Skip to main content

Evolutionary Rate Variation in Organelle Genomes: The Role of Mutational Processes

  • Chapter
  • First Online:
Organelle Genetics

Abstract

With the ever-expanding availability of DNA sequence data, it has become increasingly clear that genes and genomes can evolve at very different rates. Organelle genomes, in particular, provide dramatic examples of variation in nucleotide substitution rates across species, which in many cases reflect variation in underlying mutational processes. In this chapter, we review the evidence for variation in organelle mutation rates and discuss the evolutionary causes and consequences of this variation. We suggest that the existence of mutation rate variation across diverse phylogenetic scales makes organelle genomes an ideal system for investigating the interplay between mutational processes and the evolution of genome architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams KL, Daley DO, Whelan J, Palmer JD (2002) Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts. Plant Cell 14:931–943

    PubMed  CAS  Google Scholar 

  • Andersson SG, Kurland CG (1998) Reductive evolution of resident genomes. Trends Microbiol 6:263–268

    PubMed  CAS  Google Scholar 

  • Avise JC, Bowen BW, Lamb T, Meylan AB, Bermingham E (1992) Mitochondrial DNA evolution at a turtle’s pace: evidence for low genetic variability and reduced microevolutionary rate in the testudines. Mol Biol Evol 9:457–473

    PubMed  CAS  Google Scholar 

  • Baer CF, Miyamoto MM, Denver DR (2007) Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat Rev Genet 8:619–631

    PubMed  CAS  Google Scholar 

  • Barr CM, Neiman M, Taylor DR (2005) Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol 168:39–50

    PubMed  CAS  Google Scholar 

  • Barr CM, Keller SR, Ingvarsson PK, Sloan DB, Taylor DR (2007) Variation in mutation rate and polymorphism among mitochondrial genes in Silene vulgaris. Mol Biol Evol 24:1783–1791

    PubMed  CAS  Google Scholar 

  • Bergthorsson U, Adams KL, Thomason B (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424:197–201

    PubMed  CAS  Google Scholar 

  • Bogenhagen DF (1999) Repair of mtDNA in vertebrates. Am J Hum Genet 64:1276–1281

    PubMed  CAS  Google Scholar 

  • Brandvain Y, Wade MJ (2009) The functional transfer of genes from the mitochondria to the nucleus: the effects of selection, mutation, population size and rate of self-fertilization. Genetics 182:1129–1139

    PubMed  Google Scholar 

  • Brown WM, George M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    PubMed  CAS  Google Scholar 

  • Bruns TD, Szaro TM (1992) Rate and mode differences between nuclear and mitochondrial small-subunit rRNA genes in mushrooms. Mol Biol Evol 9:836–855

    PubMed  CAS  Google Scholar 

  • Carrie C, Giraud E, Whelan J (2009a) Protein transport in organelles: dual targeting of proteins to mitochondria and chloroplasts. FEBS J 276:1187–1195

    PubMed  CAS  Google Scholar 

  • Carrie C et al (2009b) Approaches to defining dual-targeted proteins in Arabidopsis. Plant J 57:1128–1139

    PubMed  CAS  Google Scholar 

  • Cermakian N, Ikeda TM, Cedergren R, Gray MW (1996) Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucleic Acids Res 24:648–654

    PubMed  CAS  Google Scholar 

  • Chamary JV, Parmley JL, Hurst LD (2006) Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet 7:98–108

    PubMed  CAS  Google Scholar 

  • Charlesworth D (2010) Apparent recent elevation of mutation rate: don’t forget the ancestral polymorphisms. Heredity 105:509–510

    PubMed  CAS  Google Scholar 

  • Chi NW, Kolodner RD (1994) Purification and characterization of MSH1, a yeast mitochondrial protein that binds to DNA mismatches. J Biol Chem 269:29984–29992

    PubMed  CAS  Google Scholar 

  • Cho Y, Mower JP, Qiu YL, Palmer JD (2004) Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci 101:17741–17746

    PubMed  CAS  Google Scholar 

  • Christensen AC et al (2005) Dual-domain, dual-targeting organellar protein presequences in Arabidopsis can use non-AUG start codons. Plant Cell 17:2805–2816

    PubMed  CAS  Google Scholar 

  • Clark-Walker GD (1991) Contrasting mutation rates in mitochondrial and nuclear genes of yeasts versus mammals. Curr Genet 20:195–198

    PubMed  CAS  Google Scholar 

  • Clayton DA, Doda JN, Friedberg EC (1974) The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc Natl Acad Sci USA 71:2777–2781

    PubMed  CAS  Google Scholar 

  • Day A, Madesis P (2007) DNA replication, recombination and repair in plastids. In: Bock R (ed) Cell and molecular biology of plastids, vol 19. Springer, Heidelberg, pp 65–119

