Skip to main content

Composting of Lignocellulosic Waste Material for Soil Amendment

  • Chapter
  • First Online:
Bioaugmentation, Biostimulation and Biocontrol

Part of the book series: Soil Biology ((SOILBIOL,volume 108))

Abstract

Composting of lignocellulosic waste material and application of compost as soil amendment improves the physical, chemical, and biological properties of soils. Composting method includes in-vessel, windrow, aerated pile, continuous-feed, and vermicomposting. The composting process proceeds through three phases: the mesophilic phase, the thermophilic phase, and the cooling and maturation phase. Extensive studies are available on the population of bacteria, actinomycetes, and fungi during composting process. Microbes perform their essential function with the help of some key enzymes they produce, such as lignocellulases, proteases, lipases, phosphatases, arlylsulphatases, etc., and measurement of these enzymes also indicates the progress of composting process. Oxidoreductases such as superoxide dismutase, catalase, and protease activities reflect the intensity of microbial activity such as respiration and biodegradation. Bioaugmentation with efficient lignocellulolytic microbes may accelerate the composting process. Oxygen, temperature, moisture, C:N ratio, and organic-C/organic-N ratio are the major factors affecting composting process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agamuthu P (2000) Kinetic evaluation of composting of agricultural wastes. Environ Technol 21:185–92

    CAS  Google Scholar 

  • Aggelides SM, Londra PA (2000) Effects of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil. Bioresour Technol 71:253–259

    CAS  Google Scholar 

  • Ahmad R, Jilani G, Arshad M, Zahir ZA, Khalid A (2007) Bio-conversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects. Ann Microbiol 57:471–479

    Google Scholar 

  • Atkinson CF, Jones DD, Gauthier JJ (1996) Biodegradabilities and microbial activities during composting of municipal solid waste in bench-scale reactors. Compost Sci Utilize 4:14–23

    Google Scholar 

  • Atkinson CF, Jones DD, Gauthier JJ (1997) Microbial activities during composting of pulp and paper-mill primary solids. World J Microbiol Biotechnol 13:519–525

    CAS  Google Scholar 

  • Bari QH, Koenig A (2000) Kinetic analysis of forced aeration composting-II. Application of multiplayer analysis for the prediction of biological degradation. Waste Manage Res 18:313–320

    CAS  Google Scholar 

  • Beffa T, Blanc M, Lyon P, Vogt G, Aragno M (1996a) Isolation of Thermus strains from hot composts (60ºC to 80ºC). Appl Environ Microbiol 62:1723–1727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beffa T, Blanc M, Marilley L, Fisher JL, Lyon PF, Aragno M (1996b) Taxonomic and metabolic microbial diversity during composting. In: de Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The science of composting, vol 1. Chapman and Hall, London, pp 149–161

    Google Scholar 

  • Biddlestone AJ, Gray KR (1985) Composting. In: Moo-Young M (ed) Comprehensive biotechnology: the principles, applications, and regulations of biotechnology in industry, agriculture, and medicine. Oxford, Pergamon, pp 1059–1070

    Google Scholar 

  • Boulter JI, Boland GJ, Trevors JT (2000) Compost: a study of the development process and end-product potential for suppression of turfgrass disease. World J Microbiol Biotechnol 16:115–134

    CAS  Google Scholar 

  • Brewer LJ, Sullivan DM (2003) Maturity and stability evaluation of composted yard trimmings. Compost Sci Utilize 11:96–112

    Google Scholar 

  • Brodie HL, Carr LE, Condon P (2000) A comparison of static pile and turned windrow methods for poultry litter compost production. Compost Sci Utilize 8:178–189

    Google Scholar 

  • Cahyani VR, Matsuya K, Asakawa S, Kimura M (2003) Succession and phylogenetic composition of bacteria community responsible for the composting process rice straw estimated by PCR-DGGE analysis. Soil Sci Plant Nutr 49:619–630

    CAS  Google Scholar 

  • Castaldi P, Alberti G, Merella R, Melis P (2005) Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity. Waste Manag 25:209–213

    CAS  PubMed  Google Scholar 

  • Celik I, Ortas I, Kilic S (2004) Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a chromoxerert soil. Soil Till Res 78:59–67

