Skip to main content

Plasmid Plasticity in the Plant-Associated Bacteria of the Genus Azospirillum

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Growth Responses

Abstract

Multipartite Azospirillum genomes contain numerous plasmids, some of which encode the production of lipopolysaccharides, exopolysaccharides, capsular polysaccharides, components of the motility apparatus, and secondary metabolites important for plant colonization and plant-growth promotion. Several studies have shown that the genomes of A. brasilense, A. lipoferum, and A. irakense are quite dynamic and that some plasmids are involved in major genomic rearrangements. In this review, I briefly discuss the available data on plasmid plasticity in Azospirillum and the influence of this genetic plasticity on bacterial metabolism, motility, production of major cell-surface polymers, biofilm-forming capacity, and resistance to xenobiotics, i.e., the traits potentially important for bacterial survival in soil and phytosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achouak W, Conrod S, Cohen V, Heulin T (2004) Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy. Mol Plant Microbe Interact 17:872–879

    Article  PubMed  CAS  Google Scholar 

  • Alexandre G, Bally R (1999) Emergence of a laccase-positive variant of Azospirillum lipoferum occurs via a two-step phenotypic switching process. FEMS Microbiol Lett 174:371–378

    Article  PubMed  CAS  Google Scholar 

  • Alexandre G, Jacoud C, Faure D, Bally R (1996) Population dynamics of a motile and non-motile Azospirillum lipoferum strains during rice colonization and motility variation in the rhizosphere. FEMS Microbiol Ecol 19:271–278

    Article  CAS  Google Scholar 

  • Alexandre G, Rohr R, Bally R (1999) A phase variant of Azospirillum lipoferum lacks a polar flagellum and constitutively expresses mechanosensing lateral flagella. Appl Environ Microbiol 65:4701–4707

    PubMed  CAS  Google Scholar 

  • Assmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019

    PubMed  CAS  Google Scholar 

  • Baldani VLD, Baldani JI, Döbereiner J (1983) Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can J Microbiol 29:924–929

    Article  Google Scholar 

  • Bally R, Thomas-Bauzon D, Heulin T, Balandreau J, Richard C, de Ley J (1983) Determination of the most frequent N2-fixing bacteria in the rice rhizosphere. Can J Microbiol 29:881–887

    Article  Google Scholar 

  • Barassi CA, Sueldo RJ, Creus CM, Carrozzi LE, Casanovas EM, Pereyra MA (2007) Azospirillum spp., a dynamic soil bacterium favourable to vegetable crop production. Dyn Soil Dyn Plant 1:68–82

    Google Scholar 

  • Bashan Y, de Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth – a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Batut J, Andersson SG, O’Callaghan D (2004) The evolution of chronic infection strategies in the alpha-proteobacteria. Nat Rev Microbiol 2:933–945

    Article  PubMed  CAS  Google Scholar 

  • Ben Dekhil S, Cahill M, Stackebrandt E, Sly LI (1997) Transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subsp. parooensis to the new type species of Conglomeromonas, Conglomeromonas parooensis sp. nov. Syst Appl Microbiol 20:72–77

    Article  Google Scholar 

  • Bentley SD, Parkhill J (2004) Comparative genomic structure of prokaryotes. Annu Rev Genet 38:771–791

    Article  PubMed  CAS  Google Scholar 

  • Blaha D, Prigent-Combaret C, Mirza MS, Moënne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Article  PubMed  CAS  Google Scholar 

  • Boiko AS, Smol’kina ON, Fedonenko YP, Zdorovenko EL, Kachala VV, Konnova SA, Ignatov VV (2010) O-Polysaccharide structure in serogroup I azospirilla. Microbiology 79:197–205

    Article  CAS  Google Scholar 

  • Borisov IV, Schelud’ko AV, Petrova LP, Katsy EI (2009) Changes in Azospirillum brasilense motility and the effect of wheat seedling exudates. Microbiol Res 164:578–587

