Skip to main content

Elucidation of Calcium-Signaling Components and Networks

  • Chapter
  • First Online:
Coding and Decoding of Calcium Signals in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

  • 1111 Accesses

Abstract

Calcium signaling depends on proteins at three nodes: generation of Ca2+ signature, sensing of changes in cellular Ca2+ level, and transduction of a Ca2+ signal. Plant cells have multiple mechanisms for generating increases in [Ca2+]cyt suggesting the capacity to produce complex spatiotemporal patterns of [Ca2+] cyt elevation. A large number of Ca2+ sensors have been identified experimentally or have been predicted on the basis of sequence similarity to known Ca2+-binding proteins or the presence of Ca2+-binding domains. The number of target proteins is expected to be large, as a given sensor can interact with multiple proteins. Proteins involved in Ca2+signaling in plants have been identified using Ca2+-binding, protein–protein interaction, yeast two-hybrid, and coprecipitation screens. With the completion of genomic sequencing of several plants, researchers have identified many Ca2+ sensors and target proteins on a global scale. In Arabidopsis, about 3–4% of the proteome appears to participate in Ca2+ signaling. The challenge now is the elucidation of the function of each verified/predicted protein involved in Ca2+ signaling on a local and global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Ghany SE, Reddy ASN (2000) A novel calcium/calmodulin-regulated kinesin-like protein is highly conserved between monocots and dicots. DNA Cell Biol 19:567–578

    CAS  PubMed  Google Scholar 

  • Ali GS, Reddy VS, Lindgren PB, Jakobek JL, Reddy AS (2003) Differential expression of genes encoding calmodulin-binding proteins in response to bacterial pathogens and inducers of defense responses. Plant Mol Biol 51:803–815

    CAS  PubMed  Google Scholar 

  • Ali R, Zielinski RE, Berkowitz GA (2006) Expression of plant cyclic nucleotide-gated cation channels in yeast. J Exp Bot 57:125–138

    CAS  PubMed  Google Scholar 

  • Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell 19:1081–1095

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allouche D, Parello J, Sanejouand YH (1999) Ca2+/Mg2+ exchange in parvalbumin and other EF-hand proteins. A theoretical study. J Mol Biol 285:857–873

    CAS  PubMed  Google Scholar 

  • Anandalakshmi R, Marathe R, Ge X, Herr JM Jr, Mau C, Mallory A, Pruss G, Bowman L, Vance VB (2000) A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290:142–144

    CAS  PubMed  Google Scholar 

  • Athwal GS, Huber S (2002) Divalent cations and polyamines bind to loop 8 of 14-3-3 protein, modulating their interaction with phophorylated nitrate reductase. Plant J 29:119–129

    CAS  PubMed  Google Scholar 

  • Athwal GS, Huber JL, Huber SC (1998) Biological significance of divalent metal ion binding to 14-3-3 proteins in relationship to nitrate reductase inactivation. Plant Cell Physiol 39:1065–1072

    CAS  PubMed  Google Scholar 

  • Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S (2008) Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320:938–941

    CAS  PubMed  Google Scholar 

  • Baginsky S, Hennig L, Zimmermann P, Gruissem W (2010) Gene expression analysis, proteomics, and network discovery. Plant Physiol 152:402–410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartling D, Butler H, Weiler EW (1993) Arabidopsis thaliana cDNA encoding a novel member of the EF-hand superfamily of calcium-binding proteins. Plant Physiol 102:1059–1060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benjamins R, Ampudia CS, Hooykaas PJ, Offringa R (2003) PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol 132:1623–1630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berg RH, Beachy RN (2008) Fluorescent protein applications in plants. Methods Cell Biol 85:153–177

    CAS  PubMed  Google Scholar 

  • Bertauche N, Leung J, Giraudat J (1996) Protein phosphatase activity of abscisic acid insensitive 1 (ABI1) protein from Arabidopsis thaliana. Eur J Biochem 241:193–200

    CAS  PubMed  Google Scholar 

  • Bhattacharya S, Bunick CG, Chazin WJ (2004) Target selectivity in EF-hand calcium binding proteins. Biochim Biophys Acta 1742:69–79