    Google Scholar 

  • Denver DR, Morris K, Lynch M, Vassilieva LL, Thomas WK (2000) High direct estimate of the mutation rate in the mitochondrial genome of Caenorhabditis elegans. Science 289:2342–2344

    PubMed  CAS  Google Scholar 

  • Denver DR, Morris K, Lynch M, Thomas WK (2004) High mutation rate and predominance of insertions in the Caenorhabditis elegans nuclear genome. Nature 430:679–682

    PubMed  CAS  Google Scholar 

  • Eisen JA, Hanawalt PC (1999) A phylogenomic study of DNA repair genes, proteins, and processes. Mutat Res 435:171–213

    PubMed  CAS  Google Scholar 

  • Ellis J (1982) Promiscuous DNA–chloroplast genes inside plant mitochondria. Nature 299:678–679

    PubMed  CAS  Google Scholar 

  • Erixon P, Oxelman B (2008) Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene. PLoS One 3:e1386

    PubMed  Google Scholar 

  • Filee J, Forterre P (2005) Viral proteins functioning in organelles: a cryptic origin? Trends Microbiol 13:510–513

    PubMed  CAS  Google Scholar 

  • Filee J, Forterre P, Sen-Lin T, Laurent J (2002) Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins. J Mol Evol 54:763–773

    PubMed  CAS  Google Scholar 

  • Foury F, Hu J, Vanderstraeten S (2004) Mitochondrial DNA mutators. Cell Mol Life Sci 61:2799–2811

    PubMed  CAS  Google Scholar 

  • Galtier N, Nabholz B, Glemin S, Hurst GD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:4541–4550

    PubMed  CAS  Google Scholar 

  • Gray MW, Cedergren R, Abel Y, Sankoff D (1989) On the evolutionary origin of the plant mitochondrion and its genome. Proc Natl Acad Sci 86:2267–2271

    PubMed  CAS  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    PubMed  CAS  Google Scholar 

  • Guisinger MM, Kuehl JV, Boore JL, Jansen RK (2008) Genome-wide analyses of geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions. Proc Natl Acad Sci USA 105:18424–18429

    PubMed  CAS  Google Scholar 

  • Haag-Liautard C et al (2008) Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biol 6:1706–1714

    CAS  Google Scholar 

  • Hao W, Palmer JD (2009) Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes. Proc Natl Acad Sci 106:16728–16733

    PubMed  CAS  Google Scholar 

  • Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24

    PubMed  Google Scholar 

  • Holt IJ (2009) Mitochondrial DNA replication and repair: all a flap. Trends Biochem Sci 34:358–365

    PubMed  CAS  Google Scholar 

  • Howe DK, Baer CF, Denver DR (2010) High rate of large deletions in Caenorhabditis briggsae mitochondrial genome mutation processes. Genome Biol Evol 2:29–38

    Google Scholar 

  • Howell N et al (2003) The pedigree rate of sequence divergence in the human mitochondrial genome: there is a difference between phylogenetic and pedigree rates. Am J Hum Genet 72:659–670

    PubMed  CAS  Google Scholar 

  • Huang D, Meier R, Todd PA, Chou LM (2008) Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J Mol Evol 66:167–174

    PubMed  CAS  Google Scholar 

  • Karlberg O, Canback B, Kurland CG, Andersson SG (2000) The dual origin of the yeast mitochondrial proteome. Yeast 17:170–187

    PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kimura S et al (2002) A novel DNA polymerase homologous to Escherichia coli DNA polymerase I from a higher plant, rice (Oryza sativa L.). Nucleic Acids Res 30:1585–1592

    PubMed  CAS  Google Scholar 

  • Kubo N, Arimura S (2010) Discovery of the rpl10 gene in diverse plant mitochondrial genomes and its probable replacement by the nuclear gene for chloroplast RPL10 in two lineages of angiosperms. DNA Res 17:1–9

    PubMed  CAS  Google Scholar 

  • Kujoth GC, Bradshaw PC, Haroon S, Prolla TA (2007) The role of mitochondrial DNA mutations in mammalian aging. PLoS Genet 3:e24

    PubMed  Google Scholar 

  • Kuo CH, Ochman H (2009) Deletional bias across the three domains of life. Genome Biol Evol 1:145–152

    PubMed  Google Scholar 

  • Lanfear R, Thomas JA, Welch JJ, Brey T, Bromham L (2007) Metabolic rate does not calibrate the molecular clock. Proc Natl Acad Sci 104:15388–15393

    PubMed  CAS  Google Scholar 

  • Lanfear R, Welch JJ, Bromham L (2010) Watching the clock: studying variation in rates of molecular evolution between species. Trends Ecol Evol 25:495–503

    PubMed  Google Scholar 

  • Lang BF et al (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    PubMed  CAS  Google Scholar 

