Skip to main content

Microbial Degradation of Plastics and Water-Soluble Polymers

  • Chapter
  • First Online:

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

Polymer chemistry began approximately 90 years ago, when Staudinger established the theoretical background from which commercial production of synthetic polymers arose. Synthetic polymers, especially solid ones known as plastics, have been at the forefront since World War II. Annual worldwide production of plastics amounts to more than 200 million tons. Synthetic polymers were originally designed to replace natural polymers, with the advantages of long life (no decay), better performance, plasticity of form, and low cost of production, dependent on cheap petroleum. However, public concern over the use of synthetic polymers has been increasing since the end of 1980s as plastic bags have been polluting the environment. Plastic bags can be found everywhere from the deep sea to the highest mountains and can cause serious environmental problems by threatening wildlife and destroying scenic areas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albertsson AC, Andersson SO, Karlsson A (1987) The mechanism of biodegradation of polyethylene. Polym Degrad Stab 18:73–87

    CAS  Google Scholar 

  • Al-Malaika S, Marogi AM, Scott G (1986) Mechanisms of antioxidant action: time-controlled photoantioxidaants for polyethylene based on soluble iron compounds. J Appl Polym Sci 31:685–698

    CAS  Google Scholar 

  • Baere L, De Wilde B, Tillinger R (1994) Standard test methods for polymer degradation in solid waste treatment systems. In: Doi Y, Fukuda K (eds) Studies in polymer science-biodegradable plastics and polymers. Elsevier, The Netherlands, pp 323–330

    Google Scholar 

  • Charoenpanich J, Tani A, Moriwaki N, Kimbara K, Kawai F (2006) Dual regulation of a polyethylene glycol degradative operon by AraC-type and GalR-type regulators in Sphingopyxis macrogoltabida strain 103. Microbiology 152:3025–3034

    CAS  Google Scholar 

  • Chen S, Tong X, Woodard RW, Du G, Wu J, Chen J (2008) Identification and characterization of bacterial cutinase. J Biol Chem 283:25854–25862

    CAS  Google Scholar 

  • Chiellini E, Corti A, D’Antone S, Solaro R (2003) Biodegradartion of poly(vinyl alcohol) based materials. Prog Polym Sci 28:963–1014

    CAS  Google Scholar 

  • Deguchi T, Kakezawa M, Nishida T (1997) Nylon biodegradation by lignin-degrading fungi. Appl Environ Microbiol 63:329–331

    CAS  Google Scholar 

  • Deguchi T, Kitaoka Y, Kakezawa M, Nishida T (1998) Purification and characterization of a nylon-degrading enzyme. Appl Environ Microbiol 64:1366–1371

    CAS  Google Scholar 

  • Doser C, Zschocke P, Biedermann R, Sussmuth R, Trauter J (1997) Mikrobieller abbau von polyacrylsaureshlichten. Texilveredlung 32:245–249

    CAS  Google Scholar 

  • Dwyer DF, Tiedje JM (1986) Degradation of ethylene glycol and polyethylene glycols by methanogenic consortia. Appl Environ Microbiol 52:852–856

    CAS  Google Scholar 

  • Enokibara S, Kawai F (1997) Purification and characterization of an ether bond-cleaving enzyme involved in the metabolism of polyethylene glycol. J Ferment Bioeng 83:549–554

    CAS  Google Scholar 

  • Frings J, Schramm E, Schink B (1992) Enzymes involved in anaerobic polyethylene glycol degradation by Pelobacter venetianus and Bacteroides strain PG1. Appl Environ Microbiol 58:2164–2167

    CAS  Google Scholar 

  • Gordienko AD, Kudokotseva EV (1980) Study of the functional composition of mitochondria in cellular suspensions subject to a cryoprotectant solution. Kriobiol Kriomed 7:32–34

    CAS  Google Scholar 

  • Grant MA, Payne WJ (1983) Anaerobic growth of Alcaligenes faecalis var. denitrificans at the expense of ether glycols and nonionic detergents. Biotechnol Bioeng 25:627–630

    CAS  Google Scholar 

  • Haines J, Alexander M (1975) Microbial degradation of polyethylene glycols. Appl Microbiol 29:621–625

    CAS  Google Scholar 

  • Hayashi T (1998) Microbial degradation of poly(sodium acrylate). Recent Res Dev Microbiol 2:335–349