    CAS  PubMed  Google Scholar 

  • Boonburapong B, Buaboocha T (2007) Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biol 7:4

    PubMed Central  PubMed  Google Scholar 

  • Bouche N, Scharlat A, Snedden W, Bouchez D, Fromm H (2002) A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem 277:21851–21861

    CAS  PubMed  Google Scholar 

  • Boursiac Y, Harper JF (2007) The origin and function of calmodulin regulated Ca2+ pumps in plants. J Bioenerg Biomembr 39:409–414

    CAS  PubMed  Google Scholar 

  • Bowser J, Reddy ASN (1997) Localization of a kinesin-like calmodulin-binding protein in dividing cells of Arabidopsis and tobacco. Plant J 12:1429–1438

    CAS  PubMed  Google Scholar 

  • Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364

    CAS  PubMed  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi HW, Lee DH, Hwang BK (2009) The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response. Mol Plant Microbe Interact 22:1389–1400

    CAS  PubMed  Google Scholar 

  • Clark GB, Roux SJ (1995) Annexins of plant cells. Plant Physiol 109:1133–1139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cordeiro MC, Piqueras R, de Oliveira DE, Castresana C (1998) Characterization of early induced genes in Arabidopsis thaliana responding to bacterial inoculation: identification of centrin and of a novel protein with two regions related to kinase domains. FEBS Lett 434:387–393

    CAS  PubMed  Google Scholar 

  • Czempinski K, Zimmermann S, Ehrhardt T, Muller-Rober B (1997) New structure and function in plant K+ channels: KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO J 16:2565–2575

    CAS  PubMed  Google Scholar 

  • Day IS, Reddy VS, Shad Ali G, Reddy AS (2002) Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol 3:0056

    Google Scholar 

  • Deavours BE, Reddy ASN, Walker RA (1998) Ca2+/calmodulin regulation of the Arabidopsis kinesin-like calmodulin- binding protein. Cell Motil Cytoskel 40:408–416

    CAS  Google Scholar 

  • DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signalling. Biochem J 425:27–40

    CAS  Google Scholar 

  • Delk NA, Johnson KA, Chowdhury NI, Braam J (2005) CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress. Plant Physiol 139:240–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dobney S, Chiasson D, Lam P, Smith SP, Snedden WA (2009) The calmodulin-related calcium sensor CML42 plays a role in trichome branching. J Biol Chem 284:31647–31657

    CAS  PubMed  Google Scholar 

  • Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du L, Ali GS, Simons KA, Hou J, Yang T, Reddy AS, Poovaiah BW (2009) Ca(2+)/calmodulin regulates salicylic-acid-mediated plant immunity. Nature 457:1154–1158

    CAS  PubMed  Google Scholar 

  • Forler D, Kocher T, Rode M, Gentzel M, Izaurralde E, Wilm M (2003) An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat Biotechnol 21:89–92

    CAS  PubMed  Google Scholar 

  • Forsen S, Linse S, Drakenberg T, Kordel J, Akke M, Sellers P, Johansson C, Thulin E, Andersson I, Brodin P et al (1991) Ca2+ binding in proteins of the calmodulin superfamily: cooperativity, electrostatic contributions and molecular mechanisms. Ciba Found Symp 161:222–236

    CAS  PubMed  Google Scholar 

  • Franzosa E, Linghu B, Xia Y (2009) Computational reconstruction of protein-protein interaction networks: algorithms and issues. Methods Mol Biol 541:89–100

    CAS  PubMed  Google Scholar 

  • Frietsch S, Wang YF, Sladek C, Poulsen LR, Romanowsky SM, Schroeder JI, Harper JF (2007) A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc Natl Acad Sci USA 104:14531–14536

    CAS  PubMed  Google Scholar 

  • Furuyama T, Dzelzkalns VA (1999) A novel calcium-binding protein is expressed in Brassica pistils and anthers late in flower development. Plant Mol Biol 39:729–737

    CAS  PubMed  Google Scholar 

  • Galon Y, Nave R, Boyce JM, Nachmias D, Knight MR, Fromm H (2008) Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Lett 582:943–948

    CAS  PubMed  Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    CAS  PubMed  Google Scholar 

