Skip to main content
Book cover

TOR pp 169–197Cite as

mTOR Signaling to Translation

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 279))

Abstract

Over the past few years, the target of rapamycin (TOR) pathway has been implicated in the control of translation, both in yeast and in higher eukaryotes. In this review, we provide an overview of translation in eukaryotes, and discuss the mechanisms and advantages of the regulation of translation. We then describe how the TOR pathway can modulate translation in yeast and in mammals, through the modulation of the phosphorylation of key translation components, and the regulation of the abundance of ribosomes and translation factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham RT, Wiederrecht GJ (1996) Immunopharmacology of rapamycin. Annu Rev Immunol 14:483–510

    Article  PubMed  CAS  Google Scholar 

  • Altmann M, Wittmer B, Methot N, Sonenberg N, Trachsel H (1995) The Saccharomyces cerevisiae translation initiation factor Tif3 and its mammalian homologue, eIF-4B, have RNA annealing activity. EMBO J 14:3820–3827

    PubMed  CAS  Google Scholar 

  • Andrade MA, Bork P (1995) HEAT repeats in the Huntington’s disease protein. Nat Genet 11:115–116

    Article  PubMed  CAS  Google Scholar 

  • Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN (1996) TOR controls translation initiation and early Gl progression in yeast. Mol Biol Cell 7:25–42

    PubMed  CAS  Google Scholar 

  • Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692

    Article  PubMed  CAS  Google Scholar 

  • Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V, et al. (1995) Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64:280–285

    Article  PubMed  CAS  Google Scholar 

  • Beretta L, Gingras A-C, Svitkin YV, Hall MN, Sonenberg N (1996) Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 15:658–664

    PubMed  CAS  Google Scholar 

  • Berset C, Trachsel H, Altmann M (1998) The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 95:4264–4269

    Article  PubMed  CAS  Google Scholar 

  • Bonneau AM, Sonenberg N (1987) Involvement of the 24-kDa cap-binding protein in regulation of protein synthesis in mitosis. J Biol Chem 262:11134–11139

    PubMed  CAS  Google Scholar 

  • Bosotti R, Isacchi A, Sonnhammer EL (2000) FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 25:225–227

    Article  PubMed  CAS  Google Scholar 

  • Brooks RF (1977) Continuous protein synthesis is required to maintain the probability of entry into S phase. Cell 12:311–317

    Article  PubMed  CAS  Google Scholar 

  • Brown EJ, Schreiber SL (1996) A signaling pathway to translational control. Cell 86:517–520

    Article  PubMed  CAS  Google Scholar 

  • Brown V, Jin P, Ceman S, Darnell JC, O’Donnell WT, Tenenbaum SA, Jin X, Feng Y, Wilkinson KD, Keene JD, Darnell RB, Warren ST (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107:477–487

    Article  PubMed  CAS  Google Scholar 

  • Brunn GJ, Fadden P, Haystead TAJ, Lawrence JC, Jr (1997a) The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus. J Biol Chem 272:32547–32550

    Article  PubMed  CAS  Google Scholar 

  • Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence JC, Jr, Abraham RT (1997b) Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 277:99–101

    Article  PubMed  CAS  Google Scholar 

  • Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 95:1432–1437

    Article  PubMed  CAS  Google Scholar 

  • Cantley LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96:4240–4245

    Article  PubMed  CAS  Google Scholar 

  • Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13:3271–3279

    Article  PubMed  CAS  Google Scholar 

  • Carter MS, Kuhn KM, Sarnow P (2000) Cellular Internal Ribosome Entry Site elements and the use of cDNA microarrays in their investigation. In: Sonenberg N, Hershey JWB, Mathews MB (eds). Translational control of gene expression. Cold Spring Harbor Laboratory Press, Plainview, N.Y., pp 615–635

    Google Scholar 

  • Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC, Tsichlis PN, Testa JR (1992) AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 89:9267–9271

    Article  PubMed  CAS  Google Scholar 

  • Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomare DA, Watson DK, Testa JR (1996) Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA 93:3636–3641

