Skip to main content

Xanthophylls and the Eye

  • Reference work entry
  • First Online:
Natural Products

Abstract

Lutein (L) and zeaxanthin (Z) are the only carotenoids found within the retina, and although they are not essential micronutrients, they have antioxidant and photoprotective functions that are thought to be useful in the prevention of onset or progression of age-related macular degeneration (AMD). This condition is the leading cause of visual loss in the developed world, and the number of people affected by it is predicted to increase dramatically as the proportion of the population aged over 65 years increases. Epidemiological studies suggest that people who consume high levels of L and Z are at lower risk of AMD than those who consume low levels. Intervention studies have shown that increasing dietary intake of foods that contain L and Z or consuming L and Z supplements can increase serum and retinal levels of L and Z. L and Z supplementation is thought to increase macular pigment optical density (MPOD, the amount of L and Z within the macular region of the retina), although clinical methods for MPOD assessment can be unreliable. Small randomized controlled trials have demonstrated improvements in visual function in people who have age-related macular disease and have taken nutritional supplements that contain more than 10 mg L. The results of a large multicenter trial, AREDS 2, are due in December 2012. These results will inform clinical practice with regard to the recommendations that are made about L and Z supplementation for the prevention of progression of AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMD:

Age-related macular degeneration

ARM:

Age-related maculopathy

ARMD:

Age-related macular disease

HFP:

Heterochromatic flicker photometry

L:

Lutein

MP:

Macular pigment

MPOD:

Macular pigment optical density

MZ:

Meso-zeaxanthin

ROS:

Reactive oxygen species

RPE:

Retinal pigment epithelium

Z:

Zeaxanthin

References

  1. Davis K (1991) Oxidative damage and repair: chemical, biological and medical aspects. Pergamon Press, Oxford/New York

    Google Scholar 

  2. Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry and role in human disease. Am J Med 91(Supp):14–22

    Article  Google Scholar 

  3. Beatty S, Koh HH, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134

    Article  CAS  Google Scholar 

  4. Machlin L, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1:441–445

    CAS  Google Scholar 

  5. Borish E, Prior W, Venuugopal S (1987) DNA synthesis is blocked by cigarette tar-induced DNA single strand breaks. Carcinogenesis 8:1517–1520

    Article  CAS  Google Scholar 

  6. Beardsley T (1991) The A team. Vitamin a and its cousins are potent regulators of cells. Sci Am 264:16–19

    CAS  Google Scholar 

  7. Van der Hagen A, Yolton D, Kaminski M, Yolton R (1993) Free radicals and antioxidant supplementation: a review of their roles in age related macular degeneration. J Am Optom Assoc 64:871–878

    Google Scholar 

  8. Yeum K-J, Taylor A, Tang G, Russell R (1995) Measurement of carotenoids, retinoids, and tocopherols in human lenses. Invest Ophthalmol Vis Sci 36:2756–2761

    CAS  Google Scholar 

  9. Landrum JT, Bone RA (2001) Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys 385:28–40

    Article  CAS  Google Scholar 

  10. Krinsky NI (2002) Possible biologic mechanisms for a protective role of xanthophylls. J Nutr 132:540S–542S

    Google Scholar 

  11. LaRowe TL, Mares JA, Snodderly DM, Klein ML, Wooten BR, Chappell R, Grp CMPS (2008) Macular pigment density and age-related maculopathy in the carotenoids in age-related eye disease study – an ancillary study of the women’s health initiative. Ophthalmology 115:876–883. doi:10.1016/j.ophtha.2007.06.015

    Article  Google Scholar 

  12. Nolan JM, Stack J, O’ Donovan O, Loane E, Beatty S (2007) Risk factors for age-related maculopathy are associated with a relative lack of macular pigment. Exp Eye Res 84:61–74. doi:10.1016/j.exer.2006.08.016

    Article  CAS  Google Scholar 

  13. Obana A, Hiramitsu T, Gohto Y, Ohira A, Mizuno S, Hirano T, Bernstein PS, Fujii H, Iseki K, Tanito M, Hotta Y (2008) Macular carotenoid levels of normal subjects and age-related maculopathy patients in a Japanese population. Ophthalmology 115:147–157. doi:10.1016/j.ophtha.2007.02.028

    Article  Google Scholar 

  14. Coleman H, Chew E (2007) Nutritional supplementation in age-related macular degeneration. Curr Opin Ophthalmol 18:220–223. doi:10.1097/ICU.0b013e32814a586b

    Article  Google Scholar 

  15. Mares-Perlman JA, Fisher AI, Klein R, Block G, Millen AE, Wright JD (2001) Lutein and zeaxanthin in the diet and serum and their relation to age-related maculopathy in the third national health and nutrition examination survey. Am J Epidemiol 153:424–432

    Article  CAS  Google Scholar 

  16. Sasamoto Y, Gomi F, Sawa M, Tsujikawa M, Hamasaki T (2010) Macular pigment optical density in central serous chorioretinopathy. Invest Ophthalmol Vis Sci 51:5219–5225. doi:10.1167/iovs.09-4881

    Article  Google Scholar 

  17. Loane E, Nolan JM, McKay GJ, Beatty S (2011) The association between macular pigment optical density and CFH, ARMS2, C2/BF, and C3 genotype. Exp Eye Res 93:592–598. doi:10.1016/j.exer.2011.07.005

    Article  CAS  Google Scholar 

  18. Dowling JE (1987) The retina an approachable part of the brain. Harvard University Press, Cambridge

    Google Scholar 

  19. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292:497–523

    Article  CAS  Google Scholar 

  20. Gallemore RP, Hughes BA, Miller SS (1997) Retinal pigment epithelial transport mechanisms and their contributions to the electroretinogram. Prog Retin Eye Res 16:509–566

    Article  CAS  Google Scholar 

  21. Young RW (1976) Visual cells and concept of renewal. Invest Ophthalmol 15:700–725

    CAS  Google Scholar 

  22. Kaur C, Foulds WS, Ling EA (2008) Blood-retinal barrier in hypoxic ischaemic conditions: Basic concepts, clinical features and management. Prog Retin Eye Res 27:622–647

    Article  CAS  Google Scholar 

  23. Peters S, Schraermeyer U (2001) Features and functions of melanin in the retinal pigment epithelium. Ophthalmologe 98:1181–1185

