Skip to main content

Plasmonic Nanomaterials for Nanomedicine

  • Chapter
Springer Handbook of Nanomaterials

Part of the book series: Springer Handbooks ((SHB))

Abstract

Plasmonic nanoparticles are being researched as a noninvasive tool for ultrasensitive diagnostic, spectroscopic, and, recently, therapeutic technologies. With particular antibody coatings on nanoparticles, they attach to abnormal cells of interest (cancer or otherwise). Once attached, nanoparticles can be activated/heated with ultraviolet (UV)/visible/infrared (IR), radiofrequency (RF) or x-ray pulses, damaging the surrounding area of the abnormal cell to the point of death. Here, we describe an integrated approach to improved plasmonic therapy composed of nanomaterial optimization and the development of a theory for selective radiation nanophotothermolysis of abnormal biological cells with gold nanoparticles and self-assembled nanoclusters. The theory takes into account radiation-induced linear and nonlinear synergistic effects in biological cells containing nanostructures, with focus on optical, thermal, bubble formation, and nanoparticle explosion phenomena. On the basis of the developed models, we discuss new ideas and new dynamic modes for cancer treatment by radiation-activated nanoheaters, which involve nanocluster aggregation in living cells, microbubbles overlapping around laser-heated intracellular nanoparticles/clusters, and the laser thermal explosion mode of single nanoparticles (nanobombs) delivered to cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

Ab:

antibody

BOM:

bubble overlapping mode

CAM:

cluster aggregation mode

DNA:

deoxyribonucleic acid

GN:

gold nanoparticle

GNC:

gold nanoparticle cluster

IR:

infrared

OTM:

one-temperature model

PBS:

phosphate buffered saline

RF:

radio frequency

UV:

ultraviolet

References

  1. T.F. George, D. Jelski, R.R. Letfullin, G. Zhang (Eds.): Computational Studies of New Materials II: From Ultrafast Processes and Nanostructures to Optoelectronics, Energy Storage and Nanomedicine (World Scientific, Singapore 2011)

    Google Scholar 

  2. T.M. Fahmy, P.M. Fong, A. Goyal, W.M. Saltzman: Targeted for drug delivery, Nano Today, August 18–26 (2005)

    Google Scholar 

  3. Y. Fukumori, H. Ichikawa: Nanoparticles for cancer therapy and diagnosis, Adv. Powder Technol. 17, 1–28 (2006)

    Article  CAS  Google Scholar 

  4. S. Nie, Y. Xing, G.J. Kim, J.W. Simons: Nanotechnology applications in cancer, Annu. Rev. Biomed. Eng. 9, 257–288 (2007)

    Article  CAS  Google Scholar 

  5. R.R. Letfullin, V.I. Igoshin, A.N. Bekrenev: Thermal calculation of bone-tissue slash modes by laser radiation, Proc. SPIE 2100, 272–275 (1994)

    Article  Google Scholar 

  6. R.R. Letfullin, V.P. Zharov, C. Joenathan, T.F. George: Nano-photothermolysis of cancer cells, SPIE Newsroom (2007)

    Google Scholar 

  7. V.P. Zharov, K.E. Mercer, E.N. Galitovskaya, M.S. Smeltzer: Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles, Biophys. J. 90, 619–627 (2006)

    Article  CAS  Google Scholar 

  8. G.A. Mansoori, P. Mohazzabi, P. McCormack, S. Jabbari: Nanotechnology in cancer prevention, detection, and treatment: Bright future lies ahead, World Rev. Sci. Technol. Sustain. Dev. 4, 226–257 (2007)

    Article  Google Scholar 

  9. C.M. Pitsillides, E.K. Joe, X. Wei, R.R. Anderson, C.P. Lin: Selective cell targeting with light-absorbing microparticles and nanoparticles, Biophys. J. 84, 4023–4032 (2003)

    Article  CAS  Google Scholar 

  10. M.J. Vicent: Polymer-drug conjugates as modulators of cellular apoptosis, Am. Assoc. Pharm. Sci. J. 9, E200–E207 (2007)

    Google Scholar 

  11. J. Khandare, T. Minko: Polymer-drug conjugates: progress in polymeric prodrugs, Prog. Polym. Sci. 31, 359–397 (2006)

    Article  CAS  Google Scholar 

  12. V.P. Zharov, R.R. Letfullin, E.N. Galitovskaya: Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters, J. Phys. D 38, 2571–2581 (2005)

    Article  CAS  Google Scholar 

  13. J.R. Lepock, H.E. Frey, K.P. Ritchie: Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock, J. Cell Biol. 122, 1267–1276 (1993)

    Article  CAS  Google Scholar 

  14. C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, G. Hüttmann: Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles, J. Biomed. Opt. 10, 064012–1–064012–8 (2005)