    Article  PubMed  CAS  Google Scholar 

  • Cosentino GP, Schmelzle T, Haghighat A, Helliwell SB, Hall MN, Sonenberg N (2000) Eaplp, a novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae. Mol Cell Biol 20:4604–4613

    Article  PubMed  CAS  Google Scholar 

  • Danaie P, Altmann M, Hall MN, Trachsel H, Helliwell SB (1999) CLN3 expression is sufficient to restore G1-to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation initiation factor eIF4E. Biochem J 340:135–141

    Article  PubMed  CAS  Google Scholar 

  • Dever TE (2002) Gene-specific regulation by general translation factors. Cell 108:545–556

    Article  PubMed  CAS  Google Scholar 

  • Di Como CJ, Arndt KT (1996) Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev 10:1904–1916

    Article  PubMed  Google Scholar 

  • Fadden P, Haystead TA, Lawrence JC, Jr (1997) Identification of phosphorylation sites in the translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J Biol Chem 272:10240–10247

    Article  PubMed  CAS  Google Scholar 

  • Fumagalli S, Thomas G (2000) S6 phosphorylation and signal transduction. In: Sonenberg N, Hershey JWB, Mathews MB (eds). Translational control of gene expression. Cold Spring Harbor Laboratory Press, Plainview, N.Y., pp 695–718

    Google Scholar 

  • Gallego C, Gari E, Colomina N, Herrero E, Aldea M (1997) The Cln3 cyclin is down-regulated by translational repression and degradation during the Gl arrest caused by nitrogen deprivation in budding yeast. EMBO J 16:7196–7206

    Article  PubMed  CAS  Google Scholar 

  • Gingras A-C, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, Aeber-sold R, Sonenberg N (1999) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13:1422–1437

    Article  PubMed  CAS  Google Scholar 

  • Gingras A-C, Kennedy SG, O’Leary MA, Sonenberg N, Hay N (1998) 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 12:502–513

    Article  PubMed  CAS  Google Scholar 

  • Gingras A-C, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, Polakiewicz RD, Wyslouch-Cieszynska A, Aebersold R, Sonenberg N (2001) Hierarchical phosphorylation of the translational inhibitor 4E-BP1. Genes Dev 15:2852–2864

    Article  PubMed  CAS  Google Scholar 

  • Gingras A-C, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963

    Article  PubMed  CAS  Google Scholar 

  • Gingras A-C, Raught B, Sonenberg N (2001) Control of translation by the target of rapamycin proteins. In: Rhoads RE (eds) Prog. Mol. Subcell. Biol. Springer-Verlag, Berlin, pp 143

    Google Scholar 

  • Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15:807–826

    Article  PubMed  CAS  Google Scholar 

  • Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA, Lawrence JC, Jr (1995) cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc Natl Acad Sci USA 92:7222–7226

    Article  PubMed  CAS  Google Scholar 

  • Grolleau A, Bowman J, Pradet-Balade B, Puravs E, Hanash S, Garcia-Sanz JA, Beretta L (2002) Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics. J Biol Chem 277:22175–22184

    Article  PubMed  CAS  Google Scholar 

  • Groves MR, Barford D (1999) Topological characteristics of helical repeat proteins. Curr Opin Struct Biol 9:383–389

    Article  PubMed  CAS  Google Scholar 

  • Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135

    Article  PubMed  CAS  Google Scholar 

  • Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci USA 96:14866–14870

    Article  PubMed  CAS  Google Scholar 

  • Heesom KJ, Avison MB, Diggle TA, Denton RM (1998) Insulin-stimulated kinase from rat fat cells that phosphorylates initiation factor-4E binding protein 1 on the rapamycin-insensitive site (serine-111). Biochem J 336:39–48

    PubMed  CAS  Google Scholar 

  • Hellen CU, Sarnow P (2001) Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612

    Article  PubMed  CAS  Google Scholar 

  • Hershey JWB, Merrick WC (2000) Pathway and mechanism of initiation of protein synthesis. In: Sonenberg N, Hershey JWB, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Plainview, N.Y., pp 33–88

