version hg17 NCBI build
35). This curated dataset comprises approximately 1% of the human genome and
is representative of several its characteristics such as distribution of gene lengths
and GC composition (54.31%). After filtering any sequences less than 75 bases in
length, the remaining 3,157 CDS regions range in length from 75 to 8186 bases,
averaging 173 bases with 267 bases standard deviation.

Codon frequencies In all cases, we use the codon frequencies of Escherichia
coli as reported by the Codon Usage Database [http://www.kazusa.or.jp/codon].

Implementation and hardware All algorithms were implemented in C++
and compiled with g++ (GCC 4.1.0). Experiments were run on our reference
Pentium IV 2.4 GHz processor machines, with 1GB main memory and 256 Kb
of CPU cache, running SUSE Linux version 10.1.

4.1 Results

To evaluate the effectiveness and efficiency of our algorithm, a forbidden and
desired motif set were constructed which could be considered typical in practice.

10

It is common for a gene synthesis experiment to use a single restriction enzyme.
Furthermore, for reasons affecting gene expression, a common task is the removal
of polyhomomeric regions (consecutive repeat region of identical nucleotides).
Therefore, we have created a forbidden motif set containing ten elements includ-
ing GAGTC, GACTC, AAAA, TTTT, GGGG, and CCCC where GAGTC is the motif for the
MlyI restriction enzyme, GACTC is its reverse complement and the other motifs
ensure no polyhomomeric regions greater than length three are permitted. The
other four elements of the forbidden motif set (not shown) are immuno-inhibitory
motifs originally used in the work of Satya et. al [13]. That work also used a
desired motif set consisting entirely of thirty-three immuno-stimulatory motifs.
We use this same desired motif set in our study.

Performance of the CAI optimization algorithm

motif sets CAI value
(std. dev.)

forbidden
(std. dev.)

desired
(std. dev.)

none (wild-types) 0.6477 (0.06) 9.2372 (16.24) 0.4869 (1.06)
forbidden 0.9161 (0.04) 0.1384 (0.45) 0 (0.00)
forbidden and desired 0.8280 (0.05) 0.1384 (0.45) 10.1324 (14.84)

Table 1. The mean values and standard deviations (averaged over 3,157 sequences)
of CAI score, number of forbidden motifs, and number of desired motifs are shown
for the original sequences (wild-types), the optimized sequences with forbidden motifs
minimized and the optimized sequences with forbidden motifs minimized and then
desired motifs maximized.

Results are shown for all 3,157 sequences in Figure 2. On the left side of the
figure, the difference in optimal CAI value and the original CAI value of each se-
quence, when forbidden motifs are minimized, is plotted against sequence length.
Desired motifs were not considered. For all sequences, the CAI value is improved
compared with the original, with an average improvement of approximately 0.27.
Shown on the right is the difference in CAI value for each sequence when the
forbidden motifs are minimized and then the desired motifs are maximized. For
this case, the average improvement of CAI value drops to 0.18, with only 12
sequences (0.4%) reporting a worse CAI value than the original. A summary
of CAI statistics is presented in Table 1. In virtually all cases, forbidden motifs
were eliminated entirely. Less than 2% of all sequences contained more than one
forbidden motif after optimization, with only 0.6% containing more than two.
On average 10 motifs were added to optimized sequences, when desired motifs
were considered. These results demonstrate that it is possible to engineer motifs
while still optimizing codon usage considerably. The runtime of the algorithm
scales linearly with sequence length as would be expected. Considering desired
motifs, in addition to forbidden motifs, increases run-time by a small constant

11

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
● ●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

● ● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
● ●●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●●

●● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●
●
●
●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●● ●
●

●

●●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

● ●
●●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●
●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

● ● ●

●

●
●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

● ●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●
●●

●

●

●
●
●
●

● ●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●
●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●
●

●●

●

●

●●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

100 200 500 1000 2000 5000

−
0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

sequence length [log scale]

C
A

I a
ft

er
−−

C
A

I b
ef

o
re

●

●

●

●
●

●●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
● ●

●

●
● ●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

● ●
●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●● ●

● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●
●

●

●

●
●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

● ●
●●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●
●●●
●

●

●

●●

● ●

●

●●
●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●
●
●

●●

●

●

●
●●

●

●●●●

●

●

●

●

●● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●● ●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●
● ●●

●
●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●
●●

●

●

●
●● ●

●
●

●
●

●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

100 200 500 1000 2000 5000

−
0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

sequence length [log scale]

C
A

I a
ft

er
−−

C
A

I b
ef

o
re

Fig. 2. Results are shown for the difference between the optimal CAI value and the
original CAI value, plotted against sequence length, for each of the 3,157 sequences. On
the left, results are shown when only the forbidden motif set is considered. The right
side shows the results when both the forbidden and desired motif sets are considered.

factor, on average. In the worst case, the algorithm terminates in 0.43 CPU
seconds for the longest sequence (8,141 bases).