    Article  Google Scholar 

  15. R.R. Letfullin, C.E.W. Rice, T.F. George: Bone tissue heating and ablation by short and ultrashort laser pulses, Proc. SPIE 7548, 75484K–1–75484K–11 (2010)

    Article  Google Scholar 

  16. R.R. Letfullin, T.F. George: Laser ablation of biological tissue by short and ultrashort pulses. In: Computational Studies of New Materials II, ed. by T.F. George, D. Jelski, R.R. Letfullin, G.P. Zhang (World Scientific, Singapore 2011) pp. 191–218

    Google Scholar 

  17. R.R. Letfullin, C. Joenathan, T.F. George, V.P. Zharov: Laser-induced explosion of gold nanoparticles: Potential role for nanophotothermolysis of cancer, Nanomedicine 1, 473–480 (2006)

    Article  CAS  Google Scholar 

  18. R.R. Letfullin, V.P. Zharov, C. Joenathan, T.F. George: Laser-induced thermal explosion mode for selective nano-photothermolysis of cancer cells, Proc. SPIE 6436, 643601–1–643601–5 (2007)

    Article  Google Scholar 

  19. R.R. Letfullin, C.E.W. Rice, T.F. George: Space simulation of thermal fields generated in bone tissue for application to nanophotohyperthermia and nanophotothermolysis, Proc. SPIE 7883, 78834–L–1–78834–L–10 (2011)

    Article  Google Scholar 

  20. R.R. Letfullin, T.F. George, G.C. Duree, B.M. Bollinger: Ultrashort laser pulse heating of nanoparticles: Comparison of theoretical approaches, Adv. Opt. Technol. 2008, 251718–1–251718–8 (2008)

    Google Scholar 

  21. R.R. Letfullin, T.F. George: Nanomaterials in nanomedicine. In: Computational Studies of New Materials II: From Ultrafast Processes and Nanostructures to Optoelectronics, Energy Storage and Nanomedicine, ed. by T.F. George, D. Jelski, R.R. Letfullin, G.P. Zhang (World Scientific, Singapore 2011) pp. 103–130

    Chapter  Google Scholar 

  22. R.R. Letfullin, T.F. George: New dynamic modes for selective laser cancer nanotherapy. In: Computational Studies of New Materials II: From Ultrafast Processes and Nanostructures to Optoelectronics, Energy Storage and Nanomedicine, ed. by T.F. George, D. Jelski, R.R. Letfullin, G.P. Zhang (World Scientific, Singapore 2011) pp. 131–172

    Chapter  Google Scholar 

  23. R.R. Letfullin, C.E.W. Rice, T.F. George: Modeling photothermal heating and ablation of biological hard tissues by short and ultrashort laser pulses, Int. J. Theor. Phys. Group Theor. Nonlinear Opt. 15, 11–23 (2011)

    Google Scholar 

  24. R.R. Letfullin, C.B. Iversen, T.F. George: Modeling nanophotothermal therapy: Kinetics of thermal albation of healthy and cancerous cell organelles and gold nanoparticles, Nanomedicine 7(2), 137–145 (2011)

    Article  CAS  Google Scholar 

  25. R.R. Letfullin, T.F. George: Nanoscale materials in strong ultrashort laser fields. In: Computational Studies of New Materials II: From Ultrafast Processes and Nanostructures to Optoelectronics, Energy Storage and Nanomedicine, ed. by T.F. George, D. Jelski, R.R. Letfullin, G.P. Zhang (World Scientific, Singapore 2011) pp. 37–64

    Chapter  Google Scholar 

  26. P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine, J. Phys. Chem. B 110, 7238–7248 (2006)

    Article  CAS  Google Scholar 

  27. V.K. Pustovalov, A.S. Smetannikov, V.P. Zharov: Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses, Laser Phys. Lett. 5, 775–792 (2008)

    Article  CAS  Google Scholar 

  28. Z. Peng, T. Walther, K. Kleinermanns: Influence of intense pulsed laser irradiation on optical and morphological properties of gold nanoparticle aggregates produced by surface acid–base reactions, Langmuir 21, 4249–4253 (2005)

    Article  CAS  Google Scholar 

  29. V.S. Kalambur, E.K. Longmire, J.C. Bischof: Cellular level loading and heating of superparamagnetic iron oxide nanoparticles, Langmuir 23, 12329–12336 (2007)

    Article  CAS  Google Scholar 

  30. E.Y. Hleb, D.O. Lapotko: Photothermal properties of gold nanoparticles under exposure to high optical energies, Nanotechnology 19, 1–10 (2008)

    Article  Google Scholar 

  31. H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, S. Yamada: Gold nanorod-sensitized cell death: Microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods, Chem. Lett. 35, 500–501 (2006)