    Article  PubMed  CAS  Google Scholar 

  • Boyer M, Haurat J, Samain S, Segurens B, Gavory F, González V, Mavingui P, Rohr R, Bally R, Wisniewski-Dyé F (2008) Bacteriophage prevalence in the genus Azospirillum and analysis of the first genome sequence of an Azospirillum brasilense integrative phage. Appl Environ Microbiol 74:861–874

    Article  PubMed  CAS  Google Scholar 

  • Caballero-Mellado J, Lopez-Reyes L, Bustillos-Cristales R (1999) Presence of 16S rRNA genes in multiple replicons in Azospirillum brasilense. FEMS Microbiol Lett 178:283–288

    Article  CAS  Google Scholar 

  • Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brüssow H (2004) Phage-host interaction: an ecological perspective. J Bacteriol 186:3677–3686

    Article  PubMed  CAS  Google Scholar 

  • De Mot R, Vanderleyden J (1989) Application of two-dimensional protein analysis for strain fingerprinting and mutant analysis of Azospirillum species. Can J Microbiol 35:960–967

    Article  Google Scholar 

  • Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424

    Article  PubMed  CAS  Google Scholar 

  • Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51:17–26

    PubMed  CAS  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293

    Article  PubMed  CAS  Google Scholar 

  • Elmerich C, Quiviger B, Rosenberg C, Franche C, Laurent P, Döbereiner J (1982) Characterization of a temperate bacteriophage for Azospirillum. Virology 122:29–37

    Article  PubMed  CAS  Google Scholar 

  • Eskew DL, Focht DD, Ting IP (1977) Nitrogen fixation, denitrification, and pleomorphic growth in a highly pigmented Spirillum lipoferum. Appl Environ Microbiol 34:582–585

    PubMed  CAS  Google Scholar 

  • Espinosa-Urgel M (2004) Plant-associated Pseudomonas populations: molecular biology, DNA dynamics, and gene transfer. Plasmid 52:139–150

    Article  PubMed  CAS  Google Scholar 

  • Faure D, Frederick R, Wloch D, Portier P, Blot M, Adams J (2004) Genomic changes arising in long-term stab cultures of Escherichia coli. J Bacteriol 186:6437–6442

    Article  PubMed  CAS  Google Scholar 

  • Fedonenko YP, Zatonsky GV, Konnova SA, Zdorovenko EL, Ignatov VV (2002) Structure of the O-specific polysaccharide of the lipopolysaccharide of Azospirillum brasilense Sp245. Carbohydr Res 337:869–872

    Article  PubMed  CAS  Google Scholar 

  • Fedonenko YP, Zdorovenko EL, Konnova SA, Ignatov VV, Shlyakhtin GV (2004) Comparison of the lipopolysaccharides and O-specific polysaccharides of Azospirillum brasilense Sp245 and its Omegon-Km mutants KM018 and KM252. Microbiology 73:180–187

    Article  PubMed  Google Scholar 

  • Fedonenko YP, Borisov IV, Konnova ON, Zdorovenko EL, Katsy EI, Konnova SA, Ignatov VV (2005) Determination of the structure of the repeated unit of the Azospirillum brasilense SR75 O-specific polysaccharide and homology of the lps loci in the plasmids of Azospirillum brasilense strains SR75 and Sp245. Microbiology 74:542–548

    Article  CAS  Google Scholar 

  • Fedonenko YP, Katsy EI, Petrova LP, Boyko AS, Zdorovenko EL, Kachala VV, Shashkov AS, Knirel YA (2010) The structure of the O-specific polysaccharide from a mutant of nitrogen-fixing rhizobacterium Azospirillum brasilense Sp245 with an altered plasmid content. Russ J Bioorg Chem 36:219–223

    Article  CAS  Google Scholar 

  • Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42:373–397

    Article  PubMed  CAS  Google Scholar 

  • Germida JJ (1984) Spontaneous induction of bacteriophage during growth of Azospirillum brasilense in complex media. Can J Microbiol 30:805–808

    Article  Google Scholar 

  • González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramírez MA, Jiménez-Jacinto V, Collado-Vides J, Dávila G (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA 103:3834–3839