  • Geisler DA, Broselid C, Hederstedt L, Rasmusson AG (2007) Ca2+-binding and Ca2+-independent respiratory NADH and NADPH dehydrogenases of Arabidopsis thaliana. J Biol Chem 282:28455–28464

    CAS  PubMed  Google Scholar 

  • Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405:199–221

    CAS  PubMed  Google Scholar 

  • Golovkin M, Reddy AS (2003) A calmodulin-binding protein from Arabidopsis has an essential role in pollen germination. Proc Natl Acad Sci U S A 100:10558–10563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grabarek Z (2006) Structural basis for diversity of the EF-hand calcium-binding proteins. J Mol Biol 359:509–525

    CAS  PubMed  Google Scholar 

  • Guo H, Mockler T, Duong H, Lin C (2001) SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 291:487–490

    CAS  PubMed  Google Scholar 

  • Guo Y, Xiong L, Song CP, Gong D, Halfter U, Zhu JK (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 3:233–244

    CAS  PubMed  Google Scholar 

  • Han S, Tang R, Anderson LK, Woerner TE, Pei ZM (2003) A cell surface receptor mediates extracellular Ca(2+) sensing in guard cells. Nature 425:196–200

    CAS  PubMed  Google Scholar 

  • Hanano A, Burcklen M, Flenet M, Ivancich A, Louwagie M, Garin J, Blee E (2006) Plant seed peroxygenase is an original heme-oxygenase with an EF-hand calcium binding motif. J Biol Chem 281:33140–33151

    CAS  PubMed  Google Scholar 

  • Hanson MR, Kohler RH (2001) GFP imaging: methodology and application to investigate cellular compartmentation in plants. J Exp Bot 52:529–539

    CAS  PubMed  Google Scholar 

  • Harper JF, Harmon A (2005) Plants, symbiosis and parasites: a calcium signalling connection. Nat Rev Mol Cell Biol 6:555–566

    CAS  PubMed  Google Scholar 

  • Harper JF, Breton G, Harmon A (2004) Decoding Ca(2+) signals through plant protein kinases. Annu Rev Plant Biol 55:263–288

    CAS  PubMed  Google Scholar 

  • Heo WD, Lee SH, Kim MC, Kim JC, Chung WS, Chun HJ, Lee KJ, Park CY, Park HC, Choi JY, Cho MJ (1999) Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sc USA 19:766–771

    Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca(2+) signals in plants. Ann Rev Plant Biol 55:401–427

    CAS  Google Scholar 

  • Hirschi KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136:2438–2442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu HC, Wang YY, Tsay YF (2009) AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response. Plant J 57:264–278

    CAS  PubMed  Google Scholar 

  • Huang SS, Fraenkel E (2009) Integrating proteomic, transcriptional, and interactome data reveals hidden components of signaling and regulatory networks. Sci Signal 2:ra40

    PubMed Central  PubMed  Google Scholar 

  • Hug H, Sarre TF (1993) Protein kinase C isoenzymes: divergence in signal transduction? Biochem J 291:329–343

    CAS  PubMed  Google Scholar 

  • Jang HJ, Pih KT, Kang SG, Lim JH, Jin JB, Piao HL, Hwang I (1998) Molecular cloning of a novel Ca2+-binding protein that is induced by NaCl stress. Plant Mol Biol 37:839–847

    CAS  PubMed  Google Scholar 

  • Jayasekaran K, Kim KN, Vivekanandan M, Shin J, Ok SH (2006) Novel calcium-binding GTPase (AtCBG) involved in ABA-mediated salt stress signaling in Arabidopsis. Plant Cell Rep 25:1255–1262

    CAS  PubMed  Google Scholar 

  • Jia XY, He LH, Jing RL, Li RZ (2009) Calreticulin: conserved protein and diverse functions in plants. Physiol Plant 136:127–138

    CAS  PubMed  Google Scholar 

  • Jorrin-Novo JV (2009) Plant proteomics. J Proteomics 72:283–284

    CAS  PubMed  Google Scholar 

  • Kao Y-L, Deavours BE, Phelps KK, Walker R, Reddy ASN (2000) Bundling of microtubules by motor and tail domains of a kinesin-like calmodulin-binding protein from Arabidopsis: regulation by Ca2+/calmodulin. Biochem Biophys Res Commun 267:201–207

