Skip to main content

Hydraulics of Vascular Water Transport

  • Chapter
  • First Online:
Mechanical Integration of Plant Cells and Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 9))

Abstract

The science of plant water transport is equal parts of physics and biology. Plants have evolved a complex wick system that harnesses the cohesive hydrogen bond energy of liquid water and suppresses the heterogeneous nucleation of cavitation. Trade-offs between making the wick safe against cavitation and implosion, yet efficient in moving water, result in the process being limiting to plant performance. Cavitation limits the range of negative pressures that can be harnessed to move water, and the hydraulic conductance of the wick limits the flow rate that can be moved at a given negative pressure gradient. Both limits constrain CO2 uptake via the water-for-carbon trade-off at the stomatal interface. Research in the area concerns the mechanisms of cavitation, its reversal by embolism repair, consequences for plant ecology and evolution, and the coupling of water transport to plant productivity. Very little is known of the molecular biology underlying xylem physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alder NN, Pockman WT, Sperry JS, Nuismer S (1997) Use of centrifugal force in the study of xylem cavitation. J Exp Bot 48:665–674

    CAS  Google Scholar 

  • Baas P (1986) Ecological patterns of xylem anatomy. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 327–351

    Google Scholar 

  • Bailey IW, Tupper WW (1918) Size variation in tracheary cells. I. A comparison between the secondary xylems of vascular cryptograms, gymnosperms and angiosperms. Proc Am Acad Arts Sci 54:149–204

    Google Scholar 

  • Boyer JS, Cavalieri AJ, Schulze ED (1985) Control of the rate of cell enlargement: excision, wall relaxation, and growth-induced water potentials. Planta 163:527–543

    Google Scholar 

  • Briggs LJ (1950) Limiting negative pressure of water. J Appl Phys 21:721–722

    CAS  Google Scholar 

  • Brodribb TJ, Cochard H (2009) Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol 149:575–584

    PubMed  CAS  Google Scholar 

  • Brodribb TJ, Feild TS (2010) A surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol Lett. doi:10.1111/j.1461-0248.2009.01410.x

    PubMed  Google Scholar 

  • Brodribb TJ, Holbrook NM (2004) Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytol 162:663–670

    Google Scholar 

  • Brodribb TJ, Holbrook NM (2005) Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer. Plant Physiol 137:1139–1146

    PubMed  CAS  Google Scholar 

  • Brodribb TJ, Holbrook NM, Zwieniecki MA, Palma B (2005) Leaf hydraulic capacity in ferns, conifers, and angiosperms: impacts on photosynthetic maxima. New Phytol 165:839–846

    PubMed  Google Scholar 

  • Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144:1890–1898

    PubMed  CAS  Google Scholar 

  • Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Sternberg LDSL (2003) Dynamic changes in hydraulic conductivity in petioles of two savanna species: factors and mechanisms contributing to the refilling of embolized vessels. Plant Cell Environ 26:1633–1645

    Google Scholar 

  • Canny MJ (1990) What becomes of the transpiration stream? New Phytol 114:341–368

    Google Scholar 

  • Carlquist S (1988) Comparative wood anatomy. Springer, Berlin

    Google Scholar 

  • Carlquist S (1992) Pit membrane remnants in perforation plates of primitive dicotyledons and their significance. Am J Bot 79:660–672

    Google Scholar 

  • Cavender-Bares J (2005) Impacts of freezing on long distance transport in woody plants. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Academic, Amsterdam, pp 401–424

    Google Scholar 

  • Choat B, Lahr EC, Melcher PJ, Zwieniecki MA, Holbrook NM (2005) The spatial pattern of air-seeding thresholds in mature sugar maple trees. Plant Cell Environ 28:1082–1089

    Google Scholar 

  • Choat B, Cobb AR, Jansen S (2008) Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol 177:608–626

    PubMed  Google Scholar 

  • Christman MA, Sperry JS (2010) Single vessel flow measurements indicate scalariform perforation plates confer higher resistance to flow than previously estimated. Plant Cell Environ 33:431–433