    Article  PubMed  Google Scholar 

  • Gündisch C, Baur M, Kirchhof G, Bode W, Hartmann A (1993) Characterization of Azospirillum strains by RFLP and pulsed-field gel electrophoresis. Microb Releases 2:41–45

    PubMed  Google Scholar 

  • Hall PG, Krieg NR (1983) Swarming of Azospirillum brasilense on solid media. Can J Microbiol 29:1592–1594

    Article  Google Scholar 

  • Haurat J, Faure D, Bally R, Normand P (1994) Molecular relationship of an atypical Azospirillum strain 4T to other Azospirillum species. Res Microbiol 145:633–640

    Article  PubMed  CAS  Google Scholar 

  • Heuer H, Smalla K (2007) Horizontal gene transfer between bacteria. Environ Biosafety Res 6:3–13

    Article  PubMed  CAS  Google Scholar 

  • Holguin G, Patten CL, Glick BR (1999) Genetics and molecular biology of Azospirillum. Biol Fert Soils 29:10–23

    Article  CAS  Google Scholar 

  • Isawa T, Yasuda M, Awasaki H, Minamisawa K, Shinozaki S, Nakashita H (2010) Azospirillum sp. strain B510 enhances rice growth and yield. Microbes Environ 25:58–61

    Article  PubMed  Google Scholar 

  • Jain D, Patriquin D (1984) Root hair deformation, bacterial attachment and plant growth in wheat–Azospirillum associations. Appl Environ Microbiol 48:1208–1213

    PubMed  CAS  Google Scholar 

  • Kado CI (1998) Origin and evolution of plasmids. 73:117–126

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H, Mitsui H, Kawaharada Y, Nakamura Y, Watanabe A, Kawashima K, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Sato S (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50

    Article  PubMed  CAS  Google Scholar 

  • Katsy EI (1992) Plasmid p85 from Azospirillum brasilense Sp245: study of the possible host range and incompatibility with plasmids of Azospirillum brasilense Sp7. Mol Gen Mikrobiol Virusol 9:8–10

    Google Scholar 

  • Katsy EI, Prilipov AG (2009) Mobile elements of an Azospirillum brasilense Sp245 85-MDa plasmid involved in replicon fusions. Plasmid 62:22–29

    Article  PubMed  CAS  Google Scholar 

  • Katsy EI, Zhuravleva EA, Panasenko VI (1990) Transposon mutagenesis and mobilization of plasmids in the nitrogen-fixing bacterium Azospirillum brasilense Sp245. Mol Gen Mikrobiol Virusol 2:29–32

    PubMed  Google Scholar 

  • Katsy EI, Borisov IV, Mashkina AB, Panasenko VI (1994) Effect of plasmid composition on the chemotaxis reaction of Azospirillum brasilense Sp245 associated with Gramineae. Mol Gen Mikrobiol Virusol 2:29–32

    PubMed  Google Scholar 

  • Katsy EI, Borisov IV, Petrova LP, Matora LY (2002) The use of fragments of the 85- and 120-MDa plasmids of Azospirillum brasilense Sp245 to study the plasmid rearrangement in this bacterium and to search for homologous sequences in plasmids of Azospirillum brasilense Sp7. Russ J Genet 38:124–131

    Article  CAS  Google Scholar 

  • Katsy EI, Petrova LP, Kulibyakina OV, Prilipov AG (2010) Analysis of Azospirillum brasilense plasmid loci coding for (lipo)polysaccharides synthesis enzymes. Microbiology 79:216–222

    Article  CAS  Google Scholar 

  • Katzy EI, Iosipenko AD, Egorenkov DA, Zhuravleva EA, Panasenko VI, Ignatov VV (1990) Involvement of the Azospirillum brasilense plasmid DNA in the production of indole acetic acid. FEMS Microbiol Lett 72:1–4