    CAS  PubMed  Google Scholar 

  • Kawamura Y, Uemura M (2003) Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J 36:141–154

    CAS  PubMed  Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Kim HY (2006) Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling. FEBS Lett 580:251–5256

    Google Scholar 

  • Kim YC, Kim SY, Choi D, Ryu CM, Park JM (2008) Molecular characterization of a pepper C2 doamin-containing SRC2 protein implicated in resistance against host and non-host pathogens and abiotic stresses. Planta 227:1169–1179

    CAS  PubMed  Google Scholar 

  • Kim MC, Chung WS, Yun DJ, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2:13–21

    CAS  PubMed  Google Scholar 

  • Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J (2004) Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 134:43–58

    CAS  PubMed Central  PubMed  Google Scholar 

  • Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009) The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol 150:1394–1410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kopka J, Pical C, Gray JE, Muller-Rober B (1998a) Molecular and enzymatic characterization of three phosphoinositide- specific phospholipase C isoforms from potato. Plant Physiol 116:239–250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kopka J, Pical C, Hetherington AM, Muller-Rober B (1998b) Ca2+/phospholipid-binding (C2) domain in multiple plant proteins: novel components of the calcium-sensing apparatus. Plant Mol Biol 36:627–637

    CAS  PubMed  Google Scholar 

  • Kovar DR, Staiger CJ, Weaver EA, McCurdy DW (2000) AtFim1 is an actin filament crosslinking protein from Arabidopsis thaliana. Plant J 24:625–636

    CAS  PubMed  Google Scholar 

  • Krebs J, Heizmann CW (2007) Calcium-binding proteins and the EF-hand principle. In: Krebs J, Michalak M (eds) Calcium: a matter of life or death. Elsevier, Paris, pp 51–93

    Google Scholar 

  • Kretsinger RH, Nockolds CE (1973) Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem 248:3313–3326

    CAS  PubMed  Google Scholar 

  • Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci USA 96:4718–4723

    CAS  PubMed  Google Scholar 

  • Kurz M, Gu K, Lohse PA (2000) Psoralen photo-crosslinked mRNA-puromycin conjugates: a novel template for the rapid and facile preparation of mRNA-protein fusions. Nucl Acids Res 28:E83

    CAS  PubMed  Google Scholar 

  • Kurz M, Gu K, Al-Gawari A, Lohse PA (2001) cDNA – protein fusions: covalent protein – gene conjugates for the in vitro selection of peptides and proteins. Chembiochem 2:666–672

    CAS  PubMed  Google Scholar 

  • Kushwaha R, Singh A, Chattopadhyay S (2008) Calmodulin7 plays an important role as transcriptional regulator in Arabidopsis seedling development. Plant Cell 20:1747–1759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis JD, Lazarowitz SG (2010) Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Natl Acad Sci USA 107:2491–2496

    CAS  PubMed  Google Scholar 

  • Liang L, Flury S, Kalck V, Hohn B, Molinier J (2006) CENTRIN2 interacts with the Arabidopsis homolog of the human XPC protein (AtRAD4) and contributes to efficient synthesis-dependent repair of bulky DNA lesions. Plant Mol Biol 61:345–356

    CAS  PubMed  Google Scholar 

  • Liu J, Zhu JK (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943–1945

    CAS  PubMed  Google Scholar 

  • Lu G, Sehnke PC, Ferl RJ (1994) Phosphorylation and calcium binding properties of an Arabidopsis GF14 brain protein homolog. Plant Cell 6:501–510

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma W, Smigel A, Tsai YC, Braam J, Berkowitz GA (2008) Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein. Plant Physiol 148:818–828

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma W, Smigel A, Verma R, Berkowitz GA (2009) Cyclic nucleotide gated channels and related signaling components in plant innate immunity. Plant Signal Behav 4:277–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magnan F, Ranty B, Charpenteau M, Sotta B, Galaud JP, Aldon D (2008) Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Plant J 56:575–589

    CAS  PubMed  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    CAS  PubMed  Google Scholar 