    Google Scholar 

  • Hershey JWB, Miyamoto S (2000) Translational control and cancer. In: Sonenberg N, Hershey JWB, Mathews MB (eds). Translational control of gene expression. Cold Spring Harbor Laboratory Press, Plainview, N.Y., pp 637–654

    Google Scholar 

  • Holcik M, Sonenberg N, Korneluk RG (2000) Internal ribosome initiation of translation and the control of cell death. Trends Genet 16:469–473

    Article  PubMed  CAS  Google Scholar 

  • Hornstein E, Tang H, Meyuhas O (2001) Mitogenic and nutritional signals are transduced into translational efficiency of TOP mRNAs. In:(eds). The Ribosome (Cold Spring Harbor Symposia on Quantitative Biology LXVI). Cold Spring Harbor Laboratory Press, Plainview, N.Y., pp. 477–484

    Google Scholar 

  • Huang S, Houghton PJ (2002) Inhibitors of mammalian target of rapamycin as novel antitumor agents: from bench to clinic. Curr Opin Investig Drugs 3:295–304

    PubMed  CAS  Google Scholar 

  • Hunter T (1995) When is a lipid kinase not a lipid kinase? When it is a protein kinase. Cell 83:1–4

    Article  PubMed  CAS  Google Scholar 

  • Jacinto E, Guo B, Arndt KT, Schmelzle T, Hall MN (2001) TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway. Mol Cell 8:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Jackson RJ (2000) A comparative view of initiation site selection mechanisms. In: Sonenberg N, Hershey JWB, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Plainview, N.Y., pp 127–183

    Google Scholar 

  • Jang SK, Krausslich H-G, Nicklin MJH, Duke GM, Palmenberg AC, Wimmer E (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62:2636–2643

    PubMed  CAS  Google Scholar 

  • Jiang Y, Broach JR (1999) Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J 18:2782–2792

    Article  PubMed  CAS  Google Scholar 

  • Kahan BD (2000) Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group. Lancet 356:194–202

    Article  PubMed  CAS  Google Scholar 

  • Kahan BD (2001) Sirolimus: a comprehensive review. 2:1903–1917

    CAS  Google Scholar 

  • Karim MM, Hughes JMX, Warwicker J, Scheper GC, Proud CG, McCarthy JEG (2001) A quantitative molecular model for modulation of mammalian translation by the eIF4E-binding protein 1. J Biol Chem 276:20750–20757

    Article  PubMed  CAS  Google Scholar 

  • Keith CT, Schreiber SL (1995) PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 270:50–51

    Article  PubMed  CAS  Google Scholar 

  • Khaleghpour K, Pyronnet S, Gingras A-C, Sonenberg N (1999) Translational homeostasis: eukaryotic translation initiation factor 4E control of 4E-binding protein 1 and p70 S6 kinase activities. Mol Cell Biol 19:4302–4310

    PubMed  CAS  Google Scholar 

  • Kimball SR, Jefferson LS (2000) Regulation of translation initiation in mammalian cells by amino acids. In: Sonenberg N, Hershey JWB, Mathews MB (eds). Translational control of gene expression. Cold Spring Harbor Laboratory Press, Plain-view, N.Y., pp. 561–580

    Google Scholar 

  • Kohn AD, Barthel A, Kovacina KS, Boge A, Wallach B, Summers SA, Birnbaum MJ, Scott PH, Lawrence JC, Jr, Roth RA (1998) Construction and characterization of a conditionally active version of the serine/threonine kinase Akt. J Biol Chem 273:11937–11943

    Article  PubMed  CAS  Google Scholar 

  • Koromilas AE, Lazaris-Karatzas A, Sonenberg N (1992) mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J 11:4153–4158

    PubMed  CAS  Google Scholar 

  • Kozak M (1991) An analysis of vertebrate mRNA sequences: intimations of translational control. J Cell Biol 115:887–903

    Article  PubMed  CAS  Google Scholar 

  • Kuruvilla FG, Shamji AF, Schreiber SL (2001) Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors. Proc Natl Acad Sci USA 98:7283–7288