    Google Scholar 

  • Christman MA, Sperry JS, Adler FR (2009) Testing the rare pit hypothesis in three species of Acer. New Phytol 182:664–674

    PubMed  Google Scholar 

  • Cochard H (2002) A technique for measuring xylem hydraulic conductance under high negative pressures. Plant Cell Environ 25:815–819

    Google Scholar 

  • Cochard H, Tyree MT (1990) Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol 6:393–408

    PubMed  Google Scholar 

  • Cochard H, Cruiziat P, Tyree MT (1992) Use of positive pressures to establish vulnerability curves: further support for the air-seeding hypothesis and implications for pressure-volume analysis. Plant Physiol 100:205–209

    PubMed  CAS  Google Scholar 

  • Cochard H, Ewers FW, Tyree MT (1994) Water relations of a tropical vine-like bamboo (Rhipidocladum racemiflorum): root pressures, vulnerability to cavitation and seasonal changes in embolism. J Exp Bot 45:1085–1089

    Google Scholar 

  • Cochard H, Ameglio T, Cruiziat P (2001) The cohesion theory debate continues. Trends Plant Sci 6:456

    CAS  Google Scholar 

  • Cochard H, Froux F, Mayr S, Coutand C (2004) Xylem wall collapse in water-stressed pine needles. Plant Physiol 134:401–408

    PubMed  CAS  Google Scholar 

  • Cochard H, Gaelle D, Bodet C, Tharwat I, Poirier M, Ameglio T (2005) Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiol Plant 124:410–418

    CAS  Google Scholar 

  • Cox RM, Malcolm JM (1997) Effects of duration of a simulated winter thaw on dieback and xylem conductivity of Betula papyrifera. Tree Physiol 17:389–396

    PubMed  Google Scholar 

  • Crombie DS, Hipkins MF, Milburn JA (1985) Gas penetration of pit membranes in the xylem of Rhododendron as the cause of acoustically detectable sap cavitation. Aust J Plant Physiol 12:445–454

    CAS  Google Scholar 

  • Cuevas LE (1969) Shrinkage and collapse studies on Eucalyptus viminalis. J Inst Wood Sci 4:29–38

    Google Scholar 

  • Davis SD, Sperry JS, Hacke UG (1999a) The relationship between xylem conduit diameter and cavitation caused by freezing. Am J Bot 86:1367

    PubMed  CAS  Google Scholar 

  • Davis SD, Ewers FW, Wood J, Reeves JJ, Kolb KJ (1999b) Differential susceptibility to xylem cavitation among three pairs of Ceanothus species in the Transverse Mountain ranges of Southern California. Ecoscience 6:180–186

    Google Scholar 

  • Davis SD, Ewers FW, Portwood KA, Sperry JS, Crocker MC, Adams GC (2002) Shoot dieback during prolonged drought in Ceanothus chaparral in California: a possible case of hydraulic failure. Am J Bot 89:820–828

    PubMed  Google Scholar 

  • Debenedetti PG (1996) Metastable liquids. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Ellmore GS, Ewers FW (1986) Fluid flow in the outermost xylem increment of a ring-porous tree, Ulmus americana. Am J Bot 73:1771–1774

    Google Scholar 

  • Enquist BJ, West GB, Brown JH (2000) Quarter-power allometric scaling in vascular plants: Functional basis and ecological consequences. In: West GB, Brown JH (eds) Scaling in biology. Oxford University Press, Oxford, pp 167–198

    Google Scholar 

  • Franks PJ, Drake PL, Froend RH (2007) Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant Cell Environ 30:19–30

    PubMed  Google Scholar 

  • Grace J (1993) Refilling of embolized xylem. In: Grace J, Raschi A, Borghetti M (eds) Water transport in plants under climatic stress. Cambridge University Press, Cambridge, pp 52–62

    Google Scholar 

  • Hacke U, Sauter JJ (1996) Xylem dysfunction during winter and recovery of hydraulic conductivity in diffuse-porous and ring-porous trees. Oecologia 105:435–439