  • McCormack E, Tsai Y-C, Braam J (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends Plant Sci 10:383–389

    CAS  PubMed  Google Scholar 

  • McCurdy DW, Kim M (1998) Molecular cloning of a novel fimbrin-like cDNA from Arabidopsis thaliana. Plant Mol Biol 36:23–31

    CAS  PubMed  Google Scholar 

  • Menegazzi P, Guzzo F, Baldan B, Mariani P, Treves S (1993) Purification of calreticulin-like protein(s) from spinach leaves. Biochem Biophys Res Commun 190:1130–1135

    CAS  PubMed  Google Scholar 

  • Meyer K, Leube MP, Grill E (1994) A protein phosphatase 2 C involved in ABA signal transduction in Arabidopsis thaliana. Science 264:1452–1455

    CAS  PubMed  Google Scholar 

  • Miedema H, Bothwell JH, Brownlee C, Davies JM (2001) Calcium uptake by pant cells –channels and pumps acting in concert. Trends Plant Sci 6:514–519

    CAS  PubMed  Google Scholar 

  • Molinier J, Ramos C, Fritsch O, Hohn B (2004) CENTRIN2 modulates homologous recombination and nucleotide excision repair in Arabidopsis. Plant Cell 16:1633–1643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Myers C, Romanowsky SM, Barron YD, Garg S, Azuse CL, Curran A, Davis RM, Hatton J, Harmon AC, Harper JF (2009) Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. Plant J 59:528–539

    CAS  PubMed  Google Scholar 

  • Naested H, Frandsen GI, Jauh GY, Hernandez-Pinzon I, Nielsen HB, Murphy DJ, Rogers JC, Mundy J (2000) Caleosins: Ca2+-binding proteins associated with lipid bodies. Plant Mol Biol 44:463–476

    CAS  PubMed  Google Scholar 

  • Narasimhulu SB, Kao Y-L, Reddy ASN (1997) Interaction of Arabidopsis kinesin-like calmodulin-binding protein with tubulin subunits: modulation by Ca2+-calmodulin. Plant J 12:1139–1149

    CAS  PubMed  Google Scholar 

  • Oda T, Hashimoto H, Kuwabara N, Akashi S, Hayashi K, Kojima C, Wong HL, Kawasaki T, Shimamoto K, Sato M, Shimizu T (2010) The structure of the N-terminal regulatory domain of a plant NADPH oxidase and its functional implications. J Biol Chem 285:1435–1445

    CAS  PubMed  Google Scholar 

  • Ogasawara Y, Kaya H, Hiraoka G, Yumoto F, Kimura S, Kadota Y, Hishinuma H, Senzaki E, Yamagoe S, Nagata K, Nara M, Suzuki K, Tanokura M, Kuchitsu K (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283:8885–8892

    CAS  PubMed  Google Scholar 

  • Oh SI, Park J, Yoon S, Kim Y, Park S, Ryu M, Nam MJ, Ok SH, Kim JK, Shin JS, Kim KN (2008) The Arabidopsis calcium sensor calcineurin B-like 3 inhibits the 5'-methylthioadenosine nucleosidase in a calcium-dependent manner. Plant Physiol 148:1883–1896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oppenheimer DG, Pollock MA, Vacik J, Szymanski DB, Ericson B, Feldmann K, Marks D (1997) Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc Natl Acad Sci USA 94:6261–6266

    CAS  PubMed  Google Scholar 

  • Partridge M, Murphy DJ (2009) Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. Plant Physiol Biochem 47:796–806

    CAS  PubMed  Google Scholar 

  • Peiter E, Maathuis FJ, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408

    CAS  PubMed  Google Scholar 

  • Popescu SC, Popescu GV, Bachan S, Zhang Z, Seay M, Gerstein M, Snyder M, Dinesh-Kumar SP (2007) Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proc Natl Acad Sci USA 104:4730–4735

    CAS  PubMed  Google Scholar 

  • Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney RR, Schmidt MC, Rachidi N, Lee SJ, Mah AS, Meng L, Stark MJ, Stern DF, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki PF, Snyder M (2005) Global analysis of protein phosphorylation in yeast. Nature 438:679–684