    Google Scholar 

  • Chang JI, Tsai JJ, Wu KH (2006) Composting of vegetable waste. Waste Manage Res 24:354–362

    CAS  Google Scholar 

  • Chanyasak V, Kubota H (1981) Carbon/organic nitrogen ratio in water extract as measure of compost degradation. J Ferment Technol 59:215–219

    CAS  Google Scholar 

  • Ciavatta C, Govi M, Vittori Antisari L, Sequi P (1990) Characterization of humified compounds by extraction and fractionation on solid polyvinilpyrrolidone. J Chromatogr 509:141–146

    CAS  Google Scholar 

  • Cooperband LR, Stone AG, Fryda MR, Ravet JL (2003) Relating compost measures of stability and maturity to plant growth. Compost Sci Utilize 11:113–124

    Google Scholar 

  • Cunha-Queda AC, Vallini G, Agnolucci M, Coelho CA, Campos L, de Sousa RB (2002) Microbiological and chemical characterisation of composts at different levels of maturity, with evaluation of phytotoxicity and enzymatic activities. In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer, Berlin, Germany, pp 346–355

    Google Scholar 

  • Dees PM, Ghiorse WC (2001) Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol Ecol 35:207–216

    CAS  PubMed  Google Scholar 

  • Deobald LA, Crawford DL (1987) Activities of cellulase and other extracellular enzymes during lignin solubilization by Streptomyces viridosporus. Appl Microbiol Biotechnol 26:158–163

    CAS  Google Scholar 

  • Deportes J, Benoit-Guyod ZD (1995) Hazard to man and the environment posed by the use of urban waste compost: a review. Sci Total Environ 172:197–222

    CAS  PubMed  Google Scholar 

  • Diaz MJ, Madejon E, Lopez F, Lopez R, Cabrera F (2002) Optimization of the rate vinasse/grape marc for co-composting process. Process Biochem 37:1143–1150

    CAS  Google Scholar 

  • Domeizel M, Khalil A, Prudent P (2004) UV spectroscopy: a tool for monitoring humification and for proposing an index of the maturity of compost. Bioresour Technol 94:177–184

    CAS  PubMed  Google Scholar 

  • Domingo JL, Nadal M (2009) Domestic waste composting facilities: a review of human health risks. Environ Int 35:382–389

    CAS  PubMed  Google Scholar 

  • Falcon MA, Corominas E, Perez ML, Perestelo F (1987) Aerobic bacterial populations and environmental factors involved in the composting of agricultural and forest wastes of the Canary Islands. Biol Waste 20:89–99

    CAS  Google Scholar 

  • Finstein MS, Miller FC, Strom PF (1986) Waste treatment composting as a controlled system. In: Schonborn W (ed) Biotechnology, vol 8, Biodegradation. VCH, Weinheim, Germany, pp 363–398

    Google Scholar 

  • Gaind S, Pandey AK, Lata N (2005) Biodegradation study of crop residues as affected by exogenous inorganic nitrogen and fungal inoculants. J Basic Microbiol 45:301–311

    CAS  PubMed  Google Scholar 

  • Gaind S, Nain L (2007) Chemical and biological properties of wheat soil in response to paddy straw incorporation and its biodegradation by fungal inoculants. Biodegradation 18:495–503

    CAS  PubMed  Google Scholar 

  • Gaind S, Nain L, Patel VB (2009) Quality evaluation of co-composted wheat straw, poultry droppings and oil seed cakes. Biodegradation 20:307–317

    PubMed  Google Scholar 

  • Garcia-Gil JC, Plaza C, Soler-Rovira P, Polo A (2000) Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol Biochem 32:1907–1913

    CAS  Google Scholar 

  • Gaur AC, Singh G (1995) Recycling of rural and urban wastes through conventional and vermicomposting. In: Tandon HLS (ed) Recycling of crop, animal, human and industrial wastes in agriculture. Fertilizer Development and Consultation Organization, New Delhi, pp 31–49