    Article  Google Scholar 

  • Katzy E, Petrova L, Borisov I, Panasenko V (1995) Genetic aspects of indole acetate production in Azospirillum brasilense Sp245. In: Fendrik I, Del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms: genetics, physiology, ecology, vol G 37, NATO ASI series. Springer, Berlin, pp 113–119

    Google Scholar 

  • Katzy EI, Matora LY, Serebrennikova OB, Scheludko AV (1998) Involvement of a 120-MDa plasmid of Azospirillum brasilense Sp245 in the production of lipopolysaccharides. Plasmid 40:73–83

    Article  PubMed  CAS  Google Scholar 

  • Katzy EI, Borisov IV, Scheludko AV (2001) Effect of the integration of vector pJFF350 into plasmid 85-MDa of Azospirillum brasilense Sp245 on bacterial flagellation and motility. Russ J Genet 37:129–134

    Article  CAS  Google Scholar 

  • Khammas KM, Ageron E, Grimont PAD, Kaiser P (1989) Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res Microbiol 140:679–693

    PubMed  CAS  Google Scholar 

  • Kirchhof G, Schloter M, Assmus B, Hartmann A (1997) Molecular microbial ecology approaches applied to diazotrophs associated with non-legumes. Soil Biol Biochem 29:853–862

    Article  CAS  Google Scholar 

  • Lavrinenko K, Chernousova E, Gridneva E, Dubinina G, Akimov V, Kuever J, Lysenko A, Grabovich M (2010) Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. Int J Syst Microbiol 60:2832–2837

    Article  CAS  Google Scholar 

  • Lerner A, Castro-Sowinski S, Valverde A, Lerner H, Dror R, Okon Y, Burdman S (2009a) The Azospirillum brasilense Sp7 noeJ and noeL genes are involved in extracellular polysaccharide biosynthesis. Microbiology 155:4058–4068

    Article  PubMed  CAS  Google Scholar 

  • Lerner A, Okon Y, Burdman S (2009b) The wzm gene located on the pRhico plasmid of Azospirillum brasilense Sp7 is involved in lipopolysaccharide synthesis. Microbiology 155:791–804

    Article  PubMed  CAS  Google Scholar 

  • Lerner A, Valverde A, Castro-Sowinski S, Lerner H, Okon Y, Burdman S (2010) Phenotypic variation in Azospirillum brasilense exposed to starvation. Environ Microbiol Rep 2:577–586

    Article  CAS  Google Scholar 

  • Lin SY, Young CC, Hupfer H, Siering C, Arun AB, Chen WM, Lai WA, Shen FT, Rekha PD, Yassin AF (2009) Azospirillum picis sp. nov., isolated from discarded tar. Int J Syst Evol Microbiol 59:761–765

    Article  PubMed  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. 86:1–25

    Article  PubMed  CAS  Google Scholar 

  • Lugowski C, Romanowska E, Kenne L, Lindberg B (1983) Identification of a trisaccharide repeating unit in the enterobacterial common antigen. Carbohydr Res 118:173–181

    Article  CAS  Google Scholar 

  • MacLean AM, Finan TM, Sadowsky MJ (2007) Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiol 144:615–622

    Article  PubMed  CAS  Google Scholar 

  • Magalhães FM, Baldani JI, Souto SM, Kuykendall JR, Döbereiner J (1983) A new acid-tolerant Azospirillum species. An Acad Bras Cienc 55:417–430

    Google Scholar 

  • Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774

    PubMed  CAS  Google Scholar 

  • Martin-Didonet CCG, Chubatsu LS, Souza EM, Kleina M, Rego FGM, Rigo LU, Yates MG, Pedrosa FO (2000) Genome structure of the genus Azospirillum. J Bacteriol 182:4113–4116

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Granero F, Capdevila S, Sánchez-Contreras M, Martín M, Rivilla R (2005) Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens. Microbiology 151:975–983

    Article  PubMed  Google Scholar 

  • Matora LY, Serebrennikova OB, Petrova LP, Burygin GL, Shchegolev SY (2003) Atypical R-S dissociation in Azospirillum brasilense. Microbiology 72:60–63

    Article  PubMed  Google Scholar 

  • Matveev VY, Petrova LP, Zhuravleva EA, Panasenko VI (1987) Characteristics of dissociation in cultures of Azospirillum brasilense Sp7. Mol Gen Mikrobiol Virusol 8:16–18

    PubMed  Google Scholar 

  • McCaughan F, Dear PH (2010) Single-molecule genomics. J Pathol 220:297–306

    PubMed  CAS  Google Scholar 

  • Medini D, Serruto D, Parkhill J, Relman DA, Donati C, Moxon R, Falkow S, Rappuoli R (2008) Microbiology in the post-genomic era. Nat Rev Microbiol 6:419–430

    PubMed  CAS  Google Scholar 

  • Mehnaz S, Weselowski B, Lazarovits G (2007a) Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 57:620–624

    Article  PubMed  CAS  Google Scholar 

  • Mehnaz S, Weselowski B, Lazarovits G (2007b) Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays. Int J Syst Evol Microbiol 57:2805–2809

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev YA, Plakunov VK (2007) Biofilm – city of microbes or an analogue of multicellular organisms? Microbiology 76:125–138

    Article  CAS  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Onyeocha I, Vieille C, Zimmer W, Baca B, Flores M, Palacios R, Elmerich C (1990) Physical map and properties of a 90-MDa plasmid of Azospirillum brasilense Sp7. Plasmid 23:169–182

    Article  PubMed  CAS  Google Scholar 

  • Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang ET, Tan Z (2006) Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 56:1263–1271

    Article  PubMed  CAS  Google Scholar 

  • Petrova LP, Borisov IV, Katsy EI (2005a) Plasmid rearrangements in Azospirillum brasilense. Microbiology 74:495–497

    Article  CAS  Google Scholar 

  • Petrova LP, Matora LY, Burygin GL, Borisov IV, Katsy EI (2005b) Analysis of DNA, a number of cultural and morphological properties, and lipopolysaccharide structure in closely related strains of Azospirillum brasilense. Microbiology 74:188–193

    Article  CAS  Google Scholar 

  • Petrova LP, Shelud’ko AV, Katsy EI (2010a) Plasmid rearrangements and alterations in Azospirillum brasilense biofilm formation. Microbiology 79:121–124

    Article  CAS  Google Scholar 

  • Petrova LP, Varshalomidze OE, Shelud’ko AV, Katsy EI (2010b) Localization of denitrification genes in plasmid DNA of bacteria Azospirillum brasilense. Russ J Genet 46:801–807

    Article  CAS  Google Scholar 

  • Pothier JF, Prigent-Combaret C, Haurat J, Moënne-Loccoz Y, Wisniewski-Dyé F (2008) Duplication of plasmid-borne nitrite reductase gene nirK in the wheat-associated plant growth-promoting rhizobacterium Azospirillum brasilense Sp245. Mol Plant Microbe Interact 21:831–842

    Article  PubMed  CAS  Google Scholar 

  • Prigent-Combaret C, Blaha D, Pothier JF, Vial L, Poirier MA, Wisniewski-Dyé F, Moënne-Loccoz Y (2008) Physical organization and phylogenetic analysis of acdR as leucine-responsive regulator of the 1-aminocyclopropane-1-carboxylate deaminase gene acdS in phytobeneficial Azospirillum lipoferum 4B and other bacteria. FEMS Microbiol Ecol 65:202–219

    Article  PubMed  CAS  Google Scholar 

  • Raetz CRH, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  PubMed  CAS  Google Scholar 

  • Rajeshwari R, Sonti RV (2000) Stationary-phase variation due to transposition of novel insertion elements in Xanthomonas oryzae pv. oryzae. J Bacteriol 182:4797–4802

    Article  PubMed  CAS  Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, De Ley J (1987) Azospirillum halopraeferens sp. nov. a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 37:43–51

    Article  Google Scholar 

  • Sasaki K, Ikeda S, Eda S, Mitsui H, Hanzawa E, Kisara C, Kazama Y, Kushida A, Shinano T, Minamisawa K, Sato T (2010) Impact of plant genotype and nitrogen level on rice growth response to inoculation with Azospirillum sp. strain B510 under paddy field conditions. Soil Sci Plant Nutr 56:636–644

    Article  CAS  Google Scholar 

  • Shelud’ko AV, Ponomareva EG, Varshalomidze OE, Vetchinkina EP, Katsy EI, Nikitina VE (2009) Hemagglutinating activity and motility of the bacterium Azospirillum brasilense in the presence of various nitrogen sources. Microbiology 78:696–702

    Article  Google Scholar 

  • Sheludko AV, Kulibyakina OV, Shirokov AA, Petrova LP, Matora LY, Katsy EI (2008) The effect of mutations affecting synthesis of lipopolysaccharides and calcofluor-binding polysaccharides on biofilm formation by Azospirillum brasilense. Microbiology 77:313–317

    Article  CAS  Google Scholar 

  • Skerman VBD, Sly LI, Williamson ML (1983) Conglomeromonas largomobilis gen. nov. sp. nov., a sodium-sensitive, mixed-flagellated organism from fresh waters. Int J Syst Microbiol 33:300–308

    Google Scholar 

  • Sly LI, Stackebrandt E (1999) Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum. Int J Syst Microbiol 49:541–544

    Google Scholar 

  • Tarrand JX, Krieg NE, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Bauzon D, Weinhard P, Villecourt P, Balandreau J (1982) The spermosphere model: I. Its use in growing, counting, and isolating N2-fixing bacteria from the rhizosphere of rice. Can J Microbiol 28:922–928

    Article  Google Scholar 

  • Vanbleu E, Marchal K, Lambrecht M, Mathys J, Vanderleyden J (2004) Annotation of the pRhico plasmid of Azospirillum brasilense reveals its role in determining the outer surface composition. FEMS Microbiol Lett 232:165–172

    Article  PubMed  CAS  Google Scholar 

  • Vanbleu E, Choudhury BP, Carlson RW, Vanderleyden J (2005) The nodPQ genes in Azospirillum brasilense Sp7 are involved in sulfation of lipopolysaccharides. Environ Microbiol 7:1769–1774

    Article  PubMed  CAS  Google Scholar 

  • Vial L, Lavire C, Mavingui P, Blaha D, Haurat J, Moënne-Loccoz Y, Bally R, Wisniewski-Dyé F (2006) Phase variation and genomic architecture changes in Azospirillum. J Bacteriol 188:5364–5373

    Article  PubMed  CAS  Google Scholar 

  • Wood AG, Menezes EM, Dykstra C, Duggan DE (1982) Methods to demonstrate the megaplasmids (or minichromosomes) in Azospirillum. In: Klingmüller W (ed) Azospirillum: genetics, physiology, ecology. Burkhäuser Verlag, Basel, pp 18–34

    Google Scholar 

  • Xie C-H, Yokota A (2005) Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int J Syst Evol Microbiol 55:1435–1438

    Article  PubMed  CAS  Google Scholar 

  • Yasuda M, Isawa T, Shinozaki S, Minamisawa K, Nakashita H (2009) Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Biosci Biotechnol Biochem 73:2595–2599

    Article  PubMed  CAS  Google Scholar 

  • Young CC, Hupfer H, Siering C, Ho M-J, Arun AB, Lai W-A, Rekha PD, Shen F-T, Hung M-H, Chen W-M, Yassin AF (2008) Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 58:959–963

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Wei W, Wang X, Xu L, Lai R (2009) Azospirillum palatum sp. nov., isolated from forest soil in Zhejiang province, China. J Gen Appl Microbiol 55:1–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

All my past and present colleagues are gratefully acknowledged for contributing to the work on A. brasilense described in this review. This work was supported by grants from the President of the Russian Federation and from the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena I. Katsy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Katsy, E.I. (2011). Plasmid Plasticity in the Plant-Associated Bacteria of the Genus Azospirillum . In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Growth Responses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20332-9_7

Download citation

Publish with us

Policies and ethics