    CAS  PubMed  Google Scholar 

  • Qi Z, Stephens NR, Spalding EP (2006) Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol 142:963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ranf S, Wunnenberg P, Lee J, Becker D, Dunkel M, Hedrich R, Scheel D, Dietrich P (2008) Loss of the vacuolar cation channel, AtTPC1, does not impair Ca2+ signals induced by abiotic and biotic stresses. Plant J 53:287–299

    CAS  PubMed  Google Scholar 

  • Reddy ASN (2001) Calcium: silver bullet in signaling. Plant Sci 160:381–404

    CAS  PubMed  Google Scholar 

  • Reddy ASN, Day IS (2000) The role of the cytoskeleton and a molecular motor in trichome morphogenesis. Trends Plant Sci 5:503–505

    CAS  PubMed  Google Scholar 

  • Reddy ASN, Day IS (2001) Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2:2

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy ASN, Reddy V (2000) Calcium as a messenger in stress signal transduction. In: Pessarakali M (ed) Handbook of plant and crop physiology. Mercel Dekker, New York

    Google Scholar 

  • Reddy VS, Reddy AS (2004) Proteomics of calcium-signaling components in plants. Phytochemistry 65:1745–1776

    CAS  PubMed  Google Scholar 

  • Reddy ASN, Narasimhulu SB, Safadi F, Golovkin M (1996a) A plant kinesin heavy chain-like protein is a calmodulin-binding protein. Plant J 10:9–21

    CAS  PubMed  Google Scholar 

  • Reddy ASN, Safadi F, Narasimhulu SB, Golovkin M, Hu X (1996b) A novel plant calmodulin-binding protein with a kinesin heavy chain motor domain. J Biol Chem 271:7052–7060

    CAS  PubMed  Google Scholar 

  • Reddy V, Safadi F, Zielinski RE, Reddy ASN (1999) Interaction of a kinesin-like protein with calmodulin isoforms from Arabidopsis. J Biol Chem 274:31727–31733

    CAS  PubMed  Google Scholar 

  • Reddy AS, Reddy VS, Golovkin M (2000) A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Biochem Biophys Res Commun 279:762–769

    CAS  PubMed  Google Scholar 

  • Reddy VS, Ali GS, Reddy AS (2002) Genes encoding calmodulin-binding proteins in the Arabidopsis genome. J Biol Chem 277:9840–9852

    CAS  PubMed  Google Scholar 

  • Reddy VS, Ali GS, Reddy AS (2003) Characterization of a pathogen-induced calmodulin-binding protein: mapping of four Ca2+-dependent calmodulin-binding domains. Plant Mol Biol 52:143–159

    CAS  PubMed  Google Scholar 

  • Reddy VS, Day IS, Thomas T, Reddy AS (2004) KIC, a novel Ca2+ binding protein with one EF-hand motif, interacts with a microtubule motor protein and regulates trichome morphogenesis. Plant Cell 16:185–200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rohila JS, Chen M, Cerny R, Fromm ME (2004) Improved tandem affinity purification tag and methods for isolation of protein heterocomplexes from plants. Plant J 38:172–181

    CAS  PubMed  Google Scholar 

  • Rohila JS, Chen M, Chen S, Chen J, Cerny R, Dardick C, Canlas P, Xu X, Gribskov M, Kanrar S, Zhu JK, Ronald P, Fromm ME (2006) Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J 46:1–13

    CAS  PubMed  Google Scholar 

  • Rohila JS, Chen M, Chen S, Chen J, Cerny RL, Dardick C, Canlas P, Fujii H, Gribskov M, Kanrar S, Knoflicek L, Stevenson B, Xie M, Xu X, Zheng X, Zhu JK, Ronald P, Fromm ME (2009) Protein-protein interactions of tandem affinity purified protein kinases from rice. PLoS One 4:e6685

    PubMed Central  PubMed  Google Scholar 

  • Rozwadowski K, Zhao R, Jackman L, Huebert T, Burkhart WE, Hemmingsen SM, Greenwood J, Rothstein SJ (1999) Characterization and immunolocalization of a cytosolic calcium-binding protein from Brassica napus and Arabidopsis pollen. Plant Physiol 120:787–798

