Skip to main content

Synthesis, Characterization, and Antimicrobial Activity of Zinc Oxide Nanoparticles

  • Chapter
  • First Online:
Book cover Nano-Antimicrobials

Abstract

In recent years, research and the use of nanomaterials has attracted much interest due to their small size (1–100 nm) and novel structures that exhibit significantly improved physical, chemical, and biological properties compared to their bulk or molecular precursors. In this context, a new branch of multidisciplinary science integrating engineering with biology, chemistry and physics has emerged as nanosciences or nanotechnology, due to their existence and potential applications in a wide variety of fields such as electronics, ceramics, catalysis, magnetic data storage, structural components, food, cosmetics, biological and medical [1–3]. Metal oxides, in particular the transition metal oxides, have profound applications in various fields due to their excellent optical, magnetic, electrical and chemical properties. As the size decreases from the micrometer to the nanometer range, the materials exhibit enhanced diffusivity, increased mechanical strength and chemical reactivity, higher specific heat and electrical resistivity, and enhanced biological properties. This is in part because as particles become smaller, the proportion of atom found at the surface increases relative to the proportion inside its volume, which means that composite materials containing nanoparticles can be more reactive and have enhanced chemical properties. Nanostructure metal oxides are more interesting in that they can be synthesized with a very high surface-to-volume ratio and with unusual morphologies that contain numerous edge/corner and other reactive surface sites, which can be easily functionalized with different groups for the desired applications. An increasing use of nanomaterials has been reported in biological- and medical-related applications such as imaging, sensing, target drug delivery, fighting human pathogens, healthcare products, cosmetics, and food preservative agents due to better safety and stability compared to bulk precursors or their organic counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562.

    Article  Google Scholar 

  2. Rotello V (2003) Nanoparticles: Building Blocks for Nanotechnology, Kluwer Academia, Boston.

    Google Scholar 

  3. Wang ZL (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys: Condens Matter 16:R829.

    Article  Google Scholar 

  4. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal Oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686.

    Article  Google Scholar 

  5. Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioengg 86:521–522.

    Article  Google Scholar 

  6. Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211–214.

    Article  Google Scholar 

  7. Wei C, Lin WY, Zainal Z, William NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K (1994) Bactericidal activity of TiO2 photocatalyst in aqueous media: toward s solar-assisted water disinfection system. Environ Sci Tech 28:934–938.

    Article  Google Scholar 

  8. Fang M, Chen J-H, Xu X-L, Yang P-H, Hildebrand HF (2006) Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrobiol Agents 27:513–517.

    Article  Google Scholar 

  9. Jones N, Ray B, Koodali RT, Manna AC (2008) Antibacterial activity of ZnO nanoparticles suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76.

    Article  Google Scholar 

  10. Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coating. J Phys Chem B 109:8889–8898.

    Article  Google Scholar 

  11. Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Method 54:177–182.

    Article  Google Scholar 

  12. Sawai J, Yoshikawa T (2004) Quantative evalution of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol 96:803–809.

    Article  Google Scholar 

  13. Liu H-L, Yang TC-K (2003) Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light. Proc Biochem 39:475–481.

    Article  Google Scholar 

  14. Sondi I, Salopak-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182.

    Article  Google Scholar 

  15. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin, PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262.

    Article  Google Scholar 

  16. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli, physicochemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156.

    Article  Google Scholar 

  17. Sunada K, Kikuchi Y, Hashimoto K, Fujishima K (1998) Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol 32:726–728.

    Article  Google Scholar 

  18. Bellantone M, Williams HD, Hench LL (2002) Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother 46:1940–1945.

    Article  Google Scholar 

  19. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870.

    Article  Google Scholar 

  20. Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E (2003) Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 133:4077–4082.

    Google Scholar 

  21. Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorgan Mater 3:643–646.

    Article  Google Scholar 

  22. Li Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63.

    Article  Google Scholar 

  23. Campo EJA, Peiteado M, Caballero AC, Villegas M, Modriguez-Paez JE (2009) Room temperature synthesis of high purity 2D ZnO nanoneedles. J Ceramic Proc Res 10:477–481.

    Google Scholar 

  24. Baruah S, Dutta J (2009) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10:013001 (18pp).

    Google Scholar 

  25. Liu B, Zeng HC (2004) Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 20:4196–4204.

    Article  Google Scholar 

  26. Xu F, Zhang P, Navrotsky A, Yuan ZT, Ren TZ, Halasa M, Su B-L (2007) Hierarchically assembled porous ZnO nanoparticles: synthesis, surface energy, and photocatalytic activity. Chem Mater 19:5680–5686.