    CAS  Google Scholar 

  • Hayashi T, Mukouyama M, Sakano K, Tani Y (1993) Degradaion of a sodium acrylate oligomer by an Arthrobacter sp. Appl Environ Microbiol 59:1555–1559

    CAS  Google Scholar 

  • Hayashi T, Nishimura H, Sakano K, Tani Y (1994) Microbial degradation of poly(sodium acrylate). Biosci Biotechnol Biochem 58:444–446

    CAS  Google Scholar 

  • Herald DA, Keil K, Bruns DE (1989) Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochem Pharmacol 38:73–76

    Google Scholar 

  • Hiraishi T, Kajiyama M, Tabata K, Abe H, Yamato I, Doi Y (2003a) Biochemistry and molecular characterization of poly(aspartic acid) hydrolase-2 from Sphingomonas sp. KT-1. Biomacromolecules 4:1285–1292

    CAS  Google Scholar 

  • Hiraishi T, Kajiyama M, Tabata K, Yamato I, Doi Y (2003b) Genetic analysis and characterization of poly(aspartic acid) hydrolase-1 from Shphingomonas sp. KT-1. Biomacromolecule 4:80–86

    CAS  Google Scholar 

  • Hiraishi T, Kajiyama M, Yamato I, Doi Y (2004) Enzymatic hydrolyxis of ?- and ?-oligo(l-aspartic acid)s by poly(aspartic acid) hydrolases-1 and 2 from Sphingomonas sp. KT-1. Macromol Biosci 4:330–339

    CAS  Google Scholar 

  • Hirota-Mamoto R, Nagai R, Tachibana S, Yasuda M, Tani A, Kimbara K, Kawai F (2006) Cloning and expression of the gene for periplasmic poly(vinyl alcohol) dehydrogenase from Sphingomonas sp. strain 113P3, a novel-type quinohaemoprotein alcohol dehydrogenase. Microbiology 152:1941–1949

    CAS  Google Scholar 

  • Hosoya H, Miyazaki N, Sugisaki Y, Takanashi E, Tsurufuji M, Yamasaki M, Tamura G (1978) Bacterial degradation of synthetic polymers and oligomers with the special reference to the case of polyethylene glycol. Agric Biol Chem 42:1545–1552

    CAS  Google Scholar 

  • Hu X, Fukutani A, Liu X, Kimbara K, Kawai F (2007a) Isolation of bacteria able to grow on both polyethylene glycol (PEG) and polypropylene glycol (PPG) and their PEG/PPG dehydrogenases. Appl Microbiol Biotechnol 73:1407–1413

    CAS  Google Scholar 

  • Hu X, Mamoto R, Shimomura Y, Kimbara K, Kawai F (2007b) Cell surface structure enhancing uptake of polyvinyl alcohol (PVA) is induced by PVA in the PVA-utilizing Sphingopyxis sp. strain 113P3. Arch Microbiol 188:235–241

    CAS  Google Scholar 

  • Hu X, Liu X, Tani A, Kimbara K, Kawai F (2008a) Proposed oxidative metabolic pathway for polypropylene glycol in Sphingobium sp. strain PW-1. Biosci Biotechnol Biochem 72:1115–1118

    CAS  Google Scholar 

  • Hu X, Mamoto R, Fujioka Y, Tani A, Kimbara K, Kawai F (2008b) The pva operon is located on the megaplasmid of Sphingopyxis sp. strain 113P3 and is constitutively expressed, although expression is enhanced by PVA. Appl Micobiol Biotechnol 78:685–693

    CAS  Google Scholar 

  • Hu X, Osaki S, Hayashi M, Kaku M, Katuen S, Kobayashi H, Kawai F (2008c) Degradation of a terephthalate-containing polyester by thermophilic actinomycetes and Bacillus species derived from composts. J Polym Environ 16:103–108

    CAS  Google Scholar 

  • Hu X, Thumarat U, Zhang X, Tang M, Kawai F (2010) Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119. Appl Microbiol Biotechnol 87:729–771

    Google Scholar 

  • Iwahashi M, Katsuragi T, Tani Y, Tsutsumi K, Kakiuchi K (2003) Mechanism for degradation of poly(sodium acrylate) by bacterial consortium No. L7–98. J Biosci Bioeng 95:483–487

    CAS  Google Scholar 

  • Jarerat A, Tokiwa Y (2001) Degradation of poly(l-lactide) by a fungus. Macromol Biosci 1:136–140