    Article  PubMed  CAS  Google Scholar 

  • Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345:544–547

    Article  PubMed  CAS  Google Scholar 

  • Leicht M, Simm A, Bertsch G, Hoppe J (1996) Okadaic acid induces cellular hypertrophy in AKR-2B fibroblasts: involvement of the p70S6 kinase in the onset of protein and rRNA synthesis. Cell Growth Differ 7:1199–1209

    PubMed  CAS  Google Scholar 

  • Lin TA, Kong X, Haystead TA, Pause A, Belsham G, Sonenberg N, Lawrence JC, Jr (1994) PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science 266:653–656

    Article  PubMed  CAS  Google Scholar 

  • Lodish HF (1974) Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature 251:385–388

    Article  PubMed  CAS  Google Scholar 

  • Lodish HF (1976) Translational control of protein synthesis. Annu Rev Biochem 45:39–72

    Article  PubMed  CAS  Google Scholar 

  • MacDonald A, The RAPAMUNE Global Study Group (2001) A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation 71:271–280

    Article  Google Scholar 

  • Mahajan PB (1994) Modulation of transcription of rRNA genes by rapamycin. Int J Immunopharmacol 16:711–721

    Article  PubMed  CAS  Google Scholar 

  • Manzella JM, Rychlik W, Rhoads RE, Hershey JW, Blackshear PJ (1991) Insulin induction of ornithine decarboxylase. Importance of mRNA secondary structure and phosphorylation of eucaryotic initiation factors eIF-4B and eIF-4E. J Biol Chem 266:2383–2389

    PubMed  CAS  Google Scholar 

  • Mathews MB, Sonenberg N, Hershey JWB (2000) Origins and principles of translational control. In: Sonenberg N, Hershey JWB, Mathews MB (eds). Translational control of gene expression. Cold Spring Harbor Laboratory Press, Plainview, N.Y., pp 1–31

    Google Scholar 

  • Merrick WC, Nyborg J (2000) The protein biosynthesis elongation cycle. In: Sonenberg N, Hershey JWB, Mathews MB (eds). Translational control of gene expression. Cold Spring Harbor Laboratory Press, Plainview, N.Y., pp 89–125

    Google Scholar 

  • Meyuhas O, Hornstein E (2000) Translational control of TOP mRNAs. In: Sonenberg N, Hershey JWB, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Plainview, N.Y., pp 671–694

    Google Scholar 

  • Mikulits W, Pradet-Balade B, Habermann B, Beug H, Garcia-Sanz JA, Mullner EW (2000) Isolation of translationally controlled mRNAs by differential screening. FASEB J 14:1641–1652

    Article  PubMed  CAS  Google Scholar 

  • Mills GB, Lu Y, Kohn EC (2001) Linking molecular therapeutics to molecular diagnostics: Inhibition of the FRAP/RAFT/TOR component of the PI3K pathway preferentially blocks PTEN mutant cells in vitro and in vivo. Proc Natl Acad Sci USA 98:10031–10033

    Article  PubMed  CAS  Google Scholar 

  • Mothe-Satney I, Brunn GJ, McMahon LP, Capaldo CT, Abraham RT, Lawrence JC, Jr. (2000) Mammalian target of rapamycin-dependent phosphorylation of PHAS-I in four (S/T)P sites detected by phospho-specific antibodies. J Biol Chem 275:33836–33843

    Article  PubMed  CAS  Google Scholar 

  • Nakatani K, Thompson DA, Barthel A, Sakaue H, Liu W, Weigel RJ, Roth RA (1999) Up-regulation of Akt3 in estrogen receptor-deficient breast cancers and andro-gen-independent prostate cancer lines. J Biol Chem 274:21528–21532

    Article  PubMed  CAS  Google Scholar 

  • Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H, Sawyers CL (2001) Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 98:10314–10319

    Article  PubMed  CAS  Google Scholar 

  • Nielsen FC, Ostergaard L, Nielsen J, Christiansen J (1995) Growth-dependent translation of IGF-II mRNA by a rapamycin-sensitive pathway. Nature 377:358–362