  • Larsen NB, Rasmussen M, Rasmussen LJ (2005) Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5:89–108

    PubMed  CAS  Google Scholar 

  • Lin Z, Nei M, Ma H (2007) The origins and early evolution of DNA mismatch repair genes–multiple horizontal gene transfers and co-evolution. Nucleic Acids Res 35:7591–7603

    PubMed  CAS  Google Scholar 

  • Lynch M (2006) Streamlining and simplification of microbial genome architecture. Annu Rev Microbiol 60:327–349

    PubMed  CAS  Google Scholar 

  • Lynch M (2007) The origins of genome architecture. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Lynch M (2010) Evolution of the mutation rate. Trends Genet 26:345–352

    PubMed  CAS  Google Scholar 

  • Lynch M, Blanchard JL (1998) Deleterious mutation accumulation in organelle genomes. Genetica 103:29–39

    Google Scholar 

  • Lynch M, Koskella B, Schaack S (2006) Mutation pressure and the evolution of organelle genomic architecture. Science 311:1727–1730

    PubMed  CAS  Google Scholar 

  • Lynch M et al (2008) A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci USA 105:9272–9277

    PubMed  CAS  Google Scholar 

  • Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci 90:4087–4091

    PubMed  CAS  Google Scholar 

  • Martin AP, Naylor GJP, Palumbi SR (1992) Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357:153–155

    PubMed  CAS  Google Scholar 

  • Masters BS, Stohl LL, Clayton DA (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51:89–99

    PubMed  CAS  Google Scholar 

  • Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. Trends Genet 17:589–596

    PubMed  CAS  Google Scholar 

  • Moraes CT (2001) What regulates mitochondrial DNA copy number in animal cells? Trends Genet 17:199–205

    PubMed  CAS  Google Scholar 

  • Moran NA (1996) Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA 93:2873–2878

    PubMed  CAS  Google Scholar 

  • Moran NA, McLaughlin HJ, Sorek R (2009) The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 323:379–382

    PubMed  CAS  Google Scholar 

  • Moriyama T, Terasawa K, Fujiwara M, Sato N (2008) Purification and characterization of organellar DNA polymerases in the red alga Cyanidioschyzon merolae. FEBS J 275:2899–2918

    PubMed  CAS  Google Scholar 

  • Morton BR (2003) The role of context-dependent mutations in generating compositional and codon usage bias in grass chloroplast DNA. J Mol Evol 56:616–629

    PubMed  CAS  Google Scholar 

  • Mower JP, Bonen L (2009) Ribosomal protein L10 is encoded in the mitochondrial genome of many land plants and green algae. BMC Evol Biol 9:265

    PubMed  Google Scholar 

  • Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD (2007) Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol 7:135

    PubMed  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 106:2–9

    PubMed  CAS  Google Scholar 

  • Nabholz B, Glemin S, Galtier N (2008) Strong variations of mitochondrial mutation rate across mammals–the longevity hypothesis. Mol Biol Evol 25:120–130

    PubMed  CAS  Google Scholar 

  • Nabholz B, Glémin S, Galtier N (2009) The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evol Biol 9:54

    PubMed  Google Scholar 

  • Ono Y et al (2007) NtPolI-like1 and NtPolI-like2, bacterial DNA polymerase I homologs isolated from BY-2 cultured tobacco cells, encode DNA polymerases engaged in DNA replication in both plastids and mitochondria. Plant Cell Physiol 48:1679–1692

    PubMed  CAS  Google Scholar 

  • Parkinson CL et al (2005) Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae. BMC Evol Biol 5:73

    PubMed  Google Scholar 

  • Peterson GI, Masel J (2009) Quantitative prediction of molecular clock and Ka/Ks at short timescales. Mol Biol Evol 26:2595–2603

    PubMed  CAS  Google Scholar 

  • Petrov DA (2002) Mutational equilibrium model of genome size evolution. Theor Popul Biol 61:531–544

    PubMed  Google Scholar 

  • Reenan RA, Kolodner RD (1992) Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics 132:975–985

    PubMed  CAS  Google Scholar 

  • Shearer TL, Van Oppen MJH, Romano SL, Wörheide G (2002) Slow mitochondrial DNA sequence evolution in the anthozoa (cnidaria). Mol Ecol 11:2475–2487

    PubMed  CAS  Google Scholar 

  • Shedge V, Arrieta-Montiel M, Christensen AC, Mackenzie SA (2007) Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell 19:1251–1264

    PubMed  CAS  Google Scholar 

  • Shutt TE, Gray MW (2006a) Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet 22:90–95

    PubMed  CAS  Google Scholar 

  • Shutt TE, Gray MW (2006b) Twinkle, the mitochondrial replicative DNA helicase, is widespread in the eukaryotic radiation and may also be the mitochondrial DNA primase in most eukaryotes. J Mol Evol 62:588–599