    CAS  Google Scholar 

  • Jensen KA Jr, Houman CJ, Ryan ZC, Hammel KE (2001) Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 67:2705–2711

    CAS  Google Scholar 

  • Kakudo S, Negoro S, Urabe I, Okada H (1993) Nylon oligomer degradation gene, nylC on plasmid pOAD2 from a Flavobacerium strain encodes endo-type 6-aminohecanoate oligomer hydrolase: purification and characterization of the nylC gene product. Appl Environ Microbiol 59:3978–3980

    CAS  Google Scholar 

  • Kakudo S, Negoro S, Urabe I, Okada H (1995) Characterization of endotype 6-aminohexanoate-oligomer hydrolase from Flavobacerium sp. J Ferment Bioeng 80:12–17

    CAS  Google Scholar 

  • Kanagawa K, Negoro S, Takada N, Okada H (1989) Plasmid dependence of Pseudomonas sp. strain NK87 enzymes that degrade 6-aminohexanoate-cyclic dimer. J Bacteriol 171:3181–3186

    CAS  Google Scholar 

  • Kawai F (1987) The biochemistry of degradation of polyethers. CRC Crit Rev Biotechnol 6:273–307

    CAS  Google Scholar 

  • Kawai F (1993) Bacterial degradation of acrylic oligomers and polymers. Appl Microbiol Biotechnol 39:382–385

    CAS  Google Scholar 

  • Kawai F (1995) Breakdown of plastics and polymers by microorganisms. In: Fichter A (ed) Advances in biochemical engineering/biotechnology, vol 52. Springer, Germany, pp 151–194

    Google Scholar 

  • Kawai F (1996) Bacterial degradation of a new polyester, polyethylene glycol-phthalate polyester. J Environ Polym Degrad 4:21–28

    CAS  Google Scholar 

  • Kawai F (1999) Sphingomonads involved in the biodegradation of xenobiotic polymers. J Ind Microbiol Biotechnol 23:400–407

    CAS  Google Scholar 

  • Kawai F (2002) Microbial degradation of polyethers. Appl Microbiol Biotechnol 58:30–38

    CAS  Google Scholar 

  • Kawai F (2010a) Polylactic acid (PLA)-degrading micoorganisms and PLA depolymerases. In: Gross RA, Chen HN (eds) Green polymer chemistry: biocatalysts and biomaterials. American Chemical Society, USA, pp 405–414

    Google Scholar 

  • Kawai F (2010b) The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms. Biosci Biotechnol Biochem 74:1743–1759

    CAS  Google Scholar 

  • Kawai F, Hayashi T (2002) Biodegradation of polyacrylate. In: Matsumura S, Steinbüchel A (eds) Biopolymers, vol 9. Wiley-VCH, Germany, pp 299–321

    Google Scholar 

  • Kawai F, Hu X (2009) Biochemistry of microbial polyvinyl alcohol degradation. Appl Microbiol Biotechnol 84:227–237

    CAS  Google Scholar 

  • Kawai F, Moriya F (1991) Bacterial assimilation of polytetramethylene glycol. J Ferment Bioeng 71:1–5

    CAS  Google Scholar 

  • Kawai F, Yamanaka H (1986) Biodegradation of polyethylene glycol by symbiotic mixed culture (obligate mutualism). Arch Microbiol 146:125–129

    CAS  Google Scholar 

  • Kawai F, Hanada K, Tani Y, Ogata K (1977) Bacterial degradation of water-insoluble polymer (polypropylene glycol). J Ferment Technol 55:89–96

    CAS  Google Scholar 

  • Kawai F, Okamoto T, Suzuki T (1985) Aerobic degradation of polypropylene glycol by Corynebacterium sp. J Ferment Technol 68:239–244

    Google Scholar 

  • Kawai F, Igarashi K, Kasuya F, Fukui M (1994) Proposed mechanism for bacterial metabolism of polyacrylate. J Environ Polym Degrad 2:59–65

    CAS  Google Scholar 

  • Kawai F, Shibata M, Yokoyama S, Maeda S, Tada K, Hayashi S (1999) Biodegradability of Scott–Gelead photodegradable polyethylene and polyethylene wax by microorganisms. Macromol Symp 144:85–99