    Article  Google Scholar 

  27. Kim H, Sigmund W (2004) ZnO nanocrystals synthesized by physical deposition. J Nanosci Nanotechnol 4:275–278.

    Article  Google Scholar 

  28. Chen ZG, Li F, Liu G, Tang Y, Cong H, Lu GQ, Cheng HM (2006) Preparation of high purity ZnO nanobelts by thermal evaporation of ZnS. J Nanosci Nanotechnol 6:704–707.

    Article  Google Scholar 

  29. Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572.

    Article  Google Scholar 

  30. Tam KH, Djurisic AB, Chan CMN, Xi YY, Tse CW, Leung YH, Chan WK, Leung FCC, Au DWT (2008) Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 516:6167–6174.

    Article  Google Scholar 

  31. Raghupati RK, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028.

    Article  Google Scholar 

  32. Vishwanathan R, Gupta RB (2003) Formation of zinc oxide nanoparticles in supercritical water. J Supercritical Fluids 27:187–193.

    Article  Google Scholar 

  33. Tang L, Bao X-B, Zhou H, Yuan A-H (2008) Synthesis and characterization of ZnO nanorods by a simple single-source hydrothermal method. Physica E 40:924–928.

    Article  Google Scholar 

  34. Zhang Z, Mu J (2007) Hydrothermal synthesis of ZnO nanobundles controlled by PEO–PPO–PEO block copolymers. J Colloid Interface Sci 307:79–82.

    Article  Google Scholar 

  35. Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P (2010) ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Matters Chem Phys 121:198–201.

    Article  Google Scholar 

  36. Ma M-G, Zhu YJ, Cheng GF, Huang YH (2007) Microwave synthesis and characterization of ZnO with various morphologies. Mater Lett 62:507–510.

    Article  Google Scholar 

  37. Vijayan TA, Chandramohan R, Valanarasu S, Thirumalai J, Venkateswaran S, Mahalingam T, Srkumar SR (2008) Optimization of growth conditions of ZnO nano thin films by chemical double dip technique. Sci Technol Adv Mater 9:035007.

    Article  Google Scholar 

  38. Dange C, Phan T, Andre V, Rieger J, Persello J, Foissy A (2007) Adsorption mechanism and dispersion efficiency of three anionic additives [poly(acrylic acid), poly(styrene sulfonate) and HEDP] on zinc oxide. J Colloid Interface Sci 315:107–115.

    Article  Google Scholar 

  39. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspension of ZnO nanoparticles (ZnO nanofluids). J Nanoparticles Res 9:479–489.

    Article  Google Scholar 

  40. Desselberger U (2000) Emerging and re-emerging infectious diseases. J Infect 40:3–15.

    Article  Google Scholar 

  41. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697.

    Article  Google Scholar 

  42. Donlan RM, Costerton JW (2002) Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193.

    Article  Google Scholar 

  43. Gilbert P, Collier PJ, Brown MR (1990) Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother 34:1865–1868.

    Google Scholar 

  44. Hajokova P, Spatenka P, Horsky J, Horska I, Kolouch A (2007) Photocatalytic effect of TiO2 films on various virus and bacteria. Plasma Process Polym 4:S397–S401.

    Article  Google Scholar 

  45. Adama LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532.

    Article  Google Scholar 

  46. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles – an antibacterial study. Sci Technol. Adv Mater 9:035004 (7pp).

    Google Scholar 

  47. Reddy KM, Feris K, Bell J, Hanley C, Punnoose A (2007) Selective toxicity of zine oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:213902 (3 pp).

    Google Scholar 

  48. Rekha K, Nirmala M, Nair MG, Anukaliani A (2010) Structure, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physica B 405:3180–3185.

    Article  Google Scholar 

  49. Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR, Moballegh A, Moghaddam KM, Shahverdi AR (2005) ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. J Biomed Mater Res B: Appl Biomater 93B:557–561.

    Google Scholar 

  50. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490.

    Article  Google Scholar 

  51. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107:1193–1201.

    Article  Google Scholar 

  52. Heinlaan M, Ivask A, Blinova I, Dubourguir HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fisheri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316.

    Article  Google Scholar 

  53. Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24:4140–4144.

    Article  Google Scholar 

  54. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of zinc oxide nanoparticles on Campylobacter jejuni. Appl Environ Microbiol 77:2325–2331.

    Article  Google Scholar 

  55. Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL (2009) Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28:1324–1330.