5 Conclusions

In this work we have presented the first linear time and space algorithm for the
problem of optimizing the codon adaptation index (CAI) value of a gene. The
algorithm provides a guarantee that codon designs will be found which have a
minimum number of forbidden motifs from some user defined set. The algorithm
is also capable of adding desirable motifs, when applicable. A formal proof of
correctness and time and space analysis was given. An extensive empirical anal-
ysis of the algorithm has shown it to be highly effective and efficient in practice.
An efficient algorithm is a crucial first step towards designing genes while con-
sidering other important sequence features. For instance, designing genes with a
guarantee that the resulting nucleic acid sequence does not form stable nucleic
acid secondary structure is an interesting future direction, and one that may
greatly effect translational efficiency.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their constructive suggestions to improve the presentation of this manuscript.

12

References

1. Aho, A.V.: Algorithms for finding patterns in strings, pp. 255–300. MIT Press,
Cambridge, MA, USA (1990)

2. Fuglsang, A.: Codon optimizer: a freeware tool for codon optimization. Protein
Expression and Purification 31(2), 247–249 (2003)

3. Gao, W., Rzewski, A., Sun, H., Robbins, P.D., Gambotto, A.: Upgene: Application
of a web-based dna codon optimization algorithm. Biotechnology Progress 20(2),
443–448 (2004)

4. Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D.C., Jahn,
D.: Jcat: a novel tool to adapt codon usage of a target gene to its potential expres-
sion host. Nucleic Acids Research 33(Web Server issue), 526–531 (2005)

5. Gusfield, D.: Algorithms on strings, trees, and sequences. Cambridge Press, New
York, NY, USA (1997)

6. Gustafsson, C., Govindarajan, S., Minshull, J.: Codon bias and heterologous pro-
tein expression. Trends in Biotechnology 22(7), 346–353 (2004)

7. Holm, L.: Codon usage and gene expression. Nucleic Acids Research 14(7), 3075–
3087 (1986)

8. Hoover, D.M., Lubkowski, J.: Dnaworks: an automated method for designing
oligonucleotides for pcr-based gene synthesis. Nucleic Acids Research 30(10), e43
(2002)

9. Jayaraj, S., Reid, R., Santi, D.V.: Gems: an advanced software package for design-
ing synthetic genes. Nucleic Acids Research 33(9), 3011–3016 (2005)

10. Kane, J.F.: Effects of rare codon clusters on high-level expression of heterologous
proteins in escherichia coli. Current Opinion in Biotechnology 6(5), 494–500 (1995)

11. Lithwick, G., Margalit, H.: Hierarchy of sequence-dependent features associated
with prokaryotic translation. Genome Research 13(12), 2665–2673 (2003)

12. Puigbo, P., Guzman, E., Romeu, A., Garcia-Vallve, S.: OPTIMIZER: a web
server for optimizing the codon usage of DNA sequences. Nucleic Acids Research
35(suppl 2), W126–131 (2007)

13. Satya, R.V., Mukherjee, A., Ranga, U.: A pattern matching algorithm for codon
optimization and cpg motif-engineering in dna expression vectors. In: CSB ’03:
Proceedings of the IEEE Computer Society Conference on Bioinformatics. pp.
294–305. IEEE Computer Society, Washington, DC, USA (2003)

14. Sharp, P.M., Li, W.H.: The codon adaptation index–a measure of directional syn-
onymous codon usage bias, and its potential applications. Nucleic Acids Research
15(3), 1281–1295 (1987)

15. The ENCODE Consortium: The ENCODE (ENCyclopedia of DNA elements)
project. Science 306(5696), 636–640 (2004)

16. Varenne, S., Lazdunski, C.: Effect of distribution of unfavourable codons on the
maximum rate of gene expression by an heterologous organism. Journal of Theo-
retical Biology 120(1), 99–110 (1986)

17. Villalobos, A., Ness, J.E., Gustafsson, C., Minshull, J., Govindarajan, S.: Gene
Designer: a synthetic biology tool for constructing artificial DNA segments. BMC
Bioinformatics 7, 285 (2006)

18. Wu, G., Bashir-Bello, N., Freeland, S.J.: The synthetic gene designer: a flexible web
platform to explore sequence manipulation for heterologous expression. Protein
Expression and Purification 47(2), 441–445 (2006)