    Google Scholar 

  • Kawashima Y, Ohki T, Shibata N, Higuchi Y, Wakitani Y, Matsuura Y, Nakata Y, Takeo M, Kato D, Negoro S (2009) Moleccular design of a nylon-6 byproduct-degrading enzyme from a carboxylesterase with a ?-lactamase fold. FEBS J 276:2547–2556

    CAS  Google Scholar 

  • Kinoshita S, Kageyama S, Iba K, Yamada Y, Okada H (1975) Utilization of a cyclic dimer and linear oligomers of ?-aminocaproic acid by Achromobacter guttatus KI71. Agric Biol Chem 39:1219–1223

    CAS  Google Scholar 

  • Kinoshita S, Negoro S, Muramatsu M, Bisaria VS, Sawada S, Okada H (1977) 6-Aminohexanoic acid cyclic dimer hydrolase: a new cyclic amide hydrolase produced by Achromobacter guttatus KI72. Europe J Biochem 80:489–490

    CAS  Google Scholar 

  • Kinoshita S, Terada T, Tanigucchi T, Takene Y, Masda S, Matsunaga N, Okada H (1981) Purification and characterization of 6-aminohexanoic-acid-oligomer hydrolase of Flavobacerium sp. KI71. Europe J Biochem 116:547–551

    CAS  Google Scholar 

  • Kleeberg I, Welzel K, VandenHeuvel J, Müller R-J, Deckwer W-D (2005) Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters. Biomacromolecules 6:262–270

    CAS  Google Scholar 

  • Klomklang W, Tani A, Kimbara K, Mamoto R, Ueda T, Shimao M, Kawai F (2005) Biochemical and molecular characterization of a periplasmic hydrolase for oxidized polyvinyl alcohol from Sphingomonas sp. strain 113P3. Microbiology 151:1255–1262

    CAS  Google Scholar 

  • Kohlweyer U, Thiemer B, Schraeder T, Andreesen JR (2000) Tetrahydrofuran degradation by a newly isolated culture of Pseudonocardia sp. strain K1 FEMS. Microbiol Lett 186:301–306

    CAS  Google Scholar 

  • Larking DM, Crawford RJ, Christie GBY, Linergan GT (1999) Enhanced degradation of polyvinyl alcohol by Pycnoporus cinabarinus after pretreatment with Fenton’s reagent. Appl Environ Microbiol 65:1798–1800

    CAS  Google Scholar 

  • Larson RJ, Bookland EA, Williams RT, Yocom KM, Saucy DA, Freeman MB, Swift G (1997) Biodegradation of acrylic acid polymers and oligomers by mixed microbial communities in activated sludge. J Environ Polym Degrad 5:41–48

    CAS  Google Scholar 

  • Mamoto R, Hu X, Chiue H, Fujioka Y, Kawai F (2008) Cloning and expression of soluble cytochrome c and its role in polyvinyl alcohol degradation by polyvinyl alcohol-utilizing Sphingopyxis sp. strain 113P3. J Biosci Bioeng 105:147–151

    CAS  Google Scholar 

  • Masaki K, Kamini NR, Ikeda H, Iefuji H (2005) Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other bioderadable plastics. Appl Environ Microbiol 71:7548–7550

    CAS  Google Scholar 

  • Matsuda E, Abe N, Tamakawa H, Kaneko J, Kamio Y (2005) Gene cloning and molecular characterization of an extracellular poly(l-lactic acid) depolymerae from Amycolatopsis sp. strain K104–1. J Bacteriol 187:7333–7340

    CAS  Google Scholar 

  • Matsumura S (2002) Biodegradation of poly(vinyl alcohol) and its copolymers. In: Matsumura S, Steinbüchel A (eds) Biopolymers, vol 9. Wiley-VCH, Germany, pp 329–361

    Google Scholar 

  • Matsumura S, Maeda S, Takahashi J, Yoshikawa S (1988) Biodegradation of poly(vinyl alcohol) and poly(sodium acrylate)-co-(vinyl alcohol). Kobunshi Ronbunshu 45:317–324

    CAS  Google Scholar 

  • Matsumura S, Kurita H, Shimokobe H (1993) Anaerobic biodegradability of polyvinyl alcohol. Biotechnol Lett 15:749–754

    CAS  Google Scholar 

  • Mayumi D, Shigeno Y, Uchiyama H, Nomura N, Nakajima KT (2008) Identification and characterization of novel poly(dl-lactic acid) depolymerases from metagenome. Appl Microbiol Biotechnol 79:743–750