    Article  Google Scholar 

  56. Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177.

    Article  Google Scholar 

  57. Wang X, Yang F, Yang W, Yang X (2007) A study on the antibacterial acitivity of one-dimensional ZnO nanowire arrays: Effects of the orientation and plane surface. Chem Commun 4419–4421.

    Google Scholar 

  58. Zhou D, Keller AA (2010) Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res 44:2948–2956.

    Article  Google Scholar 

  59. Ohira T, Yamamoto O, Iida Y, Nakagawa Z (2008) Antibacterial activity of ZnO powder with crystallographic orientation. J Mater Sci Mater Med 19:1407–1412.

    Article  Google Scholar 

  60. Yamamoto O, Komatsu M, Sawai J, Nakagawa Z (2004) Effect of lattice constant of zinc oxide on antibacterial characteristics. J Mater Sci Med 15:847–851.

    Article  Google Scholar 

  61. Xia T, Kovochich M, Liong M, Adler LM, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134.

    Article  Google Scholar 

  62. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolavels. Sciences 311:622–627.

    Article  Google Scholar 

  63. Lipovsky A, Tzitrinovich Z, Friedmann H, Applerot G, Gedanken A, Lubart R (2009) EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J Phys Chem C 113:15997–16001.

    Article  Google Scholar 

  64. Jiang J, Oberdrster G, Elder A, Gelein R, Mercer P, Biswas P (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2:33–42.

    Article  Google Scholar 

  65. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386.

    Article  Google Scholar 

  66. Hirota K, Sugimoto M, Kato M, Tsukagoshi K, Tanigawa T, Sugimoto H (2010) Preparation of Zine oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceramics Int 36:497–506.

    Article  Google Scholar 

  67. Ma H, Kabengi NJ, Bertsch PM, Unrine JM, Glenn TC, Williams PL (2011) Comparative phototoxicity of nanoparticle and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particles size. Environ Pollut 159:1473–1480.

    Article  Google Scholar 

  68. Applerot G, Perkas N, Amirian G, Girshevitz O, Gedanken A (2009) Coating of glass with ZnO via ultrasonic irradiation and a study of its antibacterial properties. Appl Surf Sci 2565:53–58.

    Google Scholar 

  69. McCarthy TJ, Zeelie JJ, Krause DJ (1992) The antibacterial action of zinc ion/antioxidant combination. J Clin Pharm Ther 17:51–54.

    Article  Google Scholar 

  70. Blencowe DK, Morby AP (2003) Zn (II) metabolism in prokaryotes. FEMS Microbiol Rev 27:291–311.

    Article  Google Scholar 

  71. Foster TJ (2005) Immune envasion by staphylococci. Nat Rev Microbiol 3:948–958.

    Article  Google Scholar 

  72. Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194.

    Article  Google Scholar 

  73. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res 42:4591–4602.

    Article  Google Scholar 

  74. Dutta RK, Sharma PK, Bhargava R, Kumar N, Pandey AC (2010) Differential susceptibility of Escherichia coli cells towards transition metal-doped and matrix-embeded ZnO nanoparticles. J Phy Chem B 114:5594–5599.

    Article  Google Scholar 

  75. Lu W, Liu G, Gao S, Xing S, Wang J (2008) Tyrosine-assistant preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology 19:445711 (10pp).

    Google Scholar 

  76. Lin Y-J, Xu X-Y, Huang L, Evans DG, Li D-Q (2009) Bactericidal properties of ZnO-Al2O3 composites formed from layered double hydroxide precursors. J Mater Sci Mater Med 20:591–595.

    Article  Google Scholar 

  77. Yamamoto O, Sawai J, Sasamoto T (2000) Change in antibacterial characteristic with doping of ZnO in MgO-ZnO solid solution. Int J Inorganic Mater 2:451–454.

    Article  Google Scholar 

  78. Moribe S, Ikoma T, Akiyama K, Zhang Q, Saito F, Tero-Kubota S (2007) EPR study on paramagnetic species in nitrogen-doped ZnO powders prepared by a mechanochemical method. Chem Phys Lett 436:373–377.

    Article  Google Scholar 

  79. Jose B, Antoci V, Zeiger AR, Wickstrom E, Hickok NJ (2005) Vancomycin covalently bonded to titanium beads kills Staphylococcus aureus. Chem Biol 12:1041–1048.