    Google Scholar 

  • Hacke UG, Sperry JS (2003) Limits to xylem refilling under negative pressure in Laurus nobilis and Acer negundo. Plant Cell Environ 26:303–311

    Google Scholar 

  • Hacke UG, Sperry JS, Pockman WP, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    PubMed  Google Scholar 

  • Hammel HT (1967) Freezing of xylem sap without cavitation. Plant Physiol 42:55–66

    PubMed  CAS  Google Scholar 

  • Holbrook NM, Zwieniecki MA (1999) Embolism repair and xylem tension: do we need a miracle? Plant Physiol 120:7–10

    PubMed  CAS  Google Scholar 

  • Holbrook NM, Ahrens ET, Burns MJ, Zwieniecki MA (2001) In vivo observation of cavitation and embolism repair using magnetic resonance imaging. Plant Physiol 126:27–31

    PubMed  CAS  Google Scholar 

  • Hudson PJ, Razanatsoa J, Feild TS (2010) Early vessel evolution and the diversification of wood function – insights from Malagasy Canellales. Am J Bot 97:80

    PubMed  Google Scholar 

  • Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488

    PubMed  CAS  Google Scholar 

  • Jacobsen AL, Ewers FW, Pratt RB, Paddock WA, Davis SD (2005) Do xylem fibers affect vessel cavitation resistance? Plant Physiol 139:546–556

    PubMed  CAS  Google Scholar 

  • Jacobson AL, Pratt RB, Ewers FW, Davis SD (2007) Cavitation resistance among 26 chaparral species of southern California. Ecol Monogr 77:99–115

    Google Scholar 

  • Kolb KJ, Sperry JS (1999) Differences in drought adaptation between subspecies of sagebrush (Artemisia tridentata). Ecology 80:2373–2384

    Google Scholar 

  • Kwak H, Panton RL (1985) Tensile strength of simple liquids predicted by a model of molecular interactions. J Phys Appl Phys 18:647–659

    CAS  Google Scholar 

  • Li Y, Sperry JS, Bush SE, Hacke UG (2008) Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angiosperms. New Phytol 177:558–568

    PubMed  Google Scholar 

  • Lopez OR, Farris-Lopez K, Montgomery RA, Givnish TJ (2008) Leaf phenology in relation to canopy closure in southern Appalachian trees. Am J Bot 95:1395–1407

    PubMed  Google Scholar 

  • Maherali H, Pockman WT, Jackson RB (2003) Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–2199

    Google Scholar 

  • Mayr S, Sperry JS (2010) Freeze-thaw induced embolism in Pinus contorta: centrifuge experiments validate the “thaw-expansion” hypothesis but conflict with ultrasonic data. New Phytol 185:1016–1024

    PubMed  Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry JS, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought. Why do some plants survive while others succumb to drought? New Phytol 178:719–739

    PubMed  Google Scholar 

  • Mencuccini M (2003) The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ 26:163–182

    Google Scholar 

  • Milburn JA, McLaughlin ME (1974) Studies of cavitation in isolated vascular bundles and whole leaves of Plantago major L. New Phytol 73:861–871

    Google Scholar 

  • Oertli JJ (1971) The stability of water under tension in the xylem. Z Pflanzenphysiol 65:195–209

    Google Scholar 

  • Pickard WF (1981) The ascent of sap in plants. Progr Biophys Mol Biol 37:181–229

    Google Scholar 

  • Piquemal J, LaPierre C, Myton K, O’Connel A, Schuch W, Grima-Pettenati J, Boudet AM (1998) Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13:71–83

    CAS  Google Scholar 

  • Pittermann J, Sperry JS (2003) Tracheid diameter is the key trait determining extent of freezing-induced cavitation in conifers. Tree Physiol 23:907–914

    PubMed  Google Scholar 

  • Pittermann J, Sperry JS (2006) Analysis of freeze-thaw embolism in conifers: the interaction between cavitation pressure and tracheid size. Plant Physiol 140:374–382