    Google Scholar 

  • Genevini P, Adani F, Veeken AHM, Nierop KGJ, Scaglia B, Dijkema C (2002) Qualitative modifications of humic acid-like and core-humic acidlike during high-rate composting of pig faces amended with wheat straw. Soil Sci Plant Nutr 48:143–150

    CAS  Google Scholar 

  • Granit T, Chen Y, Hadar Y (2007) Humic acid bleaching by white-rot fungi isolated from biosolids compost. Soil Biol Biochem 39:1040–1046

    CAS  Google Scholar 

  • Hamoda MF, Abu Qdais HA (1998) Evaluation of municipal solid waste composting kinetics. Resour Conservat Recycl 23:209–223

    Google Scholar 

  • Hao X, Chang C, Larney FJ, Travis GR (2001) Greenhouse gas emissions during cattle feedlot manure composting. J Environ Qual 30:376–386

    CAS  PubMed  Google Scholar 

  • Hargreaves JC, Adl MS, Warman PR (2008) A review of the use of composted municipal solid waste in agriculture. Agric Ecosyst Environ 123:1–14

    Google Scholar 

  • Haug RT (1993) The practical handbook of compost engineering. Lewis, Boca Raton, pp 385–436

    Google Scholar 

  • Hiraishi A (2000) Effects of weather and other environmental factors on the performance of a composting system using flowerpots for disposal of household biowaste. Seibutsu kogaku 78:301–310

    CAS  Google Scholar 

  • Hoitink HAJ, Stone AG, Han DY (1997) Suppression of plant disease by composts. HortScience 32:184–187

    Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    CAS  PubMed  Google Scholar 

  • Hue NV, Liu J (1995) Predicting compost stability. Compost Sci Utilize 3:8–15

    Google Scholar 

  • IPCC (2007) Climate change 2007: Intergovernmental Panel on Climate Change (IPCC) fourth assessment report (AR4). Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Itävaara M, Venelampi O, Vikman M, Kapanen A (2002) Compost maturity: problems associated with testing. In: Insam H (ed) Microbiology of composting. Springer, Heidelberg, Germany, pp 373–382

    Google Scholar 

  • Jefferson M (2006) Sustainable energy development: performance and prospects. Renew Energ 31:571–582

    Google Scholar 

  • Jimenez IE, Garcia VP (1989) Evaluation of city refuse compost maturity: a review. Biol Waste 27:115–142

    Google Scholar 

  • Kalamdhad AS, Pasha M, Kazmi AA (2008) Stability evaluation of compost by respiration techniques in a rotary drum composter. Resour Conservat Recycl 52:829–834

    Google Scholar 

  • Kamm B, Gruber PR, Kamm M (2006) Biorefineries: industrial processes and products. VCH, Weinheim

    Google Scholar 

  • Kanazawa S, Yamamura T, Yanagida H, Kuramoto H (2003) New production technique of biohazard-free compost by the hyper-thermal and aerobic fermentation method. Soil Microorganisms 58:105–114

    Google Scholar 

  • Kartha S, Larson ED (2000) Bioenergy primer: modernized biomass energy for sustainable development, energy and atmosphere programme. United Nations Development Programme, New York

    Google Scholar 

  • Kato K, Miura N (2008) Effect of matured compost as a bulking and inoculating agent on the microbial community and maturity of cattle manure compost. Bioresour Technol 99:3372–3380

    CAS  PubMed  Google Scholar 

  • Kato K, Miura N, Tabuchi H, Nioh I (2005) Evaluation of maturity of poultry manure compost by phospholipid fatty acid analysis. Biol Fertil Soils 41:399–410

    Google Scholar 

  • Kausar H, Sariah M, Saud HM, Alam MZ, Ismail MR (2010) Development of compatible lignocellulolytic fungal consortium for rapid composting of rice straw. Int Biodeterior Biodegradation 64:594–600

    CAS  Google Scholar 

  • Kuroda K, Hanajima D, Fukumoto Y, Suzuki K, Kawamoto S, Shima J, Haga K (2004) Isolation of thermophilic ammonium-tolerant bacterium and its application to reduce ammonia emission during composting of animal wastes. Biosci Biotechnol Biochem 68:286–292

    CAS  PubMed  Google Scholar 

  • Lal R (2008) Crop residues as soil amendments and feedstock for bioethanol production. Waste Manag 28:747–758

    CAS  PubMed  Google Scholar 

  • Laor Y, Avnimelech Y (2002) Fractionation of compost-derived dissolved organic matter by occulation process. Org Geochem 33:257–263

    CAS  Google Scholar 

  • Lata, Gaind S, Pandey AK, Grover M, Surya Kalyani S, Vasudevan V (2009) Practical applications of bioactive compost in organic agriculture, agriculturally important microorganisms Vol. II, Practical applications of bioactive compost in organic agriculture

    Google Scholar 

  • Levine JS (1996) Biomass burning and global change. In: Levine JS (ed) Remote sensing and inventory development and biomass burning in Africa, vol 1. The MIT Press, Cambridge, USA, p 35

    Google Scholar 

  • Liang C, Das KC, McClendon RW (2003) The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour Technol 86:131–137

    CAS  PubMed  Google Scholar 

  • Li H, White D, Lamza KA, Berger F, Liefert C (1998) Biological control of Botrytis, Phytophthora and Pythium by Bacillus subtilis Cot1 and CL27 of micropropagated plants in high humidity fogging glasshouses. Plant Cell Tissue Organ Cult 52:109–112

    Google Scholar 

  • Lopez MJ, Elorrieta MA, Vargas-Garcia MC, Suarez-Estrella F, Moreno J (2002) The e.ect of aeration on the biotransformation of lignocellulosic wastes by white-rot fungi. Bioresour Technol 81:123–129

    CAS  PubMed  Google Scholar 

  • Lucas JA (1998) Plant pathology and plant pathogens. Blackwell, Oxford, p 247

    Google Scholar 

  • Malherbe S, Cloete TE (2002) Lignocellulose biodegradation: fundamentals and applications. Rev Environ Sci Biotechnol 1:105–114

    CAS  Google Scholar 

  • Martin FN (2003) Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide. Annu Rev Phytopathol 41:325–350

    CAS  PubMed  Google Scholar 

  • McKinley VL, Vestal JR (1985) Physical and chemical correlates of microbial activity and biomass in composting municipal sewage sludge. Appl Environ Microbiol 50:1395–1403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michel FC, Forney LJ, Huang AJF, Drew S, Czuprendski M, Lindeberg JD, Reddy CA (1996) Effects of turning frequency, leaves to grass mix ratio and windrow vs. pile configuration on the composting of yard trimmings. Compost Sci Utilize 4:126–143

    Google Scholar 

  • Miller RL, Keularts JLW, Street JRWE, Pound RW, Shane W (1985) Control of turfgrass pests. Ohio Cooperative Extension Service Leaflet 187. The Ohio State University, Columbus

    Google Scholar 

  • Mondini C, Fornasier F, Sinicco T (2004) Enzymatic activity as a parameter for the characterization of the composting process. Soil Biol Biochem 36:1587–1594

    CAS  Google Scholar 

  • Moreira R, Sousa JP, Canhoto C (2008) Biological testing of digested sewage sludge and derived composts. Bioresour Technol 99:8382–8389

    CAS  PubMed  Google Scholar 

  • Nakasaki K, Kubo M, Kubota H (1996) Production of functional compost which can suppress phytopathogenic fungi of lawn grass by inoculating Bacillus subtilis into grass clippings. In: de Bertoldi M, Bert P, Tiziano P (eds) The science of composting. Blackie Academic and Professional, London, pp 87–95

    Google Scholar 

  • Nakasaki K, Sasaki M, Shoda M, Kubota H (1985a) Change in microbial numbers during thermophilic composting of sewage sludge with reference to CO2 evolution rate. Appl Environ Microbiol 49:37–41

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakasaki K, Sasaki M, Shoda M, Kubota H (1985b) Characteristics of mesophilic bacteria isolated during thermophilic composting of sewage sludge. Appl Environ Microbiol 49:42–45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakasaki K, Akiyama T (1988) Effects of seeding on thermophilic composting of household organic waste. J Ferment Technol 66:37–42

    CAS  Google Scholar 

  • Naylor LM (1996) Composting. Environ Sci Pollut Ser 18:193–269

    CAS  Google Scholar 

  • Neklyudov AD, Fedotov GN, Ivankin AN (2006) Aerobic processing of organic waste into composts. Appl Biochem Microbiol 42:341–353

    CAS  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (ed) Methods of soil analysis, Part 3. Chemical methods. SSSA Book Series no 5. SSSA-ASA, Madison, WI

    Google Scholar 

  • Ozeimen D, Karaosmanoglu F (2005) Production and characterization of bio-oil and biochar from rapeseed cake. Renew Energ 29:779–787

    Google Scholar 

  • Pandey AK, Gaind S, Ali A, Nain L (2009) Effect of bioaugmentation and nitrogen supplementation on composting of paddy straw. Biodegradation 20:293–306

    PubMed  Google Scholar 

  • Pascual JA, Ayuso M, Garcia C, Hernández T (1997) Characterization of urban wastes according to fertility and phytotoxicity parameters. Waste Manag Res 15:103–115

    CAS  Google Scholar 

  • Pérez J, Muñoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose, and lignin: an overview. Int Microbiol 5:53–63

    PubMed  Google Scholar 

  • Peters S, Koschinsky S, Schwieger F, Tebbe CC (2000) Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol 66:930–936

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phae CG, Shoda M (1990) Expression of the suppressive effect of Bacillus subtilis on phytopathogens in inoculated composts. J Ferment Bioeng 6:409–414

    Google Scholar 

  • Provenzano MR, de Oliveira SC, Santiago Silva MR, Senesi N (2001) Assessment of maturity degree of composts from domestic solid wastes by fluorescence and Fourier transform infrared spectroscopies. J Agric Food Chem 49:5874–5879

    CAS  PubMed  Google Scholar 

  • Ranalli G, Bottura G, Taddei P, Garavani M, Marchetti P, Sorlini C (2001) Composting of solid sludge residues from agricultural and food residues. Bioindicators of monitoring and compost maturity. J Environ Sci Health A 36:415–436

    CAS  Google Scholar 

  • Richard TL, Walker PL (1999) Oxygen and temperature kinetics of aerobic solid state biodegradation. In: Bidlingmaier W, de Bertoldi M, Diaz LF, Papadimitriou EK (eds) Proceedings of the international conference ORBIT 99, “Biological treatment of waste and the environment”, Rhombos-Verlag, Berlin, pp 85–91

    Google Scholar 

  • Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clerq D, Coosemans J, Insam H, Swings J (2003a) A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 53:349–410

    Google Scholar 

  • Ryckeboer J, Mergaert J, Coosemans J, Deprins K, Swings J (2003b) Microbiological aspects of biowaste during composting in a monitored compost bin. J Appl Microbiol 94:127–137

    CAS  PubMed  Google Scholar 

  • Saludes RB, Iwabuchi K, Miyatake F, Abe Y, Honda Y (2008) Characterization of dairy cattle manure/wallboard paper compost mixture. Bioresour Technol 99:7285–7290

    CAS  PubMed  Google Scholar 

  • Schlosser O, Huyard A (2008) Bioaerosols in composting plants: occupational exposure and health. Environ Risque Sante 7:37–45

    Google Scholar 

  • Singh A, Billingsley K, Ward O (2006) Composting: a potentially safe process for disposal of genetically modified organisms. Crit Rev Biotechnol 26:1–16

    PubMed  Google Scholar 

  • Smith SR (2009) A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int 35:142–156

    CAS  PubMed  Google Scholar 

  • Strauch D (1987) Microbiological specifications of disinfected compost. In: De Bertoldi M, Ferranti MP, L’Hermite P, Zucconi F (eds) Compost: production, quality and use. Elsevier, London, pp 210–229

    Google Scholar 

  • Strauch D (1996) Occurrence of microorganisms pathogenic for man and animals in source separated biowaste and compost importance, control, limits and epidemiology. In: De Bertoldi M, Sequi P, Lemmes B, Papi T (eds) The sciences of composting. Blackie Academic and Professional, Glasgow, UK, pp 224–232

    Google Scholar 

  • Stetter KO (1998) Hyperthermophiles: isolation, classification, and properties. In: Horikoshi K, Grant WD (eds) Extremophiles: microbial life in extreme environments. Wiley-Liss, New York, pp 1–24

    Google Scholar 

  • Stentiford EI (1996) Composting control: principles and practice. In: de Bertoldi M, Sequi P, Lemmes B, Papai T (eds) The sciences of composting. Blakie Academic and Professional, Glasgow, UK, pp 49–59

    Google Scholar 

  • Strom PE (1985a) Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl Environ Microbiol 50:899–905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strom PE (1985b) Identification of thermophilic bacteria in solid-waste composting. Appl Environ Microbiol 50:906–913

    CAS  PubMed Central  PubMed  Google Scholar 

  • Termorshuizen AJ, Moolenaar SW, Veeken AHM, Blok WJ (2004) The value of compost. Rev Environ Sci Biotechnol 3:343–347

    CAS  Google Scholar 

  • Thambirajah JJ, Zukali MD, Hashim MA (1995) Microbiological and biochemical changes during composting of palm empty fruit-bunches. Effect of nitrogen supplementation on the substrate. Bioresour Technol 52:133–144

    CAS  Google Scholar 

  • Tiquia SM, Tam NFY, Hodgkiss IJ (1996) Microbial activities during composting of spent pig-manure sawdust litter at different moisture contents. Bioresour Technol 55:201–206

    CAS  Google Scholar 

  • Tiquia SM, Richard TL, Honeyman MS (2000) Effects of windrow turning and seasonal temperatures on composting hog manure from hoop structures. Environ Technol 21:1037–1046

    CAS  Google Scholar 

  • Tseng DY, Chalmers JJ, Tuovinen OH, Hoitink HAJ (1995) Characterization of a bench-scale system for studying the biodegradation of organic solid wastes. Biotechnol Prog 11:443–451

    CAS  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itavaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    CAS  Google Scholar 

  • USEPA (2002) Use of composting for biosolids management. Biosolids Technology Fact Sheet. EPA 832F-02-024, September 2002, Washington, DC, USA

    Google Scholar 

  • Van Heerden I, Cronje C, Swart SH, Kotze JM (2002) Microbial, chemical and physical aspects of citrus waste composting. Bioresour Technol 81:71–76

    PubMed  Google Scholar 

  • Vuorinen AH (2000) Effect of bulking agent on acid and alkaline phosphomonoesterase and b-D-glucosidase activities during manure composting. Bioresour Technol 75:113–138

    Google Scholar 

  • Walker R, Powell AA, Seddon B (1998) Bacillus isolates from the spermosphere of peas and dwarf French beans with antifungal activity against Botrytis cinerea and Pythium species. J Appl Microbiol 84:791–801

    CAS  PubMed  Google Scholar 

  • Whipps JM (1997) Developments in the biological control of soil-borne plant pathogens. Adv Bot Res 26:11–34

    Google Scholar 

  • Wichuk KM, McCartney D (2007) A review of the effectiveness of current time temperature regulations on pathogen inactivation during composting. J Environ Eng Sci 6:573–586

    Google Scholar 

  • Wu L, Ma LQ (2001) Effects of sample storage on biosolids compost stability and maturity evaluation. J Environ Qual 30:222–228

    CAS  PubMed  Google Scholar 

  • Wu L, Ma LQ, Martinez GA (2000) Comparison of methods for evaluating stability and maturity of biosolids compost. J Environ Qual 29:424–429

    CAS  Google Scholar 

  • Zmora-Nahum S, Markovitch O, Tarchitzky J, Chen Y (2005) Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biol Biochem 37:2109–2116

    CAS  Google Scholar 

  • Zoebelin H (2001) Dictionary of renewable resources. VCH, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chander Kuhad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuhad, R.C., Chandna, P., Lata, Singh, A. (2011). Composting of Lignocellulosic Waste Material for Soil Amendment. In: Singh, A., Parmar, N., Kuhad, R. (eds) Bioaugmentation, Biostimulation and Biocontrol. Soil Biology, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19769-7_6

Download citation

Publish with us

Policies and ethics