    Article  CAS  Google Scholar 

  32. P. Buffat, J.P. Borel: Size effect on the melting temperature of gold particles, Phys. Rev. A 13, 2287–2298 (1976)

    Article  CAS  Google Scholar 

  33. T. Torimura, T. Ueno, S. Inuzuka, Y. Kimura, P. Ko, M. Kin, T. Minetoma, T. Majima, M. Sata, H. Abe, K. Tanikawa: Ultrastructural observation on hepatocellular carcinoma: Correlation of tumor grade and degree of atypia of cell organelles by morphometry, Med. Electron. Microsc. 26, 19–28 (1993)

    Article  Google Scholar 

  34. G.T. Deans, P.W. Hamilton, P.C.H. Watt, M. Heatly, K. Williamson, C.C. Patterson, B.J. Rowlands, G. Parks, R. Spence: Morphometric analysis of colorectal cancer, Dis. Colon Rectum 36, 450–456 (1993)

    Article  CAS  Google Scholar 

  35. M.M. Radwan, K.A. Amer, N.M. Mokhtar, M.A. Kandil, A.M. El-Barbary, H.A. Aiad: Nuclear morphometry in ductal breast carcinoma with correlation to cell proliferative activity and prognosis, J. Egypt. Natl. Cancer Inst. 15, 169–182 (2003)

    Google Scholar 

  36. D. Ozaki, Y. Kondo: Comparative morphometric studies of benign and malignant intraductal proliferative lesions of the breast by computerized image analysis, Hum. Pathol. 26, 1109–1113 (1995)

    Article  CAS  Google Scholar 

  37. Y. Cui, E.A. Koop, P.J. van Diest, R.A. Kandel, T.E. Rohan: Nuclear morphometric features in benign breast tissue and risk of subsequent breast cancer, Breast Cancer Res. Treat. 104, 103–107 (2007)

    Article  Google Scholar 

  38. N. Campbell, J. Reece: The Cell: A Tour of the Cell Biology, 8th edn. (Benjamin Cummings, San Francisco 2007)

    Google Scholar 

  39. M. Bloom, J. Greenbeerg (Eds.): BSCS Biology, A Molecular Approach, BSCS Blue Version, 9th edn. (Glencoe/McGraw-Hill, Columbus 2006)

    Google Scholar 

  40. D.E. Sadava: Cell Biology: Organelle Structure and Function (Jones Bartlett, Boston 1993)

    Google Scholar 

  41. L.W. Anson, R.C. Chivers: Ultrasonic propagation in mammalian cell suspensions based on model, Phys. Med. Biol. 34, 1153–1167 (1989)

    Article  CAS  Google Scholar 

  42. D.L. Martin, J. Sampugna: Stimulating Cell Fractionation (Carolina Biological Supply Company 1973), pp. 50–51

    Google Scholar 

  43. H. Goldenberg, C.J. Tranter: Heat flow in an infinite medium heated by a sphere, Br. J. Appl. Phys. 3, 296–298 (1952)

    Article  Google Scholar 

  44. S.R.H. Davidson, D.F. James: Measurement of thermal conductivity of bovine cortical bone, Med. Eng. Phys. 22, 741–747 (2000)

    Article  CAS  Google Scholar 

  45. P.L. Blanton, N.L. Biggs: Density of fresh and embalmed human compact and cancellous bone, Am. J. Phys. Anthropol. 29, 39–44 (1968)

    Article  CAS  Google Scholar 

  46. H. Fukushima, Y. Hashimoto, S. Yoshiya, M. Kurosaka, M. Matsuda, S. Kawamura, T. Iwatsubo: Conduction analysis of cement interface temperature in total knee arthroplasty, Kobe J. Med. Sci. 48, 63–72 (2002)

    Google Scholar 

  47. A. Shakeri-Zadeh, M. Ghasemifard, G.A. Mansoori: Structural and optical characterization of folateconjugated gold-nanoparticles, Physica E 42, 1272–1280 (2010)

    Article  Google Scholar 

  48. P.B. Johnson, R.W. Christy: Optical properties of the noble metals, Phys. Rev. B 6, 4370–4379 (1972)

    Article  CAS  Google Scholar 

  49. D. Fried, M. Zuerlein, J.D.B. Featherstone, W. Seka, C. Duhn, S.M. McCormack: IR laser ablation of dental enamel: Mechanistic dependence on the primary absorber, Appl. Surf. Sci. 127–129, 852–856 (1998)

    Article  Google Scholar 

  50. M.C. Daniel, D. Astruc: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties and application toward biology, catalysis and nanotechnology, Chem. Rev. 104, 293–346 (2004)

    Article  CAS  Google Scholar 

  51. C.P. Lin, M.W. Kelly, S.A. Sibayan, M.A. Latina, R.R. Anderson: Selective cell killing by microparticle absorption of pulsed laser radiation, IEEE J. Sel. Top. Quantum Electron. 5, 963–968 (1999)

    Article  CAS  Google Scholar 

  52. C.E. Brennen: Cavitation and Bubble Dynamics (Oxford Univ. Press, New York 1995)

    Google Scholar 

  53. K. Aslan, J.R. Lakowicz, C.D. Geddes: Nanogold-plasmon-resonance-based glucose sensing, Anal. Biochem. 330, 145–155 (2004)

    Article  CAS  Google Scholar 

  54. J. Neumann, R. Brinkmann: Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses, Opt. 10, 024001–024012 (2005)

    Google Scholar 

  55. A. Takami, H. Kurita, S. Koda: Laser-indiced size reduction of noble particle, J. Phys. Chem. B 103, 1226–1232 (1999)

    Article  CAS  Google Scholar 

  56. R.R. Anderson, J.A. Parrish: Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation, Science 220, 524–527 (1983)

    Article  CAS  Google Scholar 

  57. V. Venugopalan, A. Gyerra III, K. Nahen, A. Vogel: Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation, Phys. Rev. Lett. 88, 078103–1–078103–4 (2002)

    Article  Google Scholar 

  58. A. Vogel, V. Venugolapan: Mechanism of pulsed laser ablation of biological tissue, Chem. Rev. 103, 577–644 (2003)

    Article  CAS  Google Scholar 

  59. K. Yamada, Y. Tokumoto, T. Nagata, F. Mafune: Mechanism of laser-induced size-reduction of gold nanoparticles as studied by nanosecond transient absorption spectroscopy, J. Phys. Chem. B 110, 11751–11756 (2006)

    Article  CAS  Google Scholar 

  60. S. Inasawa, M. Sugiyama, S. Noda, Y. Yamaguchi: Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scale and longer, J. Phys. Chem. B 110, 3114–3119 (2006)

    Article  CAS  Google Scholar 

  61. G. Huttmann, B. Radt, J. Serbin, R. Birngruber: Inactivation of proteins by irradation of gold nanoparticles with nano- and picosecond laser pulses, Proc. SPIE 5142, 88–95 (2003)

    Article  Google Scholar 

  62. P. Steinbach, F. Hofstadter, H. Nicolai, W. Rossier, W. Wieland: In vitro investigations on cellular damage induced by high energy shock waves, Ultrasound Med. Biol. 18, 691–699 (1992)

    Article  CAS  Google Scholar 

  63. A.G. Doukas, D.J. McAuliffe, T.J. Flotte: Biological effects of laser-induced shock waves: Structural and functional cell damage in vitro, Ultrasound Med. Biol. 19, 137–146 (1993)

    Article  CAS  Google Scholar 

  64. T. Douki, S. Lee, K. Dorey, T.J. Flotte, T.F. Deutsch, A.G. Doukas: Stress-wave-induced injury to retinal pigment epithelium cells in vitro, Lasers Surg. Med. 19, 249–259 (1996)

    Article  CAS  Google Scholar 

  65. T. Kodama, H. Uenohara, K. Takayama: Innovative technology for tissue disruption by explosive-induced shock waves, Ultrasound Med. Biol. 24, 1459–1466 (1998)

    Article  CAS  Google Scholar 

  66. A. Sonden, B. Svensson, N. Roman, H. Ostmark, B. Brismar, J. Palmblad, B.T. Kjellstrom: Laser-induced shock wave endothelial cell injury, Lasers Surg. Med. 26, 364–375 (2000)

    Article  CAS  Google Scholar 

  67. E. Faraggi, B.S. Gerstman, J. Sun: Biophysical effects of pulsed lasers in the retina and other tissues containing strongly absorbing particles: Shockwave and explosive bubble generation, J. Biomed. Opt. 10, 064029–1–064029–10 (2005)

    Article  Google Scholar 

  68. S. Inasawa, M. Sugiyama, Y. Yamaguchi: Bimodal size distribution of gold nanoparticles under picosecond laser pulses, J. Phys. Chem. B 109, 9404–9410 (2005)

    Article  CAS  Google Scholar 

  69. L. Boufendi, A. Bouchoule, B. Dubreuil, E. Stoffels, W.W. Stoffels, M.L. deGiorgi: Study of initial dust formation in an Ar-SiH4 discharge by laser induced particle explosive evaporation, J. Appl. Phys. 76, 148–153 (1994)

    Article  CAS  Google Scholar 

  70. ANSI Standard Z136.1-2000: American National Standard for safe use of Lasers ANSIZ136.1 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renat R. Letfullin or Thomas F. George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag

About this chapter

Cite this chapter

Letfullin, R.R., George, T.F. (2013). Plasmonic Nanomaterials for Nanomedicine. In: Vajtai, R. (eds) Springer Handbook of Nanomaterials. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20595-8_30

Download citation

Publish with us

Policies and ethics