    PubMed  CAS  Google Scholar 

  • Sloan DB, Barr CM, Olson MS, Keller SR, Taylor DR (2008) Evolutionary rate variation at multiple levels of biological organization in plant mitochondrial DNA. Mol Biol Evol 25:243–246

    PubMed  CAS  Google Scholar 

  • Sloan DB, Oxelman B, Rautenberg A, Taylor DR (2009) Phylogenetic analysis of mitochondrial substitution rate variation in the angiosperm tribe Dileneae (Caryophyllaceae). BMC Evol Biol 9:260

    PubMed  Google Scholar 

  • Sloan DB, Alverson AJ, Storchova H, Palmer JD, Taylor DR (2010) Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. BMC Evol Biol 10:274

    PubMed  Google Scholar 

  • Smith SA, Donoghue MJ (2008) Rates of molecular evolution are linked to life history in flowering plants. Science 322:86–89

    PubMed  CAS  Google Scholar 

  • Sniegowski PD, Gerrish PJ, Johnson T, Shaver A (2000) The evolution of mutation rates: separating causes from consequences. Bioessays 22:1057–1066

    PubMed  CAS  Google Scholar 

  • Spelbrink JN et al (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28:223–231

    PubMed  CAS  Google Scholar 

  • Stewart JB et al (2008) Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol 6:e10

    PubMed  Google Scholar 

  • Sturtevant AH (1937) Essays on evolution. I. On the effects of selection on mutation rate. Q Rev Biol 12:464

    Google Scholar 

  • Sullivan J, Joyce P (2005) Model selection in phylogenetics. Annu Rev Ecol Evol Syst 36:445–466

    Google Scholar 

  • Suzuki K, Miyagishima SY (2010) Eukaryotic and eubacterial contributions to the establishment of plastid proteome estimated by large-scale phylogenetic analyses. Mol Biol Evol 27:581–590

    PubMed  CAS  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Taylor DR, Zeyl C, Cooke E (2002) Conflicting levels of selection in the accumulation of mitochondrial defects in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99:3690–3694

    PubMed  CAS  Google Scholar 

  • Thomas JA, Welch JJ, Lanfear R, Bromham L (2010) A generation time effect on the rate of molecular evolution in invertebrates. Mol Biol Evol 27:1173–1180

    PubMed  CAS  Google Scholar 

  • Timmis J (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    PubMed  CAS  Google Scholar 

  • Tolkovsky AM (2009) Mitophagy. Biochim Biophys Acta 1793:1508–1515

    PubMed  CAS  Google Scholar 

  • Trifunovic A et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    PubMed  CAS  Google Scholar 

  • Van Dyck E, Foury F, Stillman B, Brill SJ (1992) A single-stranded DNA binding protein required for mitochondrial DNA replication in S. cerevisiae is homologous to E. coli SSB. EMBO J 11:3421–3430

    PubMed  Google Scholar 

  • Vanderstraeten S, Van den Brule S, Hu J, Foury F (1998) The role of 3′–5′ exonucleolytic proofreading and mismatch repair in yeast mitochondrial DNA error avoidance. J Biol Chem 273:23690–23697

    PubMed  CAS  Google Scholar 

  • Venditti C, Meade A, Pagel M (2006) Detecting the node-density artifact in phylogeny reconstruction. Syst Biol 55:637–643

    PubMed  Google Scholar 

  • Venditti C, Meade A, Pagel M (2008) Phylogenetic mixture models can reduce node-density artifacts. Syst Biol 57:286–293

    PubMed  Google Scholar 

  • Wall MK, Mitchenall LA, Maxwell A (2004) Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria. Proc Natl Acad Sci USA 101:7821–7826

    PubMed  CAS  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    PubMed  CAS  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    PubMed  CAS  Google Scholar 

  • Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82:4443–4447

    PubMed  CAS  Google Scholar 

  • Zaegel V et al (2006) The plant-specific ssDNA binding protein OSB1 is involved in the stoichiometric transmission of mitochondrial DNA in arabidopsis. Plant Cell 18:3548–3563

    PubMed  CAS  Google Scholar 

  • Zubko MK, Day A (2002) Differential regulation of genes transcribed by nucleus-encoded plastid RNA polymerase, and DNA amplification, within ribosome-deficient plastids in stable phenocopies of cereal albino mutants. Mol Genet Genomics 267:27–37

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our research on mutation rates and the evolution of organelle genomes has been supported by the NSF (DEB-0808452 and MCB-1022128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel B. Sloan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sloan, D.B., Taylor, D.R. (2012). Evolutionary Rate Variation in Organelle Genomes: The Role of Mutational Processes. In: Bullerwell, C. (eds) Organelle Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22380-8_6

Download citation

Publish with us

Policies and ethics