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rubio V, Shen Y, Saijo Y, Liu Y, Gusmaroli G, Dinesh-Kumar SP, Deng XW (2005) An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant J 41:767–778

    CAS  PubMed  Google Scholar 

  • Rudd JJ, Franklin-Tong VE (2001) Unravelling response-specificity in Ca2+signalling pathways in plant cells. New Phytol 151:7–33

    CAS  Google Scholar 

  • Safadi F, Reddy V, Reddy ASN (2000) A pollen-specific novel calmodulin-binding protein with tetratricopeptide repeats. J Biol Chem 275:35457–35470

    CAS  PubMed  Google Scholar 

  • Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R, Menzel D, Salinas J, Mancuso S, Valpuesta V, Baluska F, Botella MA (2008) Arabidopsis synaptotagmin1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20:3374–3388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen X, Valencia CA, Szostak JW, Dong B, Liu R (2005) Scanning the human proteome for calmodulin-binding proteins. Proc Natl Acad Sci USA 102:5969–5974

    CAS  PubMed  Google Scholar 

  • Shen X, Valencia CA, Gao W, Cotten SW, Dong B, Huang BC, Liu R (2008) Ca(2+)/Calmodulin-binding proteins from the C. elegans proteome. Cell Calcium 43:444–456

    CAS  PubMed  Google Scholar 

  • Shi YY, Tao WJ, Liang SP, Lu Y, Zhang L (2009) Analysis of the tip-to-base gradient of CaM in pollen tube pulsant growth using in vivo CaM-GFP system. Plant Cell Rep 28:1253–1264

    CAS  PubMed  Google Scholar 

  • Smirnova E, Reddy ASN, Bowser J, Bajer AS (1998) A minus end-directed kinesin-like motor protein, KCBP, localizes to anaphase spindle poles in Haemanthus endosperm. Cell Motil Cytoskel 41:271–280

    CAS  Google Scholar 

  • Song H, Golovkin M, Reddy ASN, Endow SA (1997) In vitro motility of AtKCBP, a calmodulin-binding kinesin-like protein of Arabidopsis. Proc Natl Acad Sci USA 94:322–327

    CAS  PubMed  Google Scholar 

  • Sutton RB, Davletov BA, Berghuis AM, Sudhof TC, Sprang SR (1995) Structure of the first C2 domain of synaptotagminI: a novel Ca2+/phospholipid-binding fold. Cell 80:929–938

    CAS  PubMed  Google Scholar 

  • Tang RH, Han S, Zheng H, Cook CW, Choi CS, Woerner TE, Jackson RB, Pei ZM (2007) Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP3 pathway in Arabidopsis. Science 315:1423–1426

    CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    CAS  PubMed  Google Scholar 

  • Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JD (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J 14:365–370

    CAS  PubMed  Google Scholar 

  • Turano FJ, Thakkar SS, Fang T, Weisemann JM (1997) Characterization and expression of NAD(H)-dependent glutamate dehydrogenase genes in Arabidopsis. Plant Physiol 113:1329–1341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tuteja N, Mahajan S (2007) Calcium signaling network in plants: an overview. Plant Signal Behav 2:79–85

    PubMed Central  PubMed  Google Scholar 

  • Urquhart W, Gunawardena AH, Moeder W, Ali R, Berkowitz GA, Yoshioka K (2007) The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner. Plant Mol Biol 65:747–761

    CAS  PubMed  Google Scholar 

  • Van Leene J, Stals H, Eeckhout D, Persiau G, Van De Slijke E, Van Isterdael G, De Clercq A, Bonnet E, Laukens K, Remmerie N, Henderickx K, De Vijlder T, Abdelkrim A, Pharazyn A, Van Onckelen H, Inze D, Witters E, De Jaeger G (2007) A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Mol Cell Proteomics 6:1226–1238

    PubMed  Google Scholar 

  • Venkatesan K, Rual JF, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh KI, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet AS, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, Rau K, Boone C, Braun P, Cusick ME, Roth FP, Hill DE, Tavernier J, Wanker EE, Barabasi AL, Vidal M (2009) An empirical framework for binary interactome mapping. Nat Methods 6:83–90