    CAS  Google Scholar 

  • Mejia AI, Lucy Lopez BL, Mulet A (1999) Biodegradation of poly(vinyl alcohol) with enzymatic extracts of Phaenerochaete chrysosporium. Macromol Symp 148:131–147

    Google Scholar 

  • Müller R, Kleeberg I, Deckwer W (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86:87–95

    Google Scholar 

  • Müller R-J, Schrader H, Profe J, Dresler K, Deckwer W-D (2005) Enzymatic degradation of poly(ethylene terephthalate): Rapid hydrolyse using a hydrolase from T. fusca. Macromol Rapid Commun 6:1400–1405

    Google Scholar 

  • Nagarajan V, Singh M, Kane H, Khalili M, Bramucci M (2006) Degradation of a terephthalate-containing polyester by a thermophilic microbial consortium. J Polym Environ 14:281–287

    CAS  Google Scholar 

  • Nakamura K, Tomita T, Abe N, Kamio Y (2001) Purification and characterization of an extracellular poly(l-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104–1. Appl Environ Microbiol 67:345–353

    CAS  Google Scholar 

  • Negoro S (2000) Biodegradation of nylon oligomers. Appl Microbiol Biotechonol 54:461–466

    CAS  Google Scholar 

  • Negoro S, Kakudo S, Urabe I, Okada H (1992) A new nylon oligomer degradation gene (nylC) on plasmid pOAD2 from Flavobacterium sp. J Bacteriol 174:7948–7953

    CAS  Google Scholar 

  • Nishikawa M, Ogawa K (2004) Antimicrobial activity of a chelatable poly(arginyl-histidine) produced by the ergot fungus Verticillium kibiense. Antimicrob Agents Chemother 48:229–235

    CAS  Google Scholar 

  • Nord FF (1936) Dehydrogenation ability of Fusarium lini B. Naturwissenschaften 24:793

    Google Scholar 

  • Obradors N, Aguilar J (1975) Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri. Appl Environ Microbiol 57:2383–2388

    Google Scholar 

  • Obst M, Steinbüchel A (2004) Microbial degradation of poly(amino acid)s. Biomacromolecules 5:1166–1176

    CAS  Google Scholar 

  • Ogata K, Kawai F, Fukaya M, Tani Y (1975) Isolation of polyethylene glycols-assimilable bacteria. J Ferment Technol 53:757–761

    CAS  Google Scholar 

  • Ohta T, Tani A, Kimbara K, Kawai F (2005) A novel nicotinoprotein aldehyde dehydrogenase involved in polyethylene glycol degradation. Appl Microbiol Biotechnol 68:639–646

    CAS  Google Scholar 

  • Ohta T, Kawabara T, Nishikawa K, Tani A, Kimbara K, Kawai F (2006) Analysis of amino acid residues involved in catalysis of polyethylene glycol dehydrogenase from Sphingopyxis terrae, using three-dimensional molecular modeling-based kinetic characterization of mutants. Appl Environ Microbiol 72:4388–4396

    CAS  Google Scholar 

  • Ornek D, Jayaraman A, Syrett BC, Hsu C-H, Mansfeld FB, Wood TK (2002) Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or ?-polyglutamate. Appl Microbiol Biotechnol 58:651–657

    CAS  Google Scholar 

  • Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K (1995) Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. J Appl Pol Sci 56:1789–1796

    CAS  Google Scholar 

  • Payne WJ (1963) Pure culture studies of the degradation of detergent compounds. Biotechnol Bioeng 5:355–365

    CAS  Google Scholar 

  • Potts JE, Clendinning RA, Achart WBA, Niegishi WD (1973) The biodegradability of synthetic polymers. Polym Sci Technol 3:61–79

    CAS  Google Scholar 

  • Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide degradation by an Amycolatopsis sp. Appl Environ Microbiol 63:1637–1640

    CAS  Google Scholar 

  • Pranamuda H, Tsuchii A, Tokiwa T (2001) Poly(l-lactide)-degrading enzyme produced by Amycolatopsis sp. Macromol Biosci 1:25–29

    CAS  Google Scholar 

  • Prijambada ID, Negoro S, Yomo T, Urabe I (1995) Emergence of nylon ligomer degradation enzymes in Pseudomonas aeruginosa PAO through experimental evolution. Appl Environ Microbiol 61:2020–2022