    Article  PubMed  CAS  Google Scholar 

  • Nielsen J, Christiansen J, Lykke-Andersen J, Johnsen AH, Wewer UM, Nielsen FC (1999) A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development. Mol Cell Biol 19:1262–1270

    PubMed  CAS  Google Scholar 

  • Pause A, Belsham GJ, Gingras A-C, Donze O, Lin TA, Lawrence JC, Jr, Sonenberg N (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature 371:762–767

    Article  PubMed  CAS  Google Scholar 

  • Peiretti F, Raught B, Gingras A-C, Sonenberg N, Hershey JWB (2002) The eukaryotic translation initiation factor eIF4B is a substrate of the p70 ribosomal S6 kinase (S6 K) 1 (in preparation)

    Google Scholar 

  • Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325

    Article  PubMed  CAS  Google Scholar 

  • Peterson RT, Beal PA, Comb MJ, Schreiber SL (2000) FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem 275:7416–7423

    Article  PubMed  CAS  Google Scholar 

  • Peterson RT, Desai BN, Hardwick JS, Schreiber SL (1999) Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12-ra-pamycin associated protein. Proc Natl Acad Sci USA 96:4438–4442

    Article  PubMed  CAS  Google Scholar 

  • Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J, Neshat M, Wang H, Yang L, Gibbons J, Frost P, Dreisbach V, Blenis J, Gaciong Z, Fisher P, Sawyers C, Hedrick-Ellenson L, Parsons R (2001) An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc Natl Acad Sci USA 98:10320–10325

    Article  PubMed  CAS  Google Scholar 

  • Polunovsky VA, Gingras A-C, Sonenberg N, Peterson M, Tan A, Rubins JB, Manivel JC, Bitterman PB (2000) Translational control of the antiapoptotic function of Ras. J Biol Chem 275:24776–24780

    Article  PubMed  CAS  Google Scholar 

  • Polunovsky VA, Rosenwald IB, Tan A, White J, Chiang L, Sonenberg N, Bitterman PB (1996) Translational control of programmed cell death: eukaryotic translation initiation factor 4E blocks apoptosis in growth-factor-restricted fibroblasts with physiologically expressed or deregulated Myc. Mol Cell Biol 16:6573–6581

    PubMed  CAS  Google Scholar 

  • Powers T, Walter P (1999) Regulation of ribosome biogenesis by the rapamycin-sen-sitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10:987–1000

    PubMed  CAS  Google Scholar 

  • Proud CG (2000) Control of the elongation phase of protein synthesis. In: Sonenberg N, Hershey JWB, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Plainview, N.Y., pp 719–739

    Google Scholar 

  • Pyronnet S, Gingras A-C, Bouisson M, Kowalski-Chauvel A, Seva C, Vaysse N, Sonenberg N, Pradayrol L (1998) Gastrin induces phosphorylation of eIF4E binding protein 1 and translation initiation of ornithine decarboxylase mRNA. Oncogene 16:2219–2227

    Article  PubMed  CAS  Google Scholar 

  • Pyronnet S, Pradayrol L, Sonenberg N (2000) A cell cycle-dependent internal ribosome entry site. Mol Cell 5:607–616

    Article  PubMed  CAS  Google Scholar 

  • Raught B, Gingras A-C, Gygi SP, Imataka H, Morino S, Gradi A, Aebersold R, Sonenberg N (2000) Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J 19:434–444

    Article  PubMed  CAS  Google Scholar 

  • Raught B, Gingras A-C, James A, Medina D, Sonenberg N, Rosen JM (1996) Expression of a translationally regulated, dominant-negative CCAAT/enhancer-binding protein beta isoform and up-regulation of the eukaryotic translation initiation factor 2alpha are correlated with neoplastic transformation of mammary epithelial cells. Cancer Res 56:4382–4386

    PubMed  CAS  Google Scholar 

  • Raught B, Gingras A-C, Sonenberg N (2000) Regulation of ribosomal recruitment in eukaryotes. In: Sonenberg N, Hershey JWB, Mathews MB (eds). Translational control of gene expression. Cold Spring Harbor Laboratory Press, Plainview, N.Y., pp 245–294