    Article  Google Scholar 

  80. Perelshtein I, Applerot G, Perkas N, Wehrschetz E, Hasmann A, Guebitz GM, Gedanken A (2009) Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on Fabrics. Appl Mater Interfaces 1:361–366.

    Article  Google Scholar 

  81. Koga H, Kitaoka T, Wariishi H (2009) In situ synthesis of silver nanoparticles on zinc oxide whiskers incorporated in a paper matrix for antibacterial applications. J Mater Chem 19:2135–2140.

    Article  Google Scholar 

  82. Vila B, Escribano F, Esteban A, Fontgibell A, Esteve-Garcia E, Brufau J (2010) Application of ZnO-functionalised-sepiolite in weaning piglet diets. Livestock Sci 134:232–235.

    Article  Google Scholar 

  83. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging disiciple evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839.

    Article  Google Scholar 

  84. Adisehaih P, Hall JB, McNeil SE (2009) Nanomaterial standards for efficacy and toxicity assessment. WIREs Nanomed Nanobiotechnol 2:99–112.

    Article  Google Scholar 

  85. Hirano S, Higo S, Tsukamota N, Kobayashi E, Suzuki KT (1989) Pilmonary clearance and toxicity of zinc oxide instilled into the rat lung. Arch Toxicol 63:336–342.

    Article  Google Scholar 

  86. Ma-Hock L, Burkhardt S (2008) Inhalation toxicity of nano-scale zinc oxide in comparison with pigmentary zinc oxide using short-term inhalation test protocol. Naunyn-Schmiedebergs Arch Pharmacol 377:354.

    Google Scholar 

  87. Wesselkamper SC, Chen LC, Gordon T (2001) Development of pulmonary tolerance in mice exposed to zinc oxide fumes. Toxicol Sci 60:144–151.

    Article  Google Scholar 

  88. Wesselkamper SC, Chen LC, Gordon T (2005) Quantitative trait analysis of the development of pulmonary tolerance to inhaled zinc oxide in mice. Respir Res 6:73.

    Article  Google Scholar 

  89. Wang B, Feng WY et al (2008) Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276.

    Article  Google Scholar 

  90. Lam HF, Chen LC, Ainsworth D, Peoples S, Amdur MO (1988) Pulmonary function of guinea pigs exposed to freshly generated ultrafine zinc oxide with and without spike concentrations. Am Ind Hyg Assoc J 49:333–341.

    Article  Google Scholar 

  91. Zvyagin AV, Zhao X, Gierden A, Sanchez W, Ross JA, Roberts MS (2008) Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Opt 13:064031 doi:10.1117/1.3041492.

    Article  Google Scholar 

  92. Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y (2008) Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health Part A-Toxic/Hazard Subs Environ Engineer 43:278–284.

    Article  Google Scholar 

  93. Zhu X, Zhu S et al (2009) Acute toxicities of six manufactured nanomaterial suspension to Daphnia magna. J Nanoparticle Res 11:67–75.

    Article  Google Scholar 

  94. Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J Toxicol Sci 34:119–122.

    Article  Google Scholar 

  95. Deng XY, Luan QX, Chen WT, Wang YL, Jiao Z (2009) Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology 20:11510.

    Google Scholar 

  96. Lee J, Kang BS, Hicks B, Chancellor TF, Chu BH, Wang H-T, Keselowsky BG, Ren F, Lele TP (2008) The control of cell adhesion and viability by zinc oxide nanorods. Biomaterials 29:3743–3749.

    Article  Google Scholar 

  97. Gopalan RC, Osman IF, Amani A, De Matas M, Anderson D (2009) The effect of zinc oxide and titanium dioxide nanoparticles in the comet assay with UVA photoactivation of human sperm and lymphocytes. Nanotoxicology 3:33–39.

    Article  Google Scholar 

  98. Beckett WS, Chalupa DF, Paul-Brown A, Speers DM, Stewart JC, Frampton MW, Well MJ, Haung LS, Cox C, Zareba W, Oberdorster G (2005) Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. Am J Respir Crit Care Med 171:1129–1135.

    Article  Google Scholar 

Download references

Acknowledgements

The author thank Dr. Vector Huber for the critical reading the manuscript. The author would like to thank Dr. R.T. Koodali and Krishna R. Raghupathi for their help in preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adhar C. Manna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Manna, A.C. (2012). Synthesis, Characterization, and Antimicrobial Activity of Zinc Oxide Nanoparticles. In: Cioffi, N., Rai, M. (eds) Nano-Antimicrobials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24428-5_5

Download citation

Publish with us

Policies and ethics