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vinogradova MV, Reddy VS, Reddy AS, Sablin EP, Fletterick RJ (2004) Crystal structure of kinesin regulated by Ca(2+)-calmodulin. J Biol Chem 279:23504–23509

    CAS  PubMed  Google Scholar 

  • Vinogradova MV, Malanina GG, Reddy VS, Reddy AS, Fletterick RJ (2008) Structural dynamics of the microtubule binding and regulatory elements in the kinesin-like calmodulin binding protein. J Struct Biol 163:76–83

    CAS  PubMed  Google Scholar 

  • Vinogradova MV, Malanina GG, Reddy AS, Fletterick RJ (2009) Structure of the complex of a mitotic kinesin with its calcium binding regulator. Proc Natl Acad Sci USA 106:8175–8179

    CAS  PubMed  Google Scholar 

  • Vlad F, Turk BE, Peynot P, Leung J, Merlot S (2008) A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates. Plant J 55:104–117

    CAS  PubMed  Google Scholar 

  • Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J (2008) Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J 56:505–516

    CAS  PubMed  Google Scholar 

  • Wang C, Wang X (2001) A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane. Plant Physiol 127:1102–1112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Tsuda K, Sato M, Cohen JD, Katagiri F, Glazebrook J (2009) Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog 5:e1000301

    PubMed Central  PubMed  Google Scholar 

  • Weinl S, Kudla J (2009) The CBL-CIPK Ca(2+)-decoding signaling network: function and perspectives. New Phytol 184:517–528

    CAS  PubMed  Google Scholar 

  • Weinthal D, Tzfira T (2009) Imaging protein-protein interactions in plant cells by bimolecular fluorescence complementation assay. Trends Plant Sci 14:59–63

    CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511

    CAS  PubMed  Google Scholar 

  • Yamakawa H, Mitsuhara I, Ito N, Seo S, Kamada H, Ohashi Y (2001) Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant. Eur J Biochem 268:3916–3929

    CAS  PubMed  Google Scholar 

  • Yamazaki T, Kawamura Y, Minami A, Uemura M (2008) Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20:3389–33404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 277:45049–45058

    CAS  PubMed  Google Scholar 

  • Yang H, Li Y, Hua J (2006) The C2 domain protein BAP1 negatively regulates defense responses in Arabidopsis. Plant J 48:238–248

    CAS  PubMed  Google Scholar 

  • Yang WQ, Lai Y, Li MN, Xu WY, Xue YB (2008) A novel C2-domain phospholipid-binding protein, OsPBP1, is required for pollen fertility in rice. Mol Plant 1:770–785

    CAS  PubMed  Google Scholar 

  • Yoon GM, Dowd PE, Gilroy S, McCubbin AG (2006) Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 18:867–878

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan X, Deng KQ, Zhao XY, Wu XJ, Qin YZ, Tang DY, Liu XM (2007) A calcium-dependent protein kinase is involved in plant hormone signal transduction in Arabidopsis. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 33:227–234

    Google Scholar 

  • Zhang D, Wengier D, Shuai B, Gui CP, Muschietti J, McCormick S, Tang WH (2008) The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol 148:1368–1379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Fang Q, Zhang Z, Wang Y, Zheng X (2009) The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana. J Exp Bot 60:309–3122

    Google Scholar 

  • Zhao J, Connorton JM, Guo Y, Li X, Shigaki T, Hirschi KD, Pittman JK (2009) Functional studies of split Arabidopsis Ca2+/H+ exchangers. J Biol Chem 284:34075–34083

    CAS  PubMed  Google Scholar 

  • Zhou L, Fu Y, Yang Z (2009) A genome-wide functional characterization of Arabidopsis regulatory calcium sensors in pollen tubes. J Integr Plant Biol 51:751–761

    CAS  PubMed  Google Scholar 

  • Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. N. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Day, I.S., Reddy, A.S.N. (2011). Elucidation of Calcium-Signaling Components and Networks. In: Luan, S. (eds) Coding and Decoding of Calcium Signals in Plants. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20829-4_10

Download citation

Publish with us

Policies and ethics