    Article  CAS  Google Scholar 

  24. Gao H, Hollyfield JG (1992) Aging of the human retina – differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33:1–17

    CAS  Google Scholar 

  25. Sarna T, Burke JM, Korytowski W, Rozanowska M, Skumatz CMB, Zareba A, Zareba M (2003) Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp Eye Res 76:89–98

    Article  CAS  Google Scholar 

  26. Guymer R, Luthert P, Bird A (1999) Changes in Bruch’s membrane and related structures with age. Prog Retin Eye Res 18:59–90

    Article  CAS  Google Scholar 

  27. Roh SW, JJ (2004) Retinal and choroidal circulation. In: Yanoff JD, J (ed) Ophthalmology. Mosby

    Google Scholar 

  28. Virgil Alfaro D, Mieler WF, Quiroz-Mercado H, Jager RD, Tano Y (2006) Age-related macular degeneration. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  29. Goodwin T (1992) In: Packer L (ed) Methods in enzymology. Academic, New York

    Google Scholar 

  30. Sommerburg O, Keunen JE, Bird AC, van Kuijk FJ (1998) Fruits and vegetables that are sources for lutein and zeaxanthin: the macular pigment in human eyes. Br J Ophthalmol 82:907–910

    Article  CAS  Google Scholar 

  31. Mangels A, Holden J, Beecher G (1993) Carotenoid content of fruits and vegetables: an evaluation of analytic data. J Am Diet Assoc 93:284–296

    Article  CAS  Google Scholar 

  32. Leung I, Ngai J, Lam K, Tso M (1999) Absorption of zeaxanthin in rats after feeding with purified zeaxanthin or a traditional Chinese medicine, gou chizi (ARVO abstract 3196). Invest Ophthalmol Vis Sci 40:S608

    Google Scholar 

  33. Schalch W (1992) Carotenoids in the retina – a review of their possible role in preventing or limiting light damage caused by light and oxygen. In: Emerit I, Chance B (eds) Free radicals and aging. Birkhauser, Basel

    Google Scholar 

  34. Parker RS (1989) Carotenoids in human-blood and tissues. J Nutr 119:101–104

    CAS  Google Scholar 

  35. Pfander H (1992) Carotenoids - an overview. Methods Enzymol 213:3–13

    Article  CAS  Google Scholar 

  36. Yemelyanov A, Katz N, Bernstein P (2001) Ligand-binding characterization of xanthophyll carotenoids to solubilized membrane proteins derived from human retina. Exp Eye Res 72:381–392

    Article  CAS  Google Scholar 

  37. Billsten HH, Bhosale P, Yemelyanov A, Bernstein PS, Polivka T (2003) Photophysical properties of xanthophylls in carotenoproteins from human retina. Photochem Photobiol 78:138–145

    Article  CAS  Google Scholar 

  38. Malinow M, Feeney-Burns L, Peterson L, Klein M, Neuringer M (1980) Diet-related macular anomalies in monkeys. Invest Ophthalmol Vis Sci 19:857–863

    CAS  Google Scholar 

  39. Bernstein PS (2002) New insights into the role of the macular carotenoids in age- related macular degeneration. Resonance Raman studies. Pure Appl Chem 74:1419–1425

    Article  CAS  Google Scholar 

  40. Ham W, Mueller H, Ruffolo J (1984) Basic mechanisms underlying the production of photochemical lesions in the mammalian retina. Curr Eye Res 3:165–174

    Article  CAS  Google Scholar 

  41. Beatty S, Boulton M, Henson D, Koh HH, Murray IJ (1999) Macular pigment and age related macular degeneration. Br J Ophthalmol 83:867–877

    Article  CAS  Google Scholar 

  42. Handelman G, Nightingaale Z, Lichtenstein A, Blumberg J (1999) Lutein and zeaxanthin concentrations in plasma after dietary supplementation with egg yolk. Am J Clin Nutr 70:247–251

    CAS  Google Scholar 

  43. de Pee S, West C, Permaesih D (1998) Orange fruit is more effective than dark-green, leafy vegetables in increasing serum concentrations of retinol and beta-carotene in school children in Indonesia. Am J Clin Nutr 68:1058–1067

    Google Scholar 

  44. Castenmiller J, West C (1998) Bioavailability and bioconversion of carotenoids. Ann Rev Nutr 18:19–38

    Article  CAS  Google Scholar 

  45. Goodwin TW (1986) Metabolism, nutrition, and function of carotenoids. Ann Rev Nutr 6:273–297

    Article  CAS  Google Scholar 

  46. Hata TR, Scholz TA, Ermakov IV, McClane RW, Khachik F, Gellermann W, Pershing LK (2000) Non-invasive Raman spectroscopic detection of carotenoids in human skin. J Invest Dermatol 115:441–448

    Article  CAS  Google Scholar 

  47. Kaplan L, Lau J, Stein E (1990) Carotenoid composition concentrations, and relationships in various human organs. Clin Physiol Biochem 8:1–10

    CAS  Google Scholar 

  48. Johnson E, Hammond B, Yeum KJ, Wang X, Castaneda C, Snodderly D, Russell R (2000) Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density. Am J Clin Nutr 71:1555–1562

    CAS  Google Scholar 

  49. Khachik F, de Moura F, Zhao D (2002) Transformations of selected carotenoids in plasma, liver, and ocular tissues of humans and in nonprimate animal models. Invest Ophthalmol Vis Sci 43:3383–3392

    Google Scholar 

  50. Khachik F, Bernstein PS, Garland DL (1997) Identification of lutein and zeaxanthin oxidation products in human and monkey retinas. Invest Ophthalmol Vis Sci 38:1802–1811

    CAS  Google Scholar 

  51. Bone R, Landrum J, Tarsis S (1985) Preliminary identification of the human macular pigment. Vision Res 25:1531–1535

    Article  CAS  Google Scholar 

  52. Bone R, Landrum J, Guerra L, Ruiz C (2003) Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. J Nutr 133:992–998

    CAS  Google Scholar 

  53. Hammond BR Jr, Johnson EJ, Russell RM, Krinsky NI, Yeum KJ, Edwards RB, Snodderly DM (1997) Dietary modification of human macular pigment density. Invest Ophthalmol Vis Sci 38:1795–1801

    Google Scholar 

  54. Landrum JT, Bone RA, Joa H, Kilburn MD, Moore LL, Sprague KE (1997) A one year study of the macular pigment: the effect of 140 days of a lutein supplement. Exp Eye Res 65:57–62

    Article  CAS  Google Scholar 

  55. Maoka T, Arai A, Shimizu M, Matsuno T (1986) The 1st isolation of enantiomeric and meso-zeaxanthin in nature. Comp Biochem Physiol B Biochem Mol Biol 83:121–124

    CAS  Google Scholar 

  56. Bone R, Landrum J, Friedes L, Gomez C, Kilburn M, Menendez E, Vidal I, Wang W (1997) Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp Eye Res 64:211–218

    Article  CAS  Google Scholar 

  57. Bone R, Landrum JT, Hime G, Cains A, Zamor J (1993) Stereochemistry of the human macular carotenoids. Invest Ophthalmol Vis Sci 34:2033–2040

    CAS  Google Scholar 

  58. Bone RA, Landrum JT, Alvarez-Correa C, Etienne V, Ruiz CA (2003) Macular pigment and serum response to dietary supplementation with meso-zeaxanthin. Invest Ophthalmol Vis Sci 44:U79–U79

    Google Scholar 

  59. Snodderly DM, Auran J, Delori F (1984) The macular pigment II: spatial distribution in primate retinas. Invest Ophthalmol Vis Sci 25:674–684

    CAS  Google Scholar 

  60. Bone R, Landrum JT, Fernandez L (1988) Analysis of the macular pigment by HPLC: retinal distribution and age study. Invest Ophthalmol Vis Sci 29:843–849

    CAS  Google Scholar 

  61. Snodderly DM, Handelman GJ, Adler AJ (1991) Distribution of individual macular pigment carotenoids in central retinal of macaque and squirrel monkeys. Invest Ophthalmol Vis Sci 32:268–279

    CAS  Google Scholar 

  62. Loane E, Kelliher C, Beatty S, Nolan JM (2008) The rationale and evidence base for a protective role of macular pigment in age-related maculopathy. Br J Ophthalmol 92:1163–1168. doi:10.1136/bjo.2007.135566

    Article  CAS  Google Scholar 

  63. Rapp LM, Maple SS, Choi JH (2000) Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Invest Ophthalmol Vis Sci 41:1200–1209

    CAS  Google Scholar 

  64. Sommerburg O, Siems W, Hurst J, Lewis J, Kliger D, van Kuijk F (1999) Lutein and zeaxanthin are associated with photoreceptors in the human retina. Curr Eye Res 19:491–495

    Article  CAS  Google Scholar 

  65. Handelman G, Dratz E, Reay C (1988) Carotenoids in the human macula and the whole retina. Invest Ophthalmol Vis Sci 29:850–855

    CAS  Google Scholar 

  66. Snodderly DM, Brown PK, Delori FC, Auran JD (1984) The macular pigment.I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Invest Ophthalmol Vis Sci 25:660–673

    CAS  Google Scholar 

  67. Beatty S, Koh HH, Carden D, Murray IJ (2000) Macular pigment optical density measurement: a novel compact instrument. Ophthalmic Physiol Opt 20:105–111

    Article  CAS  Google Scholar 

  68. Bone RA, Landrum JT (2004) Heterochromatic flicker photometry. Arch Biochem Biophys 430:137–142

    Article  CAS  Google Scholar 

  69. Snodderly DM, Mares JA, Wooten BR, Oxton L, Gruber M, Ficek T (2004) Macular pigment measurement by heterochromatic flicker photometry in older subjects: the carotenoids and age-related eye disease study. Invest Ophthalmol Vis Sci 45:531–538

    Article  Google Scholar 

  70. Loane E, Stack J, Beatty S, Nolan JM (2007) Measurement of macular pigment optical density using two different heterochromatic flicker photometers. Curr Eye Res 32:555–564. doi:Doi 10.1080/02713680701418405

    Article  Google Scholar 

  71. Delori FC, Goger DG, Hammond BR, Snodderly DM, Burns SA (2001) Macular pigment density measured by autofluorescence spectrometry: comparison with reflectometry and heterochromatic flicker photometry. J Optical Soc Am A Optics Image Sci Vis 18:1212–1230

    Article  CAS  Google Scholar 

  72. Neelam K, O’Gorman N, Nolan J, O’Donovan O, Wong HB, Eong KGA, Beatty S (2005) Measurement of macular pigment: Raman spectroscopy versus heterochromatic flicker photometry. Invest Ophthalmol Vis Sci 46:1023–1032. doi:10.1167/iovs.04-1032

    Article  Google Scholar 

  73. van de Kraats J, Berendschot T, Valen S, van Norren D (2006) Fast assessment of the central macular pigment density with natural pupil using the macular pigment reflectometer. J Biomed Opt 11(6):064031. doi:10.1117/1.2398925

    Article  Google Scholar 

  74. Bone RA, Brener B, Gibert JC (2007) Macular pigment, photopigments, and melanin: distributions in young subjects determined by four-wavelength reflectometry. Vision Res 47:3259–3268. doi:10.1016/j.visres.2007.09.002

    Article  CAS  Google Scholar 

  75. van der Veen RLP, Berendschot T, Hendrikse F, Carden D, Makridaki M, Murray IJ (2009) A new desktop instrument for measuring macular pigment optical density based on a novel technique for setting flicker thresholds. Ophthalmic Physiol Opt 29:127–137. doi:10.1111/j.1475-1313.2008.00618.x

    Article  Google Scholar 

  76. van der Veen RLP, Berendschot TTJM, Makridaki M, Hendrikse F, Carden D, Murray IJ (2009) Correspondence between retinal reflectometry and a flicker-based technique in the measurement of macular pigment spatial profiles. J Biomed Opt 14:064046

    Article  Google Scholar 

  77. Ciulla TA, Curran-Celantano J, Cooper DA, Hammond BR Jr, Danis RP, Pratt LM, Riccardi KA, Filloon TG (2001) Macular pigment optical density in a midwestern sample. Ophthalmology 108:730–737

    Article  CAS  Google Scholar 

  78. Ciulla TA, Hammond BR (2004) Macular pigment density and aging, assessed in the normal elderly and those with cataracts and age-related macular degeneration. Am J Ophthalmol 138:582–587. doi:10.1016/j.ajo.2004.05.057

    Article  Google Scholar 

  79. Beatty S, Murray IJ, Henson DB, Carden D, Koh H, Boulton ME (2001) Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Invest Ophthalmol Vis Sci 42:439–446

    CAS  Google Scholar 

  80. Nolan J, O’Donovan O, Kavanagh H, Slack J, Harrison M, Muldoon A, Mellerio J, Beatty S (2004) Macular pigment and percentage of body fat. Invest Ophthalmol Vis Sci 45:3940–3950

    Article  Google Scholar 

  81. Mares JA, LaRowe TL, Snodderly DM, Moeller SM, Gruber MJ, Klein ML, Wooten BR, Johnson EJ, Chappell RJ, I CMPSG (2006) Predictors of optical density of lutein and zeaxanthin in retinas of older women in the carotenoids in age-related eye disease study, an ancillary study of the women’s health initiative. Am J Clin Nutr 84:1107–1122

    CAS  Google Scholar 

  82. Bartlett H, Acton J, Eperjesi F (2010) Clinical evaluation of the MacuScopeTM macular pigment densitometer. Br J Ophthalmol 94:328–331

    Article  Google Scholar 

  83. Bartlett H, Eperjesi F (2011) Apparent motion photometry: evaluation and reliability of a novel method for the measurement of macular pigment. Br J Ophthalmol 95:662–665. doi:10.1136/bjo.2009.178137

    Article  Google Scholar 

  84. Hagen S, Krebs I, Gittenberg C, Binder S (2010) Repeated measures of macular pigment optical density to test reproducibility of heterochromatic flicker photometry. Acta Ophthalmol 88:207–211

    Article  Google Scholar 

  85. Lam RF, Rao SK, Fan DSP, Lau FTC, Lam DSC (2005) Macular pigment optical density in a Chinese sample. Curr Eye Res 30:799–805. doi:10.1080/02713680590968439

    Google Scholar 

  86. Raman R, Rajan R, Biswas S, Vaitheeswaran K, Sharma T (2011) Macular pigment optical density in a South Indian population. Invest Ophthalmol Vis Sci 52:7910–7916. doi:10.1167/iovs.11-7636

    Article  Google Scholar 

  87. Werner J, Donnelly S, Kliegl R (1987) Aging and human macular pigment density: appended with translations from the work of Max Schultze and Ewald Hering. Vision Res 27:257–268

    Article  CAS  Google Scholar 

  88. Bartlett H, Stainer L, Singh S, Eperjesi F, Howells O (2010) Clinical evaluation of the MPS 9000 macular pigment screener. Br J Ophthalmol 94:753–756

    Article  Google Scholar 

  89. Wolf-Schnurrbusch UEK, Roeoesli N, Weyermann E, Heldner MR, Hoehne K, Wolf S (2007) Ethnic differences in macular pigment density and distribution. Invest Ophthalmol Vis Sci 48:3783–3787. doi:10.1167/iovs.06-1218

    Article  Google Scholar 

  90. Tang CY, Yip HS, Poon MY, Yau WL, Yap MKH (2004) Macular pigment optical density in young Chinese adults. Ophthalmic Physiol Opt 24:586–593

    Article  Google Scholar 

  91. Curran-Celentano J, Hammond BR, Ciulla TA, Cooper DA, Pratt LM, Danis RB (2001) Relation between dietary intake, serum concentrations, and retinal concentrations of lutein and zeaxanthin in adults in a Midwest population. Am J Clin Nutr 74:796–802

    CAS  Google Scholar 

  92. Burke JD, Curran-Celentano J, Wenzel AJ (2005) Diet and serum carotenoid concentrations affect macular pigment optical density in adults 45 years and older. J Nutr 135:1208–1214

    CAS  Google Scholar 

  93. Iannaccone A, Mura M, Gallaher KT, Johnson EJ, Todd WA, Kenyon E, Harris TL, Harris T, Satterfield S, Johnson KC, Kritchevsky SB (2007) Macular pigment optical density in the elderly: findings in a large biracial midsouth population sample. Invest Ophthalmol Vis Sci 48:1458–1465. doi:10.1167/iovs.06-0438

    Article  Google Scholar 

  94. Hammond BR Jr, Curran-Celentano J, Judd S, Fuld K, Krinsky NI, Wooten BR, Snodderly DM (1996) Sex differences in macular pigment optical density: relation to plasma carotenoid concentrations and dietary patterns. Vision Res 36:2001–2012

    Article  CAS  Google Scholar 

  95. Mellerio J, Ahmadi-Lari S, van Kuijk F, Pauleikhoff D, Bird A, Marshall J (2002) A portable instrument for measuring macular pigment with central fixation. Curr Eye Res 25:37–47

    Article  CAS  Google Scholar 

  96. Broekmans WMR, Berendschot T, Klopping-Ketelaars IAA, de Vries AJ, Goldbohm RA, Tijburg LBM, Kardinaal AFM, van Poppel G (2002) Macular pigment density in relation to serum and adipose tissue concentrations of lutein and serum concentrations of zeaxanthin. Am J Clin Nutr 76:595–603

    CAS  Google Scholar 

  97. Krinski N (1979) Carotenoid protection against oxidation. Pure Appl Chem 51:649–660

    Article  Google Scholar 

  98. Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:1–7

    Article  Google Scholar 

  99. Lim B, Nagao A, Terao J (1992) Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipid peroxidation. Biochim Biophys Acta 1126:178–184

    Article  CAS  Google Scholar 

  100. Sundelin SP, Nilsson SE (2001) Lipofuscin-formation in retinal pigment epithelial cells is reduced by antioxidants. Free Radic Biol Med 31:217–225

    Article  CAS  Google Scholar 

  101. Pease P, Adams A, Nuccio E (1987) Optical density of human macular pigment. Vision Res 27:705–710

    Article  CAS  Google Scholar 

  102. Reading V, Weale R (1974) Macular pigment and chromatic aberration. J Opt Soc Am 64:231–238

    Article  CAS  Google Scholar 

  103. Junghans A, Sies H, Stahl W (2001) Macular pigments lutein and zeaxanthin as blue light filters studied in liposomes. Arch Biochem Biophys 391:160–164

    Article  CAS  Google Scholar 

  104. Sujak A, Gabrielska J, Grudzinsnki W, Borc R, Mazurek P, Gruszecki W (1999) Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: the structural aspects. Arch Biochem Biophys 15:301–307

    Article  CAS  Google Scholar 

  105. Bhosale P, Zhao DY, Bernstein PS (2007) HPLC measurement of ocular carotenoid levels in human donor eyes in the lutein supplementation era. Invest Ophthalmol Vis Sci 48:543–549. doi:10.1167/iovs.06-0558

    Article  Google Scholar 

  106. Bhosale P, Serban B, Bernstein PS (2009) Retinal carotenoids can attenuate formation of A2E in the retinal pigment epithelium. Arch Biochem Biophys 483:175–181. doi:10.1016/j.abb.2008.09.012

    Article  CAS  Google Scholar 

  107. Wenzel AJ, Sheehan JP, Burke JD, Lefsrud MG, Curran-Celentano J (2007) Dietary intake and serum concentrations of lutein and zeaxanthin, but not macular pigment optical density, are related in spouses. Nutr Res 27:462–469. doi:10.1016/j.nutres.2007.05.011

    Article  CAS  Google Scholar 

  108. Vishwanathan R, Goodrow-Kotyla EF, Wooten BR, Wilson TA, Nicolosi RJ (2009) Consumption of 2 and 4 egg yolks/d for 5 wk increases macular pigment concentrations in older adults with low macular pigment taking cholesterol-lowering statins. Am J Clin Nutr 90:1272–1279. doi:10.3945/ajcn.2009.28013

    Article  CAS  Google Scholar 

  109. Connolly EE, Beatty S, Loughman J, Howard AN, Louw MS, Nolan JM (2011) Supplementation with all three macular carotenoids: response, stability, and safety. Invest Ophthalmol Vis Sci 52:9207–9217. doi:10.1167/iovs.11-8025

    Article  Google Scholar 

  110. Aleman TS, Duncan JL, Bieber ML, de Castro E, Marks DA, Gardner LM, Steinberg JD, Cideciyan AV, Maguire MG, Jacobson SG (2001) Macular pigment and lutein supplementation in retinitis pigmentosa and Usher syndrome. Invest Ophthalmol Vis Sci 42:1873–1881

    CAS  Google Scholar 

  111. Berendschot TT, Goldbohm RA, Klopping WA, van de Kraats J, van Norel J, van Norren D (2000) Influence of lutein supplementation on macular pigment, assessed with two objective techniques. Invest Ophthalmol Vis Sci 41:3322–3326

    CAS  Google Scholar 

  112. Koh H, Murray I, Nolan D, Carden D, Feather J, Beatty S (2004) Plasma and macular responses to lutein supplement in subjects with and without age-related maculopathy: a pilot study. Exp Eye Res 79:21–27

    Article  CAS  Google Scholar 

  113. Zaripheh S, Erdman J Jr (2002) Factors that influence the bioavailability of xanthophylls. J Nutr 132:531S–534S

    Google Scholar 

  114. van het Hof K, West CE, Weststrate J, Hautvast J (2000) Dietary factors that affect the bioavailability of carotenoids. J Nutr 130:503–506

    Google Scholar 

  115. Hammond B, Caruso-Avery M (2000) Macular pigment optical density in a Southwestern sample. Invest Ophthalmol Vis Sci 41:1492–1497

    Google Scholar 

  116. Hammond B, Fuld K, Snodderly D (1996) Iris colour and macular pigment optical density. Exp Eye Res 62:293–297

    Article  CAS  Google Scholar 

  117. Bernstein PS, Zhao DY, Wintch SW, Ermakov IV, McClane RW, Gellermann W (2002) Resonance Raman measurement of macular carotenoids in normal subjects and in age-related macular degeneration patients. Ophthalmology 109:1780–1787

    Article  Google Scholar 

  118. Mares-Perlman JA, Fisher AI, Klein R, Palta M, Block G, Millen AE, Wright JD (2001) Lutein and zeaxanthin in the diet and serum and their relation to age-related maculopathy in the third national health and nutrition examination survey. Am J Epidemiol 153:424–432

    Article  CAS  Google Scholar 

  119. Bartlett H, Howells O, Eperjesi F (2010) The role of macular pigment assessment in clinical practice: a review. Clin Exp Optom 93:300–308. doi:10.1111/j.1444-0938.2010.00499.x

    Article  Google Scholar 

  120. Walls G, Judd H (1933) The intraocular colour filters of vertebrates. Br J Ophthalmol 17:641–675

    Article  CAS  Google Scholar 

  121. Wald G (1945) Human vision and the spectrum. Science 101:653–658

    Article  CAS  Google Scholar 

  122. Howarth PA, Bradley A (1986) The longitudinal chromatic aberration of the human eye, and its correction. Vision Res 26:361–366

    Article  CAS  Google Scholar 

  123. Gilmartin B, Hogan RE (1985) The magnitude of longitudinal chromatic aberration of the human eye between 458 and 633 nm. Vision Res 25:1747–1753

    Article  CAS  Google Scholar 

  124. Campbell F, Gubisch R (1966) Optical quality of the human eye. J Physiol 186:558–578

    CAS  Google Scholar 

  125. Hammond BR, Wooten BR, Curran-Celentano J (2001) Carotenoids in the retina and lens: possible acute and chronic effects on human visual performance. Arch Biochem Biophys 385:41–46

    Article  CAS  Google Scholar 

  126. Wooten BR, Hammond BR (2002) Macular pigment: influences on visual acuity and visibility. Prog Retin Eye Res 21:225–240

    Article  CAS  Google Scholar 

  127. Bone R, Landrum JT (1984) Macular pigment in Henle fibre membranes: a model for Haidinger’s brushes. Vision Res 24:103–108

    Article  CAS  Google Scholar 

  128. Boettner E, Wolter J (1962) Transmission of the ocular media. Invest Ophthalmol Vis Sci 1:776–783

    Google Scholar 

  129. Ivanoff A (1946) Sur une methods de mesure des aberrations chromatiques et spheriques de l’oeil en lumiere dirigee. C R Acad Sci 223:170–172

    Google Scholar 

  130. Schultze M (1866) Uber den gelben Fleck der retina, seinen Einflussauf normlaes schen und auf auf FarbenBlindheit (On the yellow spot of the retina: its influence on normal vision and on colour blindness). von Cohen & Sohn, Bonn

    Google Scholar 

  131. Davies N, Morland A (2004) Macular pigments: their characteristics and putative role. Prog Retin Eye Res 23:533–559

    Article  CAS  Google Scholar 

  132. McLellan J, Marcos S, Prieto P, Burns S (2002) Imperfect optics may be the eye’s defence against imperfect blur. Nature 417:174–176

    Article  CAS  Google Scholar 

  133. Marcos S, Burns S, Moreno-Barriusop E, Navarro R (1999) A new approach to the study of ocular chromatic aberrations. Vision Res 39:4309–4323

    Article  CAS  Google Scholar 

  134. Engles M, Wooten B, Hammond B (2007) Macular pigment: a test of the acuity hypothesis. Invest Ophthalmol Vis Sci 48:2922–2931

    Article  Google Scholar 

  135. Arnold JJ, Sarks SH (2000) Extracts from “clinical evidence” – age related macular degeneration. Br Med J 321:741–744

    Article  CAS  Google Scholar 

  136. Evans JR (2001) Risk factors for age-related macular degeneration. Prog Retin Eye Res 20:227–253

    Article  CAS  Google Scholar 

  137. Goldberg J, Flowerdew G, Smith E, Brody JA, Tso MOM (1988) Factors associated with age-related macular degeneration – an analysis of data from the 1st national-health and nutrition examination survey. Am J Epidemiol 128:700–710

    CAS  Google Scholar 

  138. Hawkins BS, Bird A, Klein R, West SK (1999) Epidemiology of age-related macular degeneration. Mol Vis 5:U7–U10

    Google Scholar 

  139. Hyman L, Neborsky R (2002) Risk factors for age-related macular degeneration: an update. Curr Opin Ophthalmol 13:171–175

    Article  Google Scholar 

  140. Smith W, Assink J, Klein R, Mitchell P, Klaver CCW, Klein BEK, Hofman A, Jensen S, Wang JJ, de Jong P (2001) Risk factors for age related macular degeneration – Pooled findings from three continents. Ophthalmology 108:697–704

    Article  CAS  Google Scholar 

  141. Evans J (1995) Causes of blindness and partial sight in England and Wales 1990–1991. In: Studies on medical and population subjects. HMSO, London

    Google Scholar 

  142. Bjornsson G (1981) Blindness in Iceland. A review of legally blind persons in Iceland 1 Dec 1979. Acta Ophthalmol 59:921–927

    Google Scholar 

  143. Graf MH, Halbach E, Kaufmann H (1999) Causes of blindness in hessia. Klin Monatsbl Augenheilkd 215:50–55

    Article  CAS  Google Scholar 

  144. Hansen E (1981) Blindness in Norway, causes and prophylactic attempts. Tidsskrift for Den Norske Laegeforening 101:187–193, + 312

    CAS  Google Scholar 

  145. Krumpaszky HK, Klauss V (1992) Causes of blindness in Bavaria. Evaluation of a representative sample from blindness compensation records of Upper Bavaria. Klin Monatsbl Augenheilkd 200:142–146

    Article  CAS  Google Scholar 

  146. Chan CB, Billson FA (1991) Visual disability and major causes of blindness in NSW: a study of people aged 50 and over attending the Royal Blind Society 1984 to 1989. Aus NZ J Ophthalmol 19:321–325

    Article  CAS  Google Scholar 

  147. Evans J, Wormald R (1996) Is the incidence of registrable age-related macular degeneration increasing? Br J Ophthalmol 80:9–14

    Article  CAS  Google Scholar 

  148. Elton MGJ (2000) Exudative age-related macular degeneration. Optom Today Oct, pp 42–45

    Google Scholar 

  149. Williams R, Brody BL, Thomas R (1998) The psychosocial impact of macular degeneration. Arch Ophthalmol 116:514–520

    CAS  Google Scholar 

  150. United States Bureau of the Census (1996) Current population reports, population projections of the United States by age, sex, race, and hispanic origin: 1995–2050. United States Bureau of the Census, Washington, DC, pp 25–1130

    Google Scholar 

  151. Schork NJ (1997) Genetics of complex disease – approaches, problems, and solutions. Am J Respir Crit Care Med 156:S103–S109

    Article  CAS  Google Scholar 

  152. Berrow E, Bartlett H, Eperjesi F, Gibson J (2011) Risk factors for age-related macular disease. Eur Ophthal Rev 5:166–176

    Google Scholar 

  153. Fine SL, Berger JW, Maguire MG, Ho AC (2000) Drug therapy: age-related macular degeneration. N Engl J Med 342:483–492

    Article  CAS  Google Scholar 

  154. Pratt S (1999) Dietary prevention of age-related macular degeneration. J Am Optomet Assoc 70:39–47

    CAS  Google Scholar 

  155. Bird AEC, Bressler NM, Bressler SB, Chisholm IH, Coscas G, Davis MD, Dejong P, Klaver CCW, Klein BEK, Klein R, Mitchell P, Sarks JP, Sarks SH, Sourbane G, Taylor HR, Vingerling JR (1995) An International classification and grading system for age- related maculopathy and age-related macular degeneration. Surv Ophthalmol 39:367–374

    Article  CAS  Google Scholar 

  156. Leung I, Sandstrom M, Zucker C, Neuringer M, Snodderly D (2004) Nutritional manipulation of primate retinas, II: effects of age, n-3 fatty acids, lutein, and zeaxanthin on retinal pigment epithelium. Invest Ophthalmol Vis Sci 45:3244–3256

    Article  Google Scholar 

  157. Shaban H, Richter C (2002) A2E and blue light in the retina: the paradigm of age-related macular degeneration. Biol Chem 383:537–545

    Article  CAS  Google Scholar 

  158. Curcio C, Millican C (1999) Basal linear deposit and large drusen are specific for early age-related maculopathy. Arch Ophthalmol 117:329–339

    CAS  Google Scholar 

  159. Brunk U, Terman A (2002) Lipofuscin: mechanism of age-relate accumulation and influence on cell function. Free Rad Biol Med 33:611–619

    Article  CAS  Google Scholar 

  160. Kennedy CJ, Rakoczy PE, Constable IJ (1995) Lipofuscin of the retinal pigment epithelium: a review. Eye 9:763–771

    Article  Google Scholar 

  161. Pauleikhoff D, Harper C, Marshall J, Bird A (1990) Ageing changes in Bruch’s membrane. A histochemical and morphological study. Ophthalmology 97:171–178

    CAS  Google Scholar 

  162. Green W, Enger C (1993) Age-related macular degeneration histopathologic studies. Ophthalmology 100:1519–1535

    CAS  Google Scholar 

  163. Holz F, Bellman C, Margaritidis M, Otto T, Volcker H (1999) Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 237:145–152

    Article  CAS  Google Scholar 

  164. Schutt F, Davies S, Kopitz J, Holz F, Boulton M (2000) Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 41:2303–2308

    CAS  Google Scholar 

  165. Del Priore L, Newark N, Tezel T, Kuo Y-H, Kaplan H (2000) The retinal pigment epithelium undergoes age-related apoptosis in human eyes. In: The Retina Society, USA, 33rd Annual Meeting, Coral Gables

    Google Scholar 

  166. Thomson LR, Toyoda Y, Delori FC, Garnett KM, Wong ZY, Nichols CR, Cheng KM, Craft NE, Dorey CK (2002) Long term dietary supplementation with zeaxanthin reduces photoreceptor death in light-damaged Japanese quail. Exp Eye Res 75:529–542

    Article  CAS  Google Scholar 

  167. Thomson LR, Toyoda Y, Langner A, Delori FC, Garnett KM, Craft N, Nichols CR, Cheng KM, Dorey CK (2002) Elevated retinal zeaxanthin and prevention of light-induced photoreceptor cell death in quail. Invest Ophthalmol Vis Sci 43:3538–3549

    Google Scholar 

  168. Sarks J, Sarks S, Killingsworth M (1994) Evolution of soft drusen in age-related macular degeneration. Eye 8:269–283

    Article  Google Scholar 

  169. Sarks S (1976) Ageing and degeneration in the macular region: a clinico-pathological study. Br J Ophthalmol 60:324–341

    Article  CAS  Google Scholar 

  170. Bone RA, Landrum JT, Mayne ST, Gomez CM, Tibor SE, Twaroska EE (2001) Macular pigment in donor eyes with and without AMD: a case-control study. Invest Ophthalmol Vis Sci 42:235–240

    CAS  Google Scholar 

  171. Trieschmann M, Spital G, Lommatzsch A, van Kuijk E, Fitzke F, Bird AC, Pauleikhoff D (2003) Macular pigment: quantitative analysis on autofluorescence images. Graefes Arch Clin Exp Ophthalmol 241:1006–1012

    Article  CAS  Google Scholar 

  172. Gale C, Hall N, Phillips D, Martyn C (2003) Lutein and zeaxanthin status and risk of age-related macular degeneration. Invest Ophthalmol Vis Sci 44:2461–2465

    Article  Google Scholar 

  173. EDCCS Group (1993) Antioxidant status and neovascular age-related macular degeneration. The Eye Disease Case Control Study Group. Arch Ophthalmol 111:104–109

    Article  Google Scholar 

  174. Sasamoto Y, Gomi F, Sawa M, Tsujikawa M, Nishida K (2011) Effect of 1-year lutein supplementation on macular pigment optical density and visual function. Graefes Arch Clin Exp Ophthalmol 249:1847–1854. doi:10.1007/s00417-011-1780-z

    Article  CAS  Google Scholar 

  175. Bartlett HE, Eperjesi F (2007) Effect of lutein and antioxidant dietary supplementation on contrast sensitivity in age-related macular disease: a randomized controlled trial. Eur J Clin Nutr 61:1121–1127

    Article  CAS  Google Scholar 

  176. Bartlett HE, Eperjesi F (2008) A randomised controlled trial investigating the effect of lutein and antioxidant dietary supplementation on visual function in healthy eyes. Clin Nutr 27:218–227. doi:10.1016/j.clnu.2008.01.003

    Article  CAS  Google Scholar 

  177. Olmedilla B, Granado F, Blanco I, Vaquero M, Cajigal C (2001) Lutein in patients with cataracts and age-related macular degeneration: a long-term supplementation study. J Sci Food Agric 81:904–909

    Article  CAS  Google Scholar 

  178. Falsini B, Piccardi M, Iarossi G, Fadda A, Merendino E, Valentini P (2003) Influence of short-term antioxidant supplementation on macular function in age-related maculopathy. Ophthalmology 110:51–61

    Article  Google Scholar 

  179. Richer S, Stiles W, Statkute L, Pulido J, Frankowski J, Rudy D, Pei K, Tsipursky M, Nyland J (2004) Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial). Optometry 75:216–230

    Article  Google Scholar 

  180. Chakravarthy U, Beatty S, Stevenson M (2009) The CARMA Study Group. Functional and morphological outcomes in the CARMA clinical trial. Invest Ophthalmol Vis Sci. E-Abstract 1257

    Google Scholar 

  181. Shamsi FA, Boulton M (2001) Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin. Invest Ophthalmol Vis Sci 42:3041–3046

    CAS  Google Scholar 

  182. Wihlmark U, Wrigstad A, Roberg K, Brunk UT, Nilsson SEG (1996) Lipofuscin formation in cultured retinal pigment epithelial cells exposed to photoreceptor outer segment material under different oxygen concentrations. APMIS 104:265–271

    Article  CAS  Google Scholar 

  183. Nilsson SEG, Sundelin SP, Wihlmark U, Brunk UT (2003) Aging of cultured retinal pigment epithelial cells: oxidative reactions, lipofuscin formation and blue light damage. Doc Ophthalmol 106:13–16

    Article  Google Scholar 

  184. McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108:652–659. doi:10.1016/s0002-9343(00)00412-5

    Article  CAS  Google Scholar 

  185. Bhosale P, Bernstein PS (2005) Synergistic effects of zeaxanthin and its binding protein in the prevention of lipid membrane oxidation. Biochim Biophys Acta-Mol Basis Dis 1740:116–121. doi:10.1016/j.bbadis.2005.02.002

    Article  CAS  Google Scholar 

  186. Kim SR, Nakanishi K, Itagaki Y, Sparrow JR (2006) Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin. Exp Eye Res 82:828–839. doi:10.1016/j.exer.2005.10.004

    Article  CAS  Google Scholar 

  187. Kirschfeld K (1982) Carotenoid pigments - their possible role in protecting against photo-oxidation in eyes and photoreceptor cells. Proc R Soc Lond B Biol Sci 216:71–85. doi:10.1098/rspb.1982.0061

    Article  CAS  Google Scholar 

  188. Subczynski WK, Wisniewska A, Widomska J (2010) Location of macular xanthophylls in the most vulnerable regions of photoreceptor outer-segment membranes. Arch Biochem Biophys 504:61–66. doi:10.1016/j.abb.2010.05.015

    Article  CAS  Google Scholar 

  189. Pintea A, Rugina DO, Pop R, Bunea A, Socaciu C (2011) Xanthophylls protect against induced oxidation in cultured human retinal pigment epithelial cells. J Food Comp Anal 24:830–836. doi:10.1016/j.jfca.2011.03.007

    Article  CAS  Google Scholar 

  190. Li B, Ahmed F, Bernstein PS (2010) Studies on the singlet oxygen scavenging mechanism of human macular pigment. Arch Biochem Biophys 504:56–60. doi:10.1016/j.abb.2010.07.024

    Article  CAS  Google Scholar 

  191. Chucair AJ, Rotstein NP, SanGiovanni JP, During A, Chew EY, Politi LE (2007) Lutein and zeaxanthin protect photoreceptors from apoptosis induced by oxidative stress: Relation with docosahexaenoic acid. Invest Ophthalmol Vis Sci 48:5168–5177. doi:10.1167/iovs.07-0037

    Article  Google Scholar 

  192. Roberts D (2005) Artificial lighting and the blue light hazard. http://www.mdsupport.org/library/hazard.html. Cited 24th Nov 2005

  193. Roberts J (2001) Ocular phototoxicity. J Photochem Photobiol 64:136–143

    Article  CAS  Google Scholar 

  194. Ham WJ, Ruffolo JJ, Mueller H (1980) The nature of retinal radiation damage: dependence on wavelength, power level and exposure times. Vision Res 20:1105–1111

    Article  CAS  Google Scholar 

  195. Glickman R (2002) Phototoxicity to the retina: mechanisms of damage. Int J Toxicol 21:473–490

    Article  CAS  Google Scholar 

  196. Ham WJ, Mueller H, Sliney D (1976) Retinal sensitivity to damage from short wavelength light. Nature 260:153–155

    Article  Google Scholar 

  197. Ham WJ, Ruffolo JJ, Mueller H (1978) Histologic analysis of photochemical lesions produced in rhesus retina by short wavelength light. Invest Ophthalmol Vis Sci 17:1029–1035

    Google Scholar 

  198. Pang JJ, Seko Y, Tokoro T (1999) Processes of pine light-induced damage to retinal pigment epithelial cells lacking phagosomes. Japan J Ophthalmol 43:103–108

    Article  CAS  Google Scholar 

  199. Pang JJ, Seko Y, Tokoro T, Ichinose S, Yamamoto H (1998) Observation of ultrastructural changes in cultured retinal pigment epithelium following exposure to blue light. Graefes Arch Clin Exp Ophthalmol 236:696–701

    Article  CAS  Google Scholar 

  200. Ruffolo JJ, Ham WT, Mueller HA, Millen JE (1984) Photochemical lesions in the primate retina under conditions of elevated blood-oxygen. Invest Ophthalmol Vis Sci 25:893–898

    Google Scholar 

  201. Rozanowska M, Jarvis-Evans J, Korytowski W (1995) Blue light-induced reactivity of retinal pigment. In vitro generation of oxygen-reactive species. J Biol Chem 270:18825–18830

    Article  CAS  Google Scholar 

  202. Wihlmark U, Wrigstad A, Roberg K, Nilsson SEG, Brunk UT (1997) Lipofuscin accumulation in cultured retinal pigment epithelial cells causes enhanced sensitivity to blue light irradiation. Free Rad Biol Med 22:1229–1234

    Article  CAS  Google Scholar 

  203. Zarbin M (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122:598–614

    Article  Google Scholar 

  204. Sparrow JR, Parish C, Nakanishi K (2000) The lipofuscin fluorophore, A2E, mediates blue light-induced damage to retinal pigment epithelial (RPE) cells in culture. Invest Ophthalmol Vis Sci 41:S145–S145

    Google Scholar 

  205. Cho E, Hung S, Seddon J (1999) Nutrition. In: Berger JW, Fine SL, Maguire MG (eds) Age-related macular degeneration. Mosby, St. Louis

    Google Scholar 

  206. Winkler BS, Boulton ME, Gottsch JD, Sternberg P (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5:32 [Electronic Resource]

    CAS  Google Scholar 

  207. Handelman G, Dratz E (1986) The role of antioxidants in the retina and retinal pigment epithelium and the nature of prooxidant-induced damage. Adv Free Rad Biol Med 2:1–89

    Article  CAS  Google Scholar 

  208. Sarna T (1992) Properties and function of the ocular melanin – a photobiophysical view. J Photochem Photobiol B-Biol 12:215–258

    Article  CAS  Google Scholar 

  209. Samiec PS, Drews-Botsch C, Flagg EW, Kurtz JC, Sternberg P, Reed RL, Jones DP (1998) Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Rad Biol Med 24:699–704

    Article  CAS  Google Scholar 

  210. Ayala K, Gottlieb E, Brooks D (2004) Mitochondria derived reactive oxygen species mediate blue-light induced death of retinal pigment epithelial cells. Photochem Photobiol 79:470–475

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah E. Bartlett MCOptom, Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bartlett, H.E. (2013). Xanthophylls and the Eye. In: Ramawat, K., Mérillon, JM. (eds) Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_166

Download citation

Publish with us

Policies and ethics