    CAS  Google Scholar 

  • Qian D, Du G, Chen J (2004) Isolation and culture characterization of a new polyvinyl alcohol-degrading strain; Penicillium sp. WSH02–21. World J Microbiol Biotechnol 20:587–591

    CAS  Google Scholar 

  • Reeve MS, McCarthy SP, Downew MJ, Gross RA (1994) Polylactide stereochemistry: effect on enzymatic degradability. Macromolecules 72:825–831

    Google Scholar 

  • Rittmann BE, Benjamin H, Odencrantz JE, Sutfin JA (1992a) Biological fate of a polydisperse acrylate polymer in anaerobic sand-medium transport. Biodegradation 2:171–179

    CAS  Google Scholar 

  • Rittmann BE, Sutfin JA, Benjamin H (1992b) Biodegradation and sorption properties of polydisperse acrylate polymers. Biodegradation 2:181–190

    CAS  Google Scholar 

  • Ronkvis AM, Xie X, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42:5128–5138

    Google Scholar 

  • Roy AB, Curtis CG, Powell GM (1987) The metabolic sulphation of polyethylene glycols by isolated perfused rat and guinea-pig livers. Xenobiotica 17:725–732

    CAS  Google Scholar 

  • Rusenko KW, Donachy JE, Weler AP (1991) Purification and characterization of a shell matrix phosphoprotein from the American oyster. In: Sikes CS, Wheeler AP (eds) Surface reactive peptides and polymers: discovery and commercialization. American Chemical Society, USA, pp 107–121

    Google Scholar 

  • Schink B, Stieb M (1983) Fermentative degradation of polyethylene glycol by a strictly anaerobic, Gram-negative, nonsporeforming bacterium. Appl Environ Microbiol 45:1905–1913

    CAS  Google Scholar 

  • Schmid RD, Verger R (1988) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed 37:1608–1633

    Google Scholar 

  • Scott G (1975) Biological recycling of polymers. Polym Age 6:54–56

    CAS  Google Scholar 

  • Scott G, Gilead D (1978) British Patent 1, 586, 344

    Google Scholar 

  • Soeda Y, Toshima K, Matsumura S (2003) Sustainable enzymatic preparation of polyaspartate using a bacterial protease. Biomacromolecules 4:196–203

    CAS  Google Scholar 

  • Somyoonsap P, Tani A, Charoenpanich J, Minami T, Kimbara K, Kawai F (2008) Invovement of PEG-carboxylate dehydrogenase and glutathione S-transferase in PEG metabolism by Sphingoyxis macrogoltabida strain 103. Appl Microbiol Biotechnol 81:473–484

    CAS  Google Scholar 

  • Speranza G, Mueller B, Orlandi M, Morelli CF, Manitto P, Schink B (2002) Mechanism of anaerobi ether leavage; conversion of 2-phenoxyethanol to phenol and acetaldehyde by Acetobacterium sp. J Biol Chem 277:11684–11690

    CAS  Google Scholar 

  • Strass A, Schink B (1986) Fermentation of polyethylene glcol via acetaldehyde in Pelobacter venetianus. Appl Microbiol Biotechnol 25:37–42

    CAS  Google Scholar 

  • Sugimoto M, Tanabe M, Hataya M, Enokibara S, Duine JA, Kawai F (2001) The first step in polyethylene glycol degradation by sphingomonads proceeds via a flavoprotein alcohol dehydrogenase containing flavin adenine dinucleotide. J Bacteriol 183:6694–6698

    CAS  Google Scholar 

  • Suzuki T, Ichihara Y, Yamada M, Tonomura K (1973) Some characteristics of Pseudomonas O-3 which utilizes polyvinyl alcohol. Agric Biol Chem 37:747–756

    CAS  Google Scholar 

  • Tabata K, Abe H, Doi Y (2000) Microbial degradation of poly(aspartic acid) by two isolated strains of Pedobacter sp. and Sphingomonas sp. Biomacromolecules 1:157–161

    CAS  Google Scholar 

  • Tabata K, Kajiyama M, Hiraishi T, Abe H, Doi Y (2001) Purification and characterization of poly(aspartic acid) hydrolase from Sphingomonas sp. KT-1. Biomacromolecules 2:1155–1160

    CAS  Google Scholar 

  • Tachibana S, Kawai F, Yasuda M (2002) Heterogeneity of dehyrrogenases of Stenotrophomonas maltophilia showing dye-linked activity with polypropylene glydols. Biosci Biotechnol Biochem 66:737–742

    CAS  Google Scholar 

  • Tachibana S, Kuba N, Kawai F, Duine JA, Yasuda M (2003) Invovement of a quinoprotein (PQQ-containing) alcohol dehydrogenase in the degrdation of polypropylene glycols by the bacterium Stenotrophomonas maltophilia. FEMS Microbiol Lett 218:345–349

    CAS  Google Scholar 

  • Tachibana S, Naka N, Kawai F, Yasuda M (2008) Purification and characterization of cytoplasmic NAD+-dependent polypropylene glycol dehydrogenase from Stenotrohomonas maltophilia. FEMS Microbiol Lett 288:266–272

    CAS  Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genra, Sphingobium, Novosphingobium and Spingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    CAS  Google Scholar 

  • Tani A, Charoenpanich J, Mori T, Takeuchi M, Kimbara K, Kawai F (2007) Structure and conservation of a polyethylene glycol-degradative operon in sphingomonads. Microbiology 153:338–346

    CAS  Google Scholar 

  • Tani A, Somyoonsap P, Minami T, Kimbara K, Kawai F (2008) Polyethylene glycol (PEG)-carboxylate-CoA synthetase is involved in PEG metabolism in Sphingopyxis macrogoltabida strain 103. Arch Microbiol 189:407–410

    CAS  Google Scholar 

  • Tokiwa Y, Calabia BP (2004) Degradation of microbial polyesters. Biotechnol Lett 26:1181–1189

    CAS  Google Scholar 

  • Tokiwa Y, Calabia BP (2006) Biodegradability an biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251

    CAS  Google Scholar 

  • Tokiwa Y, Jarerat A (2004) Biodegradation of poly(l-lactide). Biotechnol Lett 26:771–777

    CAS  Google Scholar 

  • Tokiwa Y, Jarerat A, Tsuchiya A (2003) Japanese Patent 2003-61676, 4 March 2003

    Google Scholar 

  • Tomita K, Ideda N, Ueno A (2003a) Isolation and characterization of a thermophilic bacterium, Geobacillus thermocatenulatus, degrading nylon 12 and nylon 66. Biotechnol Lett 25:1743–1746

    CAS  Google Scholar 

  • Tomita K, Tsuji T, Nakajima H, Kikuchi Y, Ikarashi K, Ikeda N (2003b) Degradation of poly(d-lactic acid) by a thermophile. Polym Degrad Stab 81:167–171

    CAS  Google Scholar 

  • Watanabe Y, Moria M, Hamada N, Tsujisaka Y (1975) Formation of hydrogen peroxide by a polyvinyl alcohol degrading enzyme. Agric Biol Chem 39:2447–2448

    CAS  Google Scholar 

  • Williams DF (1981) Enzymatic hydrolysis of polylactic acid. Eng Med 10:5–7

    Google Scholar 

  • Yamanaka H, Kawai F (1991) Purification and characterization of a glycolic acid (GA) oxidase active toward diglycolic acid (DGA) produced by DGA-utilizing Rhodococcus sp. no. 431. J Ferment Bioeng 71:83–88

    CAS  Google Scholar 

  • Yasuhira K, Tanaka Y, Shibata H, Kawashima Y, Ohara A, Kato D, Takeo M, Negoro S (2007a) 6-Aminohexanoate oligomer hydrolases from the alkanophilic bacteria Agromyces sp. strain KY5R and Kocuria sp. strain KY2. Appl Environ Microbiol 73:7099–7102

    CAS  Google Scholar 

  • Yasuhira K, Uedo Y, Takeo M, Kato D, Negoro S (2007b) Genetic organization of nylon-oligomer-degrading enzymes from alkalophilic bacterium, Agromyces sp. KY5R. J Biosci Bioeng 104:521–524

    CAS  Google Scholar 

  • Zamocky M, Hallberg M, Ludwig R, Divne C, Haltrich D (2004) Ancestal gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi. Gene 338:1–14

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusako Kawai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kawai, F. (2012). Microbial Degradation of Plastics and Water-Soluble Polymers. In: Singh, S. (eds) Microbial Degradation of Xenobiotics. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23789-8_16

Download citation

Publish with us

Policies and ethics