Skip to main content

Contaminated Soil: Physical, Chemical and Biological Components

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 31))

Abstract

Soil can be described by its texture, referring to the size distribution of soil particles and the relative percentage of sand, silt and clay particles, and soil structure, the arrangement of soil particles into groups that help in water and nutrient supplying ability of the soil, and air supply to plants’ roots. The most important way in which soil texture and structure affect plant growth is the provision of water and, with it, the nutrient supply. Oxygen is required by rhizosphere microbes as well as plant roots for respiration. Soil pollution by both organic and inorganic contaminants such as fuel hydrocarbons, polynuclear aromatic hydrocarbons, polychlorinated biphenyls, chlorinated aromatic compounds, detergents, and pesticides or nitrates, phosphates, and heavy metals, inorganic acids and radionuclides reduce plant growth. Among the sources of these contaminants are agricultural runoffs, acidic precipitates, industrial waste materials and radioactive fallout. This chapter provides an overview of the contaminated soils, their physical, chemical and biological components and briefly discusses the importance of heavy metal tolerant AM fungi and heavy metal tolerant plants for reclamation of degraded soils.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamo P, Zampella M (2008) Chemical speciation to assess potentially toxic metals (PTMs) bioavailability and geochemical forms in polluted soils. In: De Vivo B, Belkin HE, Lima A (eds) Environmental geochemistry. Elsevier, Amsterdam, pp 175–203

    Chapter  Google Scholar 

  • Alloway BJ (1995) Soil processes and the behaviour of metals. In: Alloway BJ (ed) Heavy metals in soils, 2nd edn. Blackie Academic and Professional, London, pp 11–37

    Chapter  Google Scholar 

  • Bago B (2000) Putative sites for nutrient uptake in arbuscular mycorrhizal fungi. Plant Soil 226:263–274

    Article  CAS  Google Scholar 

  • Berti WR, Jacob LW (1996) Chemistry and phytotoxicity of soil trace elements from repeated sewage sludge application. J Environ Qual 25:1025–1032

    Article  CAS  Google Scholar 

  • Bothe H, Regvar M, Turnau K (2010) Arbuscular mycorrhiza, heavy metal and salt tolerance. In: Sherameti I, Varma A (eds) Soil heavy metals. Springer, Heidelberg, pp 87–107

    Chapter  Google Scholar 

  • DeMars BG, Boerner REJ (1996) Vesicular arbuscular mycorrhizal development in the Brassicaceae in relation to plant life span. Flora 191:179–189

    Google Scholar 

  • Evanko CR, Dzombak DA (1997) Remediation of metals contaminated soils and groundwater. Ground Water Remediation Technologies Analysis Center. E series: TE-97-01

    Google Scholar 

  • Forstner U (1995) Land contamination by metals – globe scope and magnitude of problem. In: Allen HE, Huang CP, Bailey GW, Bowers AR (eds) Metal speciation and contamination of soil. Lewis, Boca Raton, FL, pp 1–3

    Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gildon A, Tinker PB (1981) A heavy metal-tolerant strain of a mycorrhizal fungus. New Phytol 95:263–268

    Article  Google Scholar 

  • Gildon A, Tinker PB (1983) Interactions of vesicular-arbuscular mycorrhiza infections and heavy metals in plants II. The effects of infection on uptake of copper. Trans Br Mycol Soc 77:648–649

    Article  Google Scholar 

  • Griffioen WAJ, Iestwaart JH, Ernst WHO (1994) Mycorrhizal infection of Agrostis capillaris population on a copper contaminated soil. Plant Soil 158:83–89

    Article  CAS  Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717

    CAS  Google Scholar 

  • Hirrel MC, Mehravaran H, Gerdemann JW (1978) Vesicular arbuscular mycorrhizae in the Chenopodiaceae and Cruciferae: do they occur? Can J Bot 56:2813–2817

    Article  Google Scholar 

  • Loick N, Hobbs PJ, Hale MDC, Jones DL (2009) Bioremediation of Poly aromatic Hydrocarbon (PAH) contaminated soil by composting. Crit Rev Environ Sci Technol 39:271–332

    Article  CAS  Google Scholar 

  • Jeyasingh J, Philip L (2005) Bioremediation of chromium contaminated soil: optimization of operating parameters under laboratory conditions. J Hazard Mater B118:113–120

    Article  Google Scholar 

  • Kamal S, Prasad R, Varma A (2010) Soil microbial diversity in relation to heavy metals. In: Sherameti I, Varma A (eds) Soil heavy metals. Springer, Heidelberg, pp 31–63

    Chapter  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  PubMed  CAS  Google Scholar 

  • Marschner H, Romheld V (1995) Strategies of plants for acquisition of iron. Plant Soil 165:262–274

    Google Scholar 

  • Mathur N, Singh J, Bohra S, Quaizi A, Vyas A (2007) Arbuscular mycorrhizal fungi: a potential tool for phytoremediation. J Plant Sci 2:127–140

    Article  CAS  Google Scholar 

  • Mohapatra PK (2008) Textbook of environmental microbiology. IK International, New Delhi, pp 411–418

    Google Scholar 

  • Orlowska E, Sz Z, Jurkiewicz A, Szarek-Lukaszewska G, Turnau K (2002) Influence of restoration of arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza 12:153–160

    Article  PubMed  CAS  Google Scholar 

  • Pal S, Patra AK, Reza SK, Wildi W, Pote J (2010) Use of bio-resources for remediation of soil pollution. Nat Resour 1:110–125

    CAS  Google Scholar 

  • Pani B (2007) Textbook of environmental chemistry. IK International, New Delhi, pp 365–373

    Google Scholar 

  • Pawlowska TE, Blaszkowski J, Ruhling A (1996) The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6:499–505

    Article  Google Scholar 

  • Sambandan K, Kannan K, Raman N (1992) Distribution of vesicular-arbuscular mycorrhizal fungi in heavy metal polluted soils of Tamil Nadu. J Environ Biol 13:159–167

    CAS  Google Scholar 

  • Singh A, Kuhad RC, Ward OP (2009) Biological remediation of soil: an overview of global market and available technologies. In: Singh A, Kuhad RC, Ward OP (eds) Advances in applied bioremediation. Springer, Heidelberg, pp 1–18

    Chapter  Google Scholar 

  • Surridge AKJ, Wehner FC, Cloete TE (2009) Bioremediation of polluted soil. In: Singh A, Kuhad RC, Ward OP (eds) Advances in applied bioremediation. Springer, Heidelberg, pp 103–116

    Chapter  Google Scholar 

  • Tonin C, Vandenkoornhuyse P, Joner EJ, Straczek J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168

    Article  CAS  Google Scholar 

  • Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza 10:169–174

    Article  CAS  Google Scholar 

  • Weissenhorn I, Leyval C, Berthelin J (1993) Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soils. Plant Soil 157:247–256

    Article  CAS  Google Scholar 

  • Weissenhorn I, Leyval C, Berthelin J (1995) Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter. Biol Fertil Soil 19:22–28

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Varma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Das, A., Sherameti, I., Varma, A. (2012). Contaminated Soil: Physical, Chemical and Biological Components. In: Kothe, E., Varma, A. (eds) Bio-Geo Interactions in Metal-Contaminated Soils. Soil Biology, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23327-2_1

Download citation

Publish with us

Policies and ethics