    Google Scholar 

  • Raught B, Gingras A-C, Sonenberg N (2003) A novel mode of translational control: activation of 4E-BP1 phosphatases by rapamycin treatment, amino acid deprivation and environmental stresses (submitted)

    Google Scholar 

  • Redpath NT, Foulstone EJ, Proud CG (1996) Regulation of translation elongation fac-tor-2 by insulin via a rapamycin-sensitive signalling pathway. EMBO J 15:2291–2297

    PubMed  CAS  Google Scholar 

  • Rousseau D, Gingras A-C, Pause A, Sonenberg N (1996) The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 13:2415–2420

    PubMed  CAS  Google Scholar 

  • Rozen F, Edery I, Meerovitch K, Dever TE, Merrick WC, Sonenberg N (1990) Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol Cell Biol 10:1134–1144

    PubMed  CAS  Google Scholar 

  • Sabatini DM, Barrow RK, Blackshaw S, Burnett PE, Lai MM, Field ME, Bahr BA, Kirsch J, Betz H, Snyder SH (1999) Interaction of RAFT 1 with gephyrin required for rapamycin-sensitive signaling. Science 284:1161–1164

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  PubMed  CAS  Google Scholar 

  • Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, Pinkel D, Powell B, Mills GB, Gray JW (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21:99–102

    Article  PubMed  CAS  Google Scholar 

  • Sonenberg N (1993) Remarks on the mechanism of ribosome binding to eukaryotic mRNAs. Gene Expr 3:317–323

    PubMed  CAS  Google Scholar 

  • Svitkin YV, Pause A, Haghighat A, Pyronnet S, Witherell G, Belsham GJ, Sonenberg N (2001) The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7:382–394

    Article  PubMed  CAS  Google Scholar 

  • Tang H, Hornstein E, Stolovich M, Levy G, Livingstone M, Templeton D, Avruch J, Meyuhas O (2001) Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol 21:8671–1928

    Article  PubMed  CAS  Google Scholar 

  • Thomas G, Hall MN (1997) TOR signalling and control of cell growth. Curr Opin Cell Biol 9:782–787

    Article  PubMed  CAS  Google Scholar 

  • Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28:721–726

    Article  CAS  Google Scholar 

  • von Manteuffel SR, Dennis PB, Pullen N, Gingras A-C, Sonenberg N, Thomas G (1997) The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6 k. Mol Cell Biol 17:5426–5436

    Google Scholar 

  • von Manteuffel SR, Gingras A-C, Ming XF, Sonenberg N, Thomas G (1996) 4E-BP1 phosphorylation is mediated by the FRAP-p70s6 k pathway and is independent of mitogen-activated protein kinase. Proc Natl Acad Sci USA 93:4076–4080

    Article  Google Scholar 

  • Welsh EM, Wang W, Peltz SW (2000) Translation termination: it’s not the end of the story. In: Sonenberg N, Hershey JWB, Mathews MB (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Plainview, N.Y., pp 467–485

    Google Scholar 

  • West MJ, Stoneley M, Willis AE (1998) Translational induction of the c-myc oncogene via activation of the FRAP/mTOR signalling pathway. Oncogene 17:769–780

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL (1998) The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phospho-inositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 95:15587–15591

    Article  PubMed  CAS  Google Scholar 

  • Zaragoza D, Ghavidel A, Heitman J, Schultz MC (1998) Rapamycin induces the G(0) program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol 18:4463–4470

    PubMed  CAS  Google Scholar 

  • Zong Q, Schummer M, Hood L, Morris DR (1999) Messenger RNA translation state: the second dimension of high-throughput expression screening. Proc Natl Acad Sci USA 96:10632–10636

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gingras, AC., Raught, B., Sonenberg, N. (2004). mTOR Signaling to Translation. In: Thomas, G., Sabatini, D.M., Hall, M.N. (eds) TOR. Current Topics in Microbiology and Immunology, vol 279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18930-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18930-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62360-8

  • Online ISBN: 978-3-642-18930-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics