Skip to main content

Introns, Mobile Elements, and Plasmids

  • Chapter
  • First Online:
Organelle Genetics

Abstract

The organellar mobilome mainly consists of mobile group I and II introns, homing endonuclease genes, and plasmids. Group I and II introns can be distinguished from each other by their sequences, secondary and tertiary RNA structures, and splicing mechanisms. These introns are potential ribozymes catalyzing their own removal from the precursor RNA transcripts. Organellar plasmids are presumed to be cryptic, although some plasmids have been associated with genetic defects. Plasmids are also of interest as, within some yeast species, plasmids appear to have been co-opted into the maintenance of telomeres in linear mitochondrial chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Amero SN, Charter NW, Buck KW, Brasier CM (1995) Nucleotide-sequence analysis indicates that a DNA plasmid in a diseased isolate of Ophiostoma novo-ulmi is derived by recombination between two long repeat sequences in the mitochondrial large subunit ribosomal RNA gene. Curr Genet 28:54–59

    PubMed  CAS  Google Scholar 

  • Akins RA, Lambowitz AM (1987) A protein required for splicing group I introns in Neurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or derivative thereof. Cell 50:331–345

    PubMed  CAS  Google Scholar 

  • Albert B, Sellem CH (2002) Dynamics of the mitochondrial genome during Podospora anserina aging. Curr Genet 40:365–373

    PubMed  CAS  Google Scholar 

  • Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197

    PubMed  CAS  Google Scholar 

  • Andersson JO (2009) Horizontal gene transfer between microbial eukaryotes. Methods Mol Biol 532:473–487

    PubMed  CAS  Google Scholar 

  • Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19:R81–R88

    PubMed  CAS  Google Scholar 

  • Backert S, Dörfel P, Lurz R, Börner T (1996) Rolling-circle replication of mitochondrial DNA in the higher plant Chenopodium album (L.). Mol Cell Biol 16:6285–6294

    PubMed  CAS  Google Scholar 

  • Backert S, Kunnimalaiyaan M, Börner T, Nielsen BL (1998) In vitro replication of mitochondrial plasmid mp1 from the higher plant Chenopodium album (L.): a remnant of bacterial rolling circle and conjugative plasmids? J Mol Biol 284:1005–1015

    PubMed  CAS  Google Scholar 

  • Badidi E, De Sousa C, Lang BF, Burger G (2003) AnaBench: a Web/CORBA-based workbench for biomolecular sequence analysis. BMC Bioinformatics 4:63

    PubMed  Google Scholar 

  • Barkman TJ, McNeal JR, Lim SH, Coat G, Croom HB, Young ND, Depamphilis CW (2007) Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol Biol 7:248

    PubMed  Google Scholar 

  • Basse CW (2010) Mitochondrial inheritance in fungi. Curr Opin Microbiol 13:712–719

    PubMed  CAS  Google Scholar 

  • Bassi GS, de Oliveira DM, White MF, Weeks KM (2002) Recruitment of intron-encoded and co-opted proteins in splicing of the bI3 group I intron RNA. Proc Natl Acad Sci USA 99:128–133

    PubMed  CAS  Google Scholar 

  • Begel O, Boulay J, Albert B, Dufour E, Sainsard-Chanet A (1999) Mitochondrial group II introns, cytochrome c oxidase, and senescence in Podospora anserina. Mol Cell Biol 19:4093–4100

    PubMed  CAS  Google Scholar 

  • Belfort M (2003) Two for the price of one: a bifunctional intron-encoded DNA endonuclease-RNA maturase. Genes Dev 17:2860–2863

    PubMed  CAS  Google Scholar 

  • Belfort M, Roberts RJ (1997) Homing endonucleases: keeping the house in order. Nucleic Acids Res 25:3379–3388

    PubMed  CAS  Google Scholar 

  • Belfort M, Derbyshire V, Parker MM, Cousineau B, Lambowitz AM (2002) Mobile introns: pathways and proteins. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington DC, pp 761–783

    Google Scholar 

  • Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424:197–201

    PubMed  CAS  Google Scholar 

  • Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 101:17747–17752

    PubMed  CAS  Google Scholar 

  • Bertrand H (2000) Role of mitochondrial DNA in the senescence and hypovirulence of fungi and potential for plant disease control. Annu Rev Phytopathol 38:397–422

    PubMed  CAS  Google Scholar 

  • Bertrand H, Bridge P, Collins RA, Garriga G, Lambowitz AM (1982) RNA splicing in Neurospora mitochondria. Characterization of new nuclear mutants with defects in splicing the mitochondrial large rRNA. Cell 29:517–526

    PubMed  CAS  Google Scholar 

  • Birgisdottir AB, Johansen S (2005) Site-specific reverse splicing of a HEG-containing group I intron in ribosomal RNA. Nucleic Acids Res 33:2042–2051

    PubMed  CAS  Google Scholar 

  • Bolduc JM, Spiegel PC, Chatterjee P, Brady KL, Downing ME, Caprara MG, Waring RB, Stoddard BL (2003) Structural and biochemical analyses of DNA and RNA binding by a bifunctional homing endonuclease and group I intron splicing factor. Genes Dev 17:2875–2888

    PubMed  CAS  Google Scholar 

  • Bonen L (2008) Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8:26–34

    PubMed  CAS  Google Scholar 

  • Bonen L, Vogel J (2001) The ins and outs of group II introns. Trends Genet 17:322–331

    Google Scholar 

  • Bonocora RP, Shub DA (2009) A likely pathway for formation of mobile group I introns. Curr Biol 19:23–28

    Google Scholar 

  • Bullerwell CE, Burger G, Lang BF (2000) A novel motif for identifying rps3 homologs in fungal mitochondrial genomes. Trends Biochem Sci 25:363–365

    PubMed  CAS  Google Scholar 

  • Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709–716

    PubMed  CAS  Google Scholar 

  • Burger G, Yan Y, Javadi P, Lang BF (2009) Group I-intron trans-splicing and mRNA editing in the mitochondria of placozoan animals. Trends Genet 25:381–386

    PubMed  CAS  Google Scholar 

  • Burke JM, RajBhandary UL (1982) Intron within the large rRNA gene of N. crassa mitochondria: a long open reading frame and a consensus sequence possibly important in splicing. Cell 31:509–520

    PubMed  CAS  Google Scholar 

  • Cahan P, Kennell JC (2005) Identification and distribution of sequences having similarity to mitochondrial plasmids in mitochondrial genomes of filamentous fungi. Mol Genet Genomics 273:462–473

    PubMed  CAS  Google Scholar 

  • Caprara MG, Waring RB (2005) Group I introns and their maturases: uninvited, but welcome guests. In: Belfort M, Derbyshire V, Stoddard BL, Wood DL (eds) Homing endonucleases and inteins. Springer, New York, NY, pp 103–119

    Google Scholar 

  • Cech TR, Damberger SH, Gutell ER (1994) Representation of the secondary and tertiary structure of group I introns. Nat Struct Biol 1:273–280

    PubMed  CAS  Google Scholar 

  • Chan BS, Court DA, Vierula PJ, Bertrand H (1991) The kalilo linear senescence-inducing plasmid of Neurospora is an invertron and encodes DNA and RNA polymerases. Curr Genet 20:225–237

    PubMed  CAS  Google Scholar 

  • Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet 23:81–90

    PubMed  CAS  Google Scholar 

  • Chevalier BS, Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29:3757–3774

    PubMed  CAS  Google Scholar 

  • Chevalier B, Monnat RJ Jr, Stoddard BL (2005) The LAGLIDADG homing endonuclease family. In: Belfort M, Derbyshire V, Stoddard BL, Wood DL (eds) Homing endonucleases and inteins. Springer, New York, NY, pp 33–47

    Google Scholar 

  • Chiang CC, Kennell JC, Wanner LA, Lambowitz AM (1994) A mitochondrial retroplasmid integrates into mitochondrial DNA by a novel mechanism involving the synthesis of a hybrid cDNA and homologous recombination. Mol Cell Biol 14:6419–6432

    PubMed  CAS  Google Scholar 

  • Copertino DW, Hallick RB (1991) Group II twintron: an intron within an intron in a chloroplast cytochrome b-559 gene. EMBO J 10:433–442

    PubMed  CAS  Google Scholar 

  • Costa M, Fontaine JM, Loiseaux-de Goër S, Michel F (1997) A group II self-splicing intron from the brown alga Pylaiella littoralis is active at unusually low magnesium concentrations and forms populations of molecules with a uniform conformation. J Mol Biol 274:353–364

    PubMed  CAS  Google Scholar 

  • Court DA, Bertrand H (1992) Genetic organization and structural features of maranhar, a senescence-inducing linear mitochondrial plasmid of Neurospora crassa. Curr Genet 22:385–397

    PubMed  CAS  Google Scholar 

  • Cui X, Davis G (2007) Mobile group II intron targeting: applications in prokaryotes and perspectives in eukaryotes. Front Biosci 12:4972–4985

    PubMed  CAS  Google Scholar 

  • Dai L, Toor N, Olson R, Keeping A, Zimmerly S (2003) Database for mobile group II introns. Nucleic Acids Res 31:424–426

    PubMed  CAS  Google Scholar 

  • Daniels DL, Michels WJ Jr, Pyle AM (1996) Two competing pathways for self-splicing by group II introns: a quantitative analysis of in vitro reaction rates and products. J Mol Biol 256:31–49

    PubMed  CAS  Google Scholar 

  • Dassa B, London N, Stoddard BL, Schueler-Furman O, Pietrokovski S (2009) Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res 37:2560–2573

    PubMed  CAS  Google Scholar 

  • Davis CC, Wurdack KJ (2004) Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305:676–678

    PubMed  CAS  Google Scholar 

  • Davis CC, Anderson WR, Wurdack KJ (2005) Gene transfer from a parasitic flowering plant to a fern. Proc Biol Sci 272:2237–2242

    PubMed  CAS  Google Scholar 

  • Deredec A, Burt A, Godfray HC (2008) The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179:2013–2026

    PubMed  Google Scholar 

  • Drager RG, Hallick RB (1993) A complex twintron is excised as four individual introns. Nucleic Acids Res 21:2389–2394

    PubMed  CAS  Google Scholar 

  • Dujon B (1989) Group I introns as mobile genetic elements: facts and mechanistic speculation - a review. Gene 82:91–114

    PubMed  CAS  Google Scholar 

  • Dujon B, Belcour L (1989) Mitochondrial DNA instabilities and rearrangements in yeasts and fungi. In: Berg DE, Howe MM (eds) Mobile DNA. AMS Press, Washington DC, pp 861–878

    Google Scholar 

  • Elina H, Brown GG (2010) Extensive mis-splicing of a bi-partite plant mitochondrial group II intron. Nucleic Acids Res 38:996–1008

    PubMed  CAS  Google Scholar 

  • Fangman WL, Henly JW, Churchill G, Brewer B (1989) Stable maintenance of a 35-base-pair yeast mitochondrial genome. Mol Cell Biol 9:1917–1921

    PubMed  CAS  Google Scholar 

  • Fedorova O, Zingler N (2007) Group II introns: structure, folding and splicing mechanism. Biol Chem 388:665–678

    PubMed  CAS  Google Scholar 

  • Fedorova O, Solem A, Pyle AM (2010) Protein-facilitated folding of group II intron ribozymes. J Mol Biol 397:799–813

    PubMed  CAS  Google Scholar 

  • Ferandon C, Chatel Sel K, Castandet B, Castroviejo M, Barroso G (2008) The Agrocybe aegerita mitochondrial genome contains two inverted repeats of the nad4 gene arisen by duplication on both sides of a linear plasmid integration site. Fungal Genet Biol 45:292–301

    PubMed  CAS  Google Scholar 

  • Fox AN, Kennell JC (2001) Association between variant plasmid formation and senescence in retroplasmid-containing strains of Neurospora spp. Curr Genet 39:92–100

    PubMed  CAS  Google Scholar 

  • Freeman S, Redman RS, Grantham G, Rodriguez RJ (1997) Characterization of a linear DNA plasmid from the filamentous fungal pathogen Glomerella musae [Anamorph: Colletotrichum musae (Berk. & Curt.) Arx.]. Curr Genet 32:152–156

    PubMed  CAS  Google Scholar 

  • Fricova D, Valach M, Farkas Z, Pfeiffer I, Kucsera J, Tomaska L, Nosek J (2010) The mitochondrial genome of the pathogenic yeast Candida subhashii: GC-rich linear DNA with a protein covalently attached to the 5′ termini. Microbiology 156:2153–2163

    PubMed  CAS  Google Scholar 

  • Fukami H, Chen CA, Chiou CY, Knowlton N (2007) Novel group I introns encoding a putative homing endonuclease in the mitochondrial cox1 gene of Scleractinian corals. J Mol Evol 64:591–600

    PubMed  CAS  Google Scholar 

  • Galligan JT, Kennell JC (2007) Retroplasmids: linear and circular plasmids that replicate via reverse transcription. In: Meinhardt F, Klassen R (eds) Microbial linear plasmids. Springer, Berlin, Germany, pp 164–185

    Google Scholar 

  • Gibb EA, Edgell DR (2010) Better late than early: delayed translation of intron-encoded endonuclease I-TevI is required for efficient splicing of its host group I intron. Mol Microbiol 78:35–46

    PubMed  CAS  Google Scholar 

  • Gimble FS (2005) Engineering homing endonucleases for genomic applications. In: Belfort M, Derbyshire V, Stoddard BL, Wood DL (eds) Homing endonucleases and inteins. Springer, New York, NY, pp 177–192

    Google Scholar 

  • Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101:301–320

    PubMed  CAS  Google Scholar 

  • Glanz S, Kück U (2009) Trans-splicing of organelle introns – a detour to continuous RNAs. Bioessays 31:921–934

    PubMed  CAS  Google Scholar 

  • Goddard MR, Burt A (1999) Recurrent invasion and extinction of a selfish gene. Proc Natl Acad Sci USA 96:13880–13885

    PubMed  CAS  Google Scholar 

  • Goddard MR, Leigh J, Roger AJ, Pemberton AJ (2006) Invasion and persistence of a selfish gene in the Cnidaria. PLoS One 1:e3

    PubMed  Google Scholar 

  • Gogarten JP, Hilario E (2006) Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. BMC Evol Biol 6:94

    PubMed  Google Scholar 

  • Goguel V, Delahodde A, Jacq C (1992) Connections between RNA splicing and DNA intron mobility in yeast mitochondria: RNA maturase and DNA endonuclease switching experiments. Mol Cell Biol 12:696–705

    PubMed  CAS  Google Scholar 

  • Grewe F, Viehoever P, Weisshaar B, Knoop V (2009) A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucleic Acids Res 37:5093–5104

    PubMed  CAS  Google Scholar 

  • Griffiths AJF (1992) Fungal senescence. Annu Rev Genet 26:351–372

    PubMed  CAS  Google Scholar 

  • Griffiths AJF (1995) Natural plasmids of filamentous fungi. Microbiol Rev 59:673–685

    PubMed  CAS  Google Scholar 

  • Guo H, Karberg M, Long M, Jones JP, Sullenger B, Lambowitz AM (2000) Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289:452–457

    PubMed  CAS  Google Scholar 

  • Halls C, Mohr S, Del Campo M, Yang Q, Jankowsky E, Lambowitz AM (2007) Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity. J Mol Biol 365:835–855

    PubMed  CAS  Google Scholar 

  • Handa H (2008) Linear plasmids in plant mitochondria: peaceful coexistences or malicious invasions? Mitochondrion 8:15–25

    PubMed  CAS  Google Scholar 

  • Hashiba T, Nagasaka A (2007) Hairpin plasmids from the plant pathogenic fungi Rhizoctonia solani and Fusarium oxysporum. In: Meinhardt F, Klassen R (eds) Microbial linear plasmids. Springer, Berlin, Germany, pp 227–245

    Google Scholar 

  • Haugen P, Bhattacharya D (2004) The spread of LAGLIDADG homing endonuclease genes in rDNA. Nucleic Acids Res 32:2049–2057

    PubMed  CAS  Google Scholar 

  • Haugen P, Simon DM, Bhattacharya D (2005) The natural history of group I introns. Trends Genet 21:111–119

    PubMed  CAS  Google Scholar 

  • Hausner G (2003) Fungal mitochondrial genomes, introns and plasmids. In: Arora DK, Khachatourians GG (eds) Applied mycology and biotechnology, vol III, Fungal genomics. Elsevier Science, New York, pp 101–131

    Google Scholar 

  • Hausner G, Olson R, Simon D, Johnson I, Sanders ER, Karol KG, McCourt RM, Zimmerly S (2006a) Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures. Mol Biol Evol 23:380–391

    PubMed  CAS  Google Scholar 

  • Hausner G, Nummy KA, Stoltzner S, Hubert SK, Bertrand H (2006b) Biogenesis and replication of small plasmid-like derivatives of the mitochondrial DNA in Neurospora crassa. Fungal Genet Biol 43:75–89

    PubMed  CAS  Google Scholar 

  • Hermanns J, Asseburg A, Osiewacz HD (1994) Evidence for a life span-prolonging effect of a linear plasmid in a longevity mutant of Podospora anserina. Mol Gen Genet 243:297–307

    PubMed  CAS  Google Scholar 

  • Homs M, Kober S, Kepp G, Jeske H (2008) Mitochondrial plasmids of sugar beet amplified via rolling circle method detected during curtovirus screening. Virus Res 136:124–129

    PubMed  CAS  Google Scholar 

  • Huang HR, Rowe CE, Mohr S, Jiang Y, Lambowitz AM, Perlman PS (2005) The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Proc Natl Acad Sci U S A 102:163–168

    PubMed  CAS  Google Scholar 

  • Jones JP III, Kierlin MN, Coon RG, Perutka J, Lambowitz AM, Sullenger BA (2005) Retargeting mobile group II introns to repair mutant genes. Mol Ther 11:687–694

    PubMed  CAS  Google Scholar 

  • Juliano C, Wessel G (2010) Developmental biology. Versatile germline genes. Science 329:640–641

    PubMed  CAS  Google Scholar 

  • Karberg M, Guo H, Zhong J, Coon R, Perutka J, Lambowitz AM (2001) Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat Biotechnol 19:1162–1167

    PubMed  CAS  Google Scholar 

  • Katsura K, Suzuki F, Miyashita S-I, Nishi T, Hirochika H, Hashiba T (1997) The complete nucleotide sequence and characterization of the linear DNA plasmid pRS64-2 from the plant pathogenic fungus Rhizoctonia solani. Curr Genet 32:431–435

    PubMed  CAS  Google Scholar 

  • Katsura K, Sasaki A, Nagaska A, Fuji M, Miyake Y, Hashiba T (2001) Complete nucleotide sequence of the linear DNA plasmid pRS224 with hairpin loops from Rhizoctonia solani and its unique transcriptional form. Curr Genet 40:195–202

    PubMed  CAS  Google Scholar 

  • Keeling PJ, Palmer JD (2001) Lateral transfer at the gene and subgenic levels in the evolution of eukaryotic enolase. Proc Natl Acad Sci USA 98:10745–10750

    PubMed  CAS  Google Scholar 

  • Kelchner SA (2002) Group II introns as phylogenetic tools: structure, function, and evolutionary constraints. Am J Bot 89:1651–1669

    PubMed  CAS  Google Scholar 

  • Kennel JC, Cohen SM (2004) Fungal mitochondria: genomes, genetic elements and gene expression. In: Arora DK (ed) The handbook of fungal biotechnology, 2nd edn. Marcel Dekker Inc, New York, pp 131–143

    Google Scholar 

  • Kennell JC, Wang H, Lambowitz AM (1994) The Mauriceville plasmid of Neurospora spp. uses novel mechanisms for initiating reverse transcription in vivo. Mol Cell Biol 14:3094–3107

    PubMed  CAS  Google Scholar 

  • Keren I, Bezawork-Geleta A, Kolton M, Maayan I, Belausov E, Levy M, Mett A, Gidoni D, Shaya F, Ostersetzer-Biran O (2009) AtnMat2, a nuclear-encoded maturase required for splicing of group-II introns in Arabidopsis mitochondria. RNA 15:2299–2311

    PubMed  CAS  Google Scholar 

  • Khan H, Archibald JM (2008) Lateral transfer of introns in the cryptophyte plastid genome. Nucleic Acids Res 36:3043–3053

    PubMed  CAS  Google Scholar 

  • Kim E, Archibald JM (2009) Diversity and evolution of plastids and their genomes. Plant Cell Monogr. doi:10.1007/7089_2008_17

  • Kim E-K, Jeong J-H, Youn HS, Koo YB, Roe J-H (2000) The terminal protein of a linear mitochondrial plasmid is encoded in the N-terminus of the DNA polymerase gene in white-rot fungus Pleurotus ostreatus. Curr Genet 38:283–290

    PubMed  CAS  Google Scholar 

  • Kistler HC, Benny U, Powell WA (1997) Linear mitochondrial plasmids of Fusarium oxysporum contain genes with sequence similarity to genes encoding a reverse transcriptase from Neurospora spp. Appl Environ Microbiol 63:3311–3313

    PubMed  CAS  Google Scholar 

  • Klassen R, Meinhardt F (2007) Linear protein primed replicating plasmids in eukaryotic microbes. In: Meinhardt F, Klassen R (eds) Microbial linear plasmids. Springer, Berlin, Germany, pp 188–226

    Google Scholar 

  • Knoop V (2004) The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 46:123–139

    PubMed  CAS  Google Scholar 

  • Kobayashi DY, Crouch JA (2009) Bacterial/Fungal interactions: from pathogens to mutualistic endosymbionts. Annu Rev Phytopathol 47:63–82

    PubMed  CAS  Google Scholar 

  • Koonin EV, Senkevich TG, Dolja VV (2006) The ancient Virus World and evolution of cells. Biol Direct 1:29

    PubMed  Google Scholar 

  • Kowalski JC, Derbyshire V (2002) Characterization of homing endonucleases. Methods 28:365–373

    PubMed  CAS  Google Scholar 

  • La Claire JW, Wang J (2004) Structural characterization of the terminal protein domains of linear plasmid-like DNA from the green alga Ernodesmis (Chlorophyta). J Phycol 40:1089–1097

    Google Scholar 

  • Láday M, Stubnya V, Hamari Z, Hornok L (2008) Characterization of a new mitochondrial plasmid from Fusarium proliferatum. Plasmid 59:127–133

    PubMed  Google Scholar 

  • Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35

    PubMed  CAS  Google Scholar 

  • Lambowitz AM, Zimmerly S (2011) Group II Introns: Mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 3(8). doi: 10.1101/cshperspect.a003616

  • Lambowitz AM, Caprara MG, Zimmerly S, Perlman PS (1999) Group I and group II ribozymes as RNPs: clues to the past and guides to the future. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, New York, NY, pp 451–485

    Google Scholar 

  • Lambowitz AM, Mohr G, Zimmerly S (2005) Group II intron homing endonucleases: ribonucleoprotein complexes with programmable target specificity. In: Belfort M, Derbyshire V, Stoddard BL, Wood DL (eds) Homing endonucleases and inteins. Springer, New York, NY, pp 121–145

    Google Scholar 

  • Lang BF, Laforest MJ, Burger G (2007) Mitochondrial introns: a critical view. Trends Genet 23:119–125

    PubMed  CAS  Google Scholar 

  • Lazarus CM, Earl AJ, Turner G, Kuntzel H (1980) Amplification of a mitochondrial DNA sequence in the cytoplasmically inherited “ragged” mutant of Aspergillus amstelodami. Eur J Biochem 106:633–641

    PubMed  CAS  Google Scholar 

  • Lehmann K, Schmidt U (2003) Group II introns: structure and catalytic versatility of large natural ribozymes. Crit Rev Biochem Mol Biol 38:249–303

    PubMed  CAS  Google Scholar 

  • Li Q, Nargang FE (1993) Two Neurospora mitochondrial plasmids encode DNA polymerases containing motifs characteristic of family B DNA polymerases but lack the sequence asp-thr-asp. Proc Natl Acad Sci USA 90:4299–4303

    PubMed  CAS  Google Scholar 

  • Lynch M, Koskella B, Schaack S (2006) Mutation pressure and the evolution of organelle genomic architecture. Science 311:1727–1730

    PubMed  CAS  Google Scholar 

  • Maheshwari R, Navaraj A (2008) Senescence in fungi: the view from Neurospora. FEMS Microbiol Lett 280:135–143

    PubMed  CAS  Google Scholar 

  • Maier UG, Rensing SA, Igloi GL, Maerz M (1995) Twintrons are not unique to the Euglena chloroplast genome: structure and evolution of a plastome cpn60 gene from a cryptomonad. Mol Gen Genet 246:128–131

    PubMed  CAS  Google Scholar 

  • Marcaida MJ, Muñoz IG, Blanco FJ, Prieto J, Montoya G (2010) Homing endonucleases: from basics to therapeutic applications. Cell Mol Life Sci 67:727–748

    PubMed  CAS  Google Scholar 

  • Martin W, Koonin EV (2006) Introns and the origin of nucleus-cytosol compartmentalization. Nature 440:41–45

    PubMed  CAS  Google Scholar 

  • Mastroianni M, Watanabe K, White TB, Zhuang F, Vernon J, Matsuura M, Wallingford J, Lambowitz AM (2008) Group II intron-based gene targeting reactions in eukaryotes. PLoS One 3:e3121

    PubMed  Google Scholar 

  • McDermott P, Connolly V, Kavanagh TA (2008) The mitochondrial genome of a cytoplasmic male sterile line of perennial ryegrass (Lolium perenne L.) contains an integrated linear plasmid-like element. Theor Appl Genet 117:459–470

    PubMed  CAS  Google Scholar 

  • Meinhardt F, Schaffrath R, Larsen M (1997) Microbial linear plasmids. Appl Microbiol Biotechnol 47:329–336

    PubMed  CAS  Google Scholar 

  • Michel F, Ferat JL (1995) Structure and activities of group II introns. Annu Rev Biochem 64:435–461

    PubMed  CAS  Google Scholar 

  • Michel F, Westhof E (1990) Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216:585–610

    PubMed  CAS  Google Scholar 

  • Michel F, Costa M, Westhof E (2009) The ribozyme core of group II introns: a structure in want of partners. Trends Biochem Sci 34:189–199

    PubMed  CAS  Google Scholar 

  • Mohr G, Lambowitz AM (2003) Putative proteins related to group II intron reverse transcriptase/maturases are encoded by nuclear genes in higher plants. Nucleic Acids Res 31:647–652

    PubMed  CAS  Google Scholar 

  • Mohr G, Perlman PS, Lambowitz AM (1993) Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Res 21:4991–4997

    PubMed  CAS  Google Scholar 

  • Mohr S, Wanner LA, Bertrand H, Lambowitz AM (2000) Characterization of an unusual tRNA-like sequence found inserted in a Neurospora retroplasmid. Nucleic Acids Res 28:1514–1524

    CAS  Google Scholar 

  • Mohr G, Rennard R, Cherniack AD, Stryker J, Lambowitz AM (2001) Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns. J Mol Biol 307:75–92

    PubMed  CAS  Google Scholar 

  • Mohr S, Stryker JM, Lambowitz AM (2002) A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell 109:769–779

    PubMed  CAS  Google Scholar 

  • Monteiro-Vitorello CB, Baidyaroy D, Bell JA, Hausner G, Fulbright DW, Bertrand H (2000) A circular mitochondrial plasmid incites hypovirulence in some strains of Cryphonectria parasitica. Curr Genet 37:242–256

    PubMed  CAS  Google Scholar 

  • Monteiro-Vitorello CB, Hausner G, Searles DB, Gibb EA, Fulbright DW, Bertrand H (2009) The Cryphonectria parasitica mitochondrial rns gene: plasmid-like elements, introns and homing endonucleases. Fungal Genet Biol 46:837–848

    PubMed  CAS  Google Scholar 

  • Mota EM, Collins RA (1988) Independent evolution of structural and coding regions in a Neurospora mitochondrial intron. Nature 332:654–656

    PubMed  CAS  Google Scholar 

  • Mullineux ST, Costa M, Bassi GS, Michel F, Hausner G (2010) A group II intron encodes a functional LAGLIDADG homing endonuclease and self-splices under moderate temperature and ionic conditions. RNA 16:1818–1831

    PubMed  CAS  Google Scholar 

  • Nam K, Hudson RH, Chapman KB, Ganeshan K, Damha MJ, Boeke JD (1994) Yeast lariat debranching enzyme. Substrate and sequence specificity. J Biol Chem 269:20613–20621

    PubMed  CAS  Google Scholar 

  • Nargang FE, Kennell JC (2010) Mitochondria and respiration. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. ASM Press, Washington DC, pp 155–178

    Google Scholar 

  • Nedelcu AM, Miles IH, Fagir AM, Karol K (2008) Adaptive eukaryote-to-eukaryote lateral gene transfer: stress-related genes of algal origin in the closest unicellular relatives of animals. J Evol Biol 21:1852–1860

    PubMed  CAS  Google Scholar 

  • Odintsova MS, Iurina NP (2005) [Genomics and evolution of cellular organelles]. Genetika 41:1170–1182 [Russian]

    PubMed  CAS  Google Scholar 

  • Ostersetzer O, Cooke AM, Watkins KP, Barkan A (2005) CRS1, a chloroplast group II intron splicing factor, promotes intron folding through specific interactions with two intron domains. Plant Cell 17:241–255

    PubMed  CAS  Google Scholar 

  • Ostheimer GJ, Williams-Carrier R, Belcher S, Osborne E, Gierke J, Barkan A (2003) Group II intron splicing factors derived by diversification of an ancient RNA-binding domain. EMBO J 22:3919–3929

    PubMed  CAS  Google Scholar 

  • Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL, Song K (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci USA 97:6960–6966

    PubMed  CAS  Google Scholar 

  • Paquin B, Laforest M-J, Lang F (1994) Interspecific transfer of mitochondrial genes in fungi and creation of a homologous hybrid gene. Proc Natl Acad Sci U S A 91:11807–11810

    PubMed  CAS  Google Scholar 

  • Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888

    PubMed  CAS  Google Scholar 

  • Peebles CL, Perlman PS, Mecklenburg KL, Petrillo ML, Tabor JH, Jarrell KA, Cheng HL (1986) A self-splicing RNA excises an intron lariat. Cell 44:213–223

    PubMed  CAS  Google Scholar 

  • Pöggeler S, Kempken F (2004) Mobile genetic elements in mycelial fungi. In: Kück U (ed) The mycota II: genetics and biotechnology, 2nd edn. Springer, Berlin, Heidelberg, pp 165–197

    Google Scholar 

  • Pombert JF, Keeling PJ (2010) The mitochondrial genome of the entomoparasitic green alga Helicosporidium. PLoS One 5:e8954

    PubMed  Google Scholar 

  • Pyle AM (2010) The tertiary structure of group II introns: implications for biological function and evolution. Crit Rev Biochem Mol Biol 45:215–232

    PubMed  CAS  Google Scholar 

  • Richardson AO, Palmer JD (2007) Horizontal gene transfer in plants. J Exp Bot 58:1–9

    PubMed  CAS  Google Scholar 

  • Robart AR, Zimmerly S (2005) Group II intron retroelements: function and diversity. Cytogenet Genome Res 110:589–597

    PubMed  CAS  Google Scholar 

  • Roman J, Woodson SA (1995) Reverse splicing of the Tetrahymena IVS: evidence for multiple reaction sites in the 23S rRNA. RNA 1:478–490

    PubMed  CAS  Google Scholar 

  • Rosewich UL, Kistler HC (2000) Role of horizontal gene transfer in the evolution of fungi. Annu Rev Phytopathol 38:325–363

    PubMed  CAS  Google Scholar 

  • Rot C, Goldfarb I, Ilan M, Huchon D (2006) Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria. BMC Evol Biol 6:71

    PubMed  Google Scholar 

  • Samac DA, Leong SA (1989) Mitochondrial plasmids of filamentous fungi: characteristics and use in transformation vectors. Mol Plant Microbe Interact 2:155–159

    Google Scholar 

  • Schäfer B (2003) Genetic conservation versus variability in mitochondria: the architecture of the mitochondrial genome in the petite-negative yeast Schizosaccharomyces pombe. Curr Genet 43:311–326

    PubMed  Google Scholar 

  • Schmelzer C, Schweyen RJ (1986) Self-splicing of group II introns in vitro: mapping of the branch point and mutational inhibition of lariat formation. Cell 46:557–565

    PubMed  CAS  Google Scholar 

  • Schmidt U, Lehmann K, Stahl U (2002) A novel mitochondrial DEAD box protein (Mrh4) required for maintenance of mtDNA in Saccharomyces cerevisiae. FEMS Yeast Res 2:267–276

    PubMed  CAS  Google Scholar 

  • Schmitt I, Lumbsch HT (2009) Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. PLoS One 4:e4437

    PubMed  Google Scholar 

  • Sellem CH, Belcour L (1997) Intron open reading frames as mobile elements and evolution of a group I intron. Mol Biol Evol 14:518–526

    PubMed  CAS  Google Scholar 

  • Sethuraman J, Majer A, Friedrich NC, Edgell DR, Hausner G (2009a) Genes-within-genes: multiple LAGLIDADG homing endonucleases target the ribosomal protein S3 gene encoded within a rnl group I intron of Ophiostoma and related taxa. Mol Biol Evol 26:2299–2315

    PubMed  CAS  Google Scholar 

  • Sethuraman J, Majer A, Iranpour M, Hausner G (2009b) Molecular evolution of the mtDNA encoded rps3 gene among filamentous ascomycetes fungi with an emphasis on the ophiostomatoid fungi. J Mol Evol 69:372–385

    PubMed  CAS  Google Scholar 

  • Sheveleva EV, Hallick RB (2004) Recent horizontal intron transfer to a chloroplast genome. Nucleic Acids Res 32:803–810

    PubMed  CAS  Google Scholar 

  • Siegl T, Petzke L, Welle E, Luzhetskyy A (2010) I-SceI endonuclease: a new tool for DNA repair studies and genetic manipulations in streptomycetes. Appl Microbiol Biotechnol 87:1525–1532

    PubMed  CAS  Google Scholar 

  • Simon DM, Clarke NA, McNeil BA, Johnson I, Pantuso D, Dai L, Chai D, Zimmerly S (2008) Group II introns in eubacteria and archaea: ORF-less introns and new varieties. RNA 14:1704–1713

    PubMed  CAS  Google Scholar 

  • Simon DM, Kelchner SA, Zimmerly S (2009) A broadscale phylogenetic analysis of group II intron RNAs and intron-encoded reverse transcriptases. Mol Biol Evol 26:2795–2808

    PubMed  CAS  Google Scholar 

  • Stevenson CB, Fox AN, Kennell JC (2000) Senescence associated with the over-replication of a mitochondrial retroplasmid in Neurospora crassa. Mol Gen Genet 263:433–444

    PubMed  CAS  Google Scholar 

  • Stoddard BL (2006) Homing endonuclease structure and function. Q Rev Biophys 38:49–95

    Google Scholar 

  • Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19:7–15

    PubMed  CAS  Google Scholar 

  • Suh S-Q, Jones KG, Blackwell M (1999) A group I intron in the nuclear small subunit rRNA gene of Cryptendoxyla hypophloia, an ascomycetes fungus: evidence for a new major class of group I introns. J Mol Evol 48:493–500

    PubMed  CAS  Google Scholar 

  • Szitenberg A, Rot C, Ilan M, Huchon D (2010) Diversity of sponge mitochondrial introns revealed by cox 1 sequences of Tetillidae. BMC Evol Biol 10:288

    PubMed  Google Scholar 

  • Takano H, Onoue K, Kawano S (2010) Mitochondrial fusion and inheritance of the mitochondrial genome. J Plant Res 123:131–138

    PubMed  CAS  Google Scholar 

  • Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135

    PubMed  CAS  Google Scholar 

  • Tomaska L, McEachern MJ, Nosek J (2004) Alternatives to telomerase: keeping linear chromosomes via telomeric circles. FEBS Lett 567:142–146

    PubMed  CAS  Google Scholar 

  • Tomaska L, Nosek J, Kramara J, Griffith JD (2009) Telomeric circles: universal players in telomere maintenance? Nat Struct Mol Biol 16:1010–1015

    PubMed  CAS  Google Scholar 

  • Toor N, Zimmerly S (2002) Identification of a family of group II introns encoding LAGLIDADG ORFs typical of group I introns. RNA 8:1373–1377

    PubMed  CAS  Google Scholar 

  • Toor N, Hausner G, Zimmerly S (2001) Coevolution of the group II intron RNA structure with its intron-encoded reverse transcriptase. RNA 7:1142–1152

    PubMed  CAS  Google Scholar 

  • Toor N, Keating KS, Pyle AM (2009) Structural insights into RNA splicing. Curr Opin Struct Biol 19:260–266

    PubMed  CAS  Google Scholar 

  • Turcq B, Dobinson KF, Serizawa N, Lambowitz AM (1992) A protein required for RNA processing and splicing in Neurospora mitochondria is related to gene products involved in cell cycle protein phosphatase functions. Proc Natl Acad Sci USA 89:1676–1680

    PubMed  CAS  Google Scholar 

  • Turmel M, Côté V, Otis C, Mercier JP, Gray MW, Lonergan KM, Lemieux C (1995) Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion). Mol Biol Evol 12:533–545

    PubMed  CAS  Google Scholar 

  • Vallès Y, Halanych KM, Boore JL (2008) Group II introns break new boundaries: presence in a bilaterian’s genome. PLoS One 3:e1488

    PubMed  Google Scholar 

  • Van der Veen R, Arnberg AC, van der Horst G, Bonen L, Tabak HF, Grivell LA (1986) Excised group II introns in yeast mitochondria are lariats and can be formed by self-splicing in vitro. Cell 44:225–234

    PubMed  Google Scholar 

  • Van Diepeningen AD, Debets AJ, Slakhorst SM, Hoekstra RF (2008) Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence. Biotechnol J 3:791–802

    PubMed  Google Scholar 

  • Van Dyck L, Neupert W, Langer T (1998) The ATP-dependent PIM1 protease is required for the expression of intron-containing genes in mitochondria. Genes Dev 12:1515–1524

    PubMed  CAS  Google Scholar 

  • Vicens Q, Paukstelis PJ, Westhof E, Lambowitz AM, Cech TR (2008) Toward predicting self-splicing and protein-facilitated splicing of group I introns. RNA 14:2013–2029

    PubMed  CAS  Google Scholar 

  • Vogel J, Börner T (2002) Lariat formation and a hydrolytic pathway in plant chloroplast group II intron splicing. EMBO J 21:3794–3803

    PubMed  CAS  Google Scholar 

  • Walther TC, Kennell JC (1999) Linear mitochondrial plasmids of F. oxysporum are novel, telomere-like retroelements. Mol Cell 4:229–238

    PubMed  CAS  Google Scholar 

  • Windbichler N, Papathanos PA, Catteruccia F, Ranson H, Burt A, Crisanti A (2007) Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos. Nucleic Acids Res 35:5922–5933

    PubMed  CAS  Google Scholar 

  • Wolff G, Burger G, Lang BF, Kück U (1993) Mitochondrial genes in the colourless alga Prototheca wickerhamii resemble plant genes in their exons but fungal genes in their introns. Nucleic Acids Res 21:719–726

    PubMed  CAS  Google Scholar 

  • Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci USA 100:10824–10829

    PubMed  CAS  Google Scholar 

  • Woodson SA (2005) Structure and assembly of group I introns. Curr Opin Struct Biol 15:324–330

    PubMed  CAS  Google Scholar 

  • Yao J, Zhong J, Lambowitz AM (2005) Gene targeting using randomly inserted group II introns (targetrons) recovered from an Escherichia coli gene disruption library. Nucleic Acids Res 33:3351–3362

    PubMed  CAS  Google Scholar 

  • Zeng Q, Bonocora RP, Shub DA (2009) A free-standing homing endonuclease targets an intron insertion site in the psbA gene of cyanophages. Curr Biol 19:218–222

    PubMed  CAS  Google Scholar 

  • Zhong J, Karberg M, Lambowitz AM (2003) Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker. Nucleic Acids Res 31:1656–1664

    PubMed  CAS  Google Scholar 

  • Zhuang F, Karberg M, Perutka J, Lambowitz AM (2009a) EcI5, a group IIB intron with high retrohoming frequency: DNA target site recognition and use in gene targeting. RNA 15:432–449

    PubMed  CAS  Google Scholar 

  • Zhuang F, Mastroianni M, White TB, Lambowitz AM (2009b) Linear group II intron RNAs can retrohome in eukaryotes and may use nonhomologous end-joining for cDNA ligation. Proc Natl Acad Sci USA 106:18189–18194

    PubMed  CAS  Google Scholar 

  • Zimmerly S, Guo H, Perlman PS, Lambowitz AM (1995a) Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82:545–554

    PubMed  CAS  Google Scholar 

  • Zimmerly S, Guo H, Eskes R, Yang J, Perlman PS, Lambowitz AM (1995b) A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83:529–538

    PubMed  CAS  Google Scholar 

  • Zimmerly S, Hausner G, Wu X-C (2001) Phylogenetic analysis of group II intron ORFs. Nucleic Acids Res 29:1238–1250

    PubMed  CAS  Google Scholar 

  • Zoschke R, Nakamura M, Liere K, Sugiura M, Börner T, Schmitz-Linneweber C (2010) An organellar maturase associates with multiple group II introns. Proc Natl Acad Sci USA 107:3245–3250

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

G.H.’s research on mtDNA mobile elements is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada. I would like to thank Dr. E.A. Gibb for providing critical comments on this manuscript and Mohamed Hafez for help with the figures. This work is dedicated to my late father Georg Hausner Senior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Hausner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hausner, G. (2012). Introns, Mobile Elements, and Plasmids. In: Bullerwell, C. (eds) Organelle Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22380-8_13

Download citation

Publish with us

Policies and ethics