    PubMed  CAS  Google Scholar 

  • Pittermann J, Sperry JS, Hacke UG, Wheeler JK, Sikkema EH (2005) Torus-margo pits help conifers compete with angiosperms. Science 310:1924

    PubMed  CAS  Google Scholar 

  • Pockman WT, Sperry JS (1997) Freezing-induced xylem cavitation and the northern limit of Larrea tridentata. Oecologia 109:19–27

    Google Scholar 

  • Pockman WT, Sperry JS (2000) Vulnerability to cavitaiton and the distribution of Sonoran desert vegetation. Am J Bot 87:1287–1299

    PubMed  CAS  Google Scholar 

  • Pockman WT, Sperry JS, O’Leary JW (1995) Sustained and significant negative water pressure in xylem. Nature 378:715–716

    CAS  Google Scholar 

  • Rand RH (1978) The dynamics of and evaporating meniscus. Acta Mechanica 29:135–146

    Google Scholar 

  • Raven JA (1987) The evolution of vascular land plants in relation to supracellular transport processes. Adv Bot Res 5:153–219

    Google Scholar 

  • Rice KJ, Matzner SL, Byer W, Brown JR (2004) Patterns of tree dieback in Queensland, Australia: the importance of drought stress and the role of resistance to cavitation. Oecologia 139:190–198

    PubMed  Google Scholar 

  • Rood SB, Patino S, Coombs K, Tyree MT (2000) Branch sacrifice: cavitation-associated drought adaptation of riparian cottonwoods. Trees 14:248–257

    Google Scholar 

  • Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant Cell Environ 29:367–381

    PubMed  Google Scholar 

  • Salleo S, Lo Gullo MA, De Paoli D, Zippo M (1996) Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism. New Phytol 132:47–56

    Google Scholar 

  • Salleo S, Trifilo P, LoGullo MA (2006) Phloem as a possible major determinant of rapid cavitation reversal in Laurus nobilis (laurel). Funct Plant Biol 33:1063–1074

    Google Scholar 

  • Salleo S, Trifilo P, Esposito S, Nardini A, LoGullo MA (2009) Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: a component of the signal pathway for embolism repair? Funct Plant Biol 36:815–825

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry. Academic, San Diego

    Google Scholar 

  • Shen F, Rongfu G, Liu W, Zhang W (2002) Physical analysis of the process of cavitation in xylem sap. Tree Physiol 22:655–659

    PubMed  Google Scholar 

  • Sperry JS (1986) Relationship of xylem embolism to xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa. Plant Physiol 80:110–116

    PubMed  CAS  Google Scholar 

  • Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric For Meteorol 2831:1–11

    Google Scholar 

  • Sperry JS, Robson DJ (2001) Xylem cavitation and freezing in conifers. In: Colombo SJ, Bigras FJ (eds) Conifer cold hardiness. Kluwer, Dordrecht, pp 121–136

    Google Scholar 

  • Sperry JS, Sullivan JEM (1992) Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol 100:605–613

    PubMed  CAS  Google Scholar 

  • Sperry JS, Tyree MT (1988) Mechanism of water stress-induced xylem embolism. Plant Physiol 88:581–587

    PubMed  CAS  Google Scholar 

  • Sperry JS, Tyree MT (1990) Water-stress-induced xylem embolism in three species of conifers. Plant Cell Environ 13:427–436

    Google Scholar 

  • Sperry JS, Holbrook NM, Zimmermann MH, Tyree MT (1987) Spring filling of xylem vessels in wild grapevine. Plant Physiol 83:414–417

    PubMed  CAS  Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT (1988) Seasonal occurrence of xylem embolism in sugar maple (Acer saccharum). Am J Bot 75:1212–1218

    Google Scholar 

  • Sperry JS, Saliendra NZ, Pockman WT, Cochard H, Cruiziat P, Davis SD, Ewers FW, Tyree MT (1996) New evidence for large negative xylem pressures and their measurement by the pressure chamber method. Plant Cell Environ 19:427–436

    Google Scholar 

  • Sperry JS, Adler FR, Campbell GS, Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ 21:347–359

    Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500

    PubMed  Google Scholar 

  • Sperry JS, Hacke UG, Feild TS, Sano Y, Sikkema EH (2007) Hydraulic consequences of vessel evolution in angiosperms. Int J Plant Sci 168:1127–1139

    Google Scholar 

  • Steudle E (1994) Water transport across roots. Plant Soil 167:79–90

    CAS  Google Scholar 

  • Stiller V, Lafitte HR, Sperry JS (2005) Embolized conduits of rice (Oryza sativa L.) refill despite negative xylem pressure. Am J Bot 92:1970–1974

    PubMed  Google Scholar 

  • Sucoff E (1969) Freezing of conifer xylem and the cohesion-tension theory. Physiol Plant 22:424–431

    Google Scholar 

  • Sutcliffe JF (1968) Plants and water. Edward Arnold, London

    Google Scholar 

  • Taneda H, Sperry JS (2008) A case-study of water transport in co-occurring ring- versus diffuse-porous tresses: contrasts in water-status, conducting capacity, cavitation and vessel refilling. Tree Physiol 28:1641–1652

    PubMed  Google Scholar 

  • Tardieu F, Davies W (1993) Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ 16:341–349

    CAS  Google Scholar 

  • Tyree MT (1997) The cohesion-tension theory of sap ascent: current controversies. J Exp Bot 48:1753–1765

    CAS  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Plant Mol Biol 40:19–38

    Google Scholar 

  • Tyree M, Davis S, Cochard H (1994) Biophysical perspectives of xylem evolution – is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J 15:335–360

    Google Scholar 

  • Tyree MT, Salleo S, Nardini A, Lo Gullo MA, Mosca R (1999) Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm? Plant Physiol 102:11–21

    Google Scholar 

  • Vesala T, Holtta T, Peramaki M, Nikinmaa E (2003) Refilling of a hydraulically isolated embolized xylem vessel: model calculations. Ann Bot 91:419–428

    PubMed  Google Scholar 

  • Vogel S (1988) Life’s devices. Princeton University Press, Princeton

    Google Scholar 

  • Vogel S (1994) Life in moving fluids: the physical biology of flow, 2nd edn. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Wang J, Ives NE, Lechowicz MJ (1992) The relation of foliar phenology to xylem embolism in trees. Funct Ecol 6:469–475

    Google Scholar 

  • West AG, Hultine KR, Sperry JS, Bush SE, Ehleringer JR (2008) Transpiration and hydraulic strategies in a pinyon-juniper woodland. Ecol Appl 18:911–927

    PubMed  CAS  Google Scholar 

  • Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005) Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety vs. efficiency trade-off in xylem transport. Plant Cell Environ 28:800–812

    Google Scholar 

  • Willson C, Jackson RB (2006) Xylem cavitation caused by drought and freezing stress in four co-occurring Juniperus species. Physiol Plant 127:374–382

    CAS  Google Scholar 

  • Yang S, Tyree MT (1992) A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum. Plant Cell Environ 15:633–643

    Google Scholar 

  • Young WC (1989) Roark’s formulas for stress and strain. McGraw Hill, New York

    Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin

    Google Scholar 

  • Zwieniecki MA, Hutyra L, Thompson MV, Holbrook NM (2000) Dynamic changes in petiole specific conductivity in red maple (Acer rubrum L.), tulip tree (Liriodendron tulipifera L.) and northern fox grape (Vitis labrusca L.). Plant Cell Environ 23:407–414

    Google Scholar 

  • Zwieniecki MA, Melcher PJ, Boyce KC, Sack L, Holbrook NM (2002) Hydraulic architecture of leaf venation in Laurus nobilis L. Plant Cell Environ 25:1445–1450

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Sperry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sperry, J.S. (2011). Hydraulics of Vascular Water Transport. In: Wojtaszek, P. (eds) Mechanical Integration of Plant Cells and Plants. Signaling and Communication in Plants, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19091-9_12

Download citation

Publish with us

Policies and ethics