Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 282))

Abstract

Phosphoinositides are minor components of biological membranes, which have emerged as essential regulators of a variety of cellular processes, both on the plasma membrane and on several intracellular organelles. The versatility of these lipids stems from their ability to function either as substrates for the generation of second messengers, as membrane-anchoring sites for cytosolic proteins or as regulators of the actin cytoskeleton. Despite a vast literature demonstrating the presence of phosphoinositides in the nucleus, only recently has the function(s) of the nuclear pool of these lipids and their soluble analogues, inositol polyphosphates, started to emerge. These compounds have been shown to serve as essential eo-factors for several nuclear processes, including DNA repair, transcription regulation and RNA dynamics. In this light, phosphoinositides and inositol polyphosphates might represent high turnover activity switches for nuclear complexes responsible for these processes. The regulation of these large machineries would be linked to the phosphorylation state of the inositol ring and limited temporally and spatially based on the synthesis and degradation of these molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DAG:

Diacylglycerol

IGC:

Interchromatin granule cluster

Ins:

Inositol

PC:

Phosphatidylcholine

PI:

Phosphoinositides

PIPK:

PtdInsP kinase

PLC:

Phospholipase C

PKC:

Protein kinase C

PtdIns:

Phosphatidylinositol

RNA Pol II:

RNA polymerase II

References

  • Avazeri N, Courtot AM, Pesty A, Duquenne C, Lefevre B (2000) Cytoplasmic and nuclear phospholipase C-beta 1 relocation: role in resumption of meiosis in the mouse oocyte. Mol Biol Cell 11:4369–4380

    PubMed  CAS  Google Scholar 

  • Bacqueville D, Deleris P, Mendre C, Pieraggi MT, Chap H, Guillon G, Perret B, Breton-Douillon M (2001) Characterization of a G protein-activated phosphoinositide 3-kinase in vascular smooth muscle cell nuclei. J Biol Chem 276:22170–22176

    PubMed  CAS  Google Scholar 

  • Becchetti A, Whitaker M (1997) an effect rescued by myo-inositol. Development 124:1099–1107

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Cell signalling. A tale of two messengers. Nature 365:388–389

    PubMed  CAS  Google Scholar 

  • Bertagnolo V, Marchisio M, Volinia S, Caramelli E, Capitani S (1998) Nuclear association of tyrosine-phosphorylated Vav to phospholipase C-γ1 and phosphoinositide 3-kinase during granulocytic differentiation of HL-60 cells. FEBS Lett 441:480–484

    PubMed  CAS  Google Scholar 

  • Borgatti P, Martelli AM, Bellacosa A, Casto R, Massari L, Capitani S, Neri LM (2000) Translocation of Akt/PKB to the nucleus of osteoblast-like MC3T3-E1 cells exposed to proliferative growth factors. FEBS Lett 477:27–32

    PubMed  CAS  Google Scholar 

  • Boronenkov IV, Loijens JC, Umeda M, Anderson RA (1998) Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol Biol Cell 9:3547–3560

    PubMed  CAS  Google Scholar 

  • Boudonck K, Dolan L, Shaw PJ (1999) The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol Biol Cell 10:2297–2307

    PubMed  CAS  Google Scholar 

  • Brazil DP, Hemmings BA(2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26:657–664

    PubMed  CAS  Google Scholar 

  • Bunney TD, Watkins PA, Beven AF, Shaw PJ, Hernandez LE, Lomonossoff GP, Shanks M, Peart J, Drobak BK (2000) Association of phosphatidylinositol 3-kinase with nuclear transcription sites in higher plants. Plant Cell 12:1679–1688

    PubMed  CAS  Google Scholar 

  • Cairns BR, Erdjument-Bromage H, Tempst P, Winston F, Kornberg RD (1998) Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. Mol Cell 2:639–651

    PubMed  CAS  Google Scholar 

  • Calcerrada MC, Miguel BG, Martin L, Catalan RE, Martinez AM (2002) Involvement of phosphatidylinositol 3-kinase in nuclear translocation of protein kinase C zeta induced by C2-ceramide in rat hepatocytes. FEBS Lett 514:361–365

    PubMed  CAS  Google Scholar 

  • Chang SC, Miller AL, Feng Y, Wente SR, Majerus PW (2002) The human homolog of the rat inositol phosphate multikinase is an inositol 1,3,4,6-tetrakisphosphate 5-kinase. J Biol Chem 277:43836–43843

    PubMed  CAS  Google Scholar 

  • Ciruela A, Hinchliffe KA, Divecha N, Irvine RF (2000) Nuclear targeting of the beta isoform of type 11 phosphatidylinositol phosphate kinase (phosphatidylinositol 5-phosphate 4-kinase) by its alpha-helix 7. Biochem J 346:587–591

    PubMed  CAS  Google Scholar 

  • Clarke JH, Letcher AJ, D’Santos C S, Halstead JR, Irvine RF, Divecha N (2001) Inositollipids are regulated during cell cycle progression in the nuclei of murine erythroleukaemia cells. Biochem J 357:905–910

    PubMed  CAS  Google Scholar 

  • Cocco L, Gilmour RS, Ognibene A, Letcher AJ, Manzoli FA, Irvine RF (1987) Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem J 248:765–770

    PubMed  CAS  Google Scholar 

  • Cockcroft S (1998) Phosphatidylinositol transfer proteins: a requirement in signal transduction and vesicle traffic. Bioessays 20:423–432

    PubMed  CAS  Google Scholar 

  • Cockcroft S (2000) Biology of phosphoinositides. In DM Glover (ed) Frontiers of Molecular Biology. Oxford University Press, Oxford, pp 341

    Google Scholar 

  • Cooke FT (2002) Phosphatidylinositol 3,5-bisphosphate: metabolism and function. Arch Biochem Biophys 407:143–151

    PubMed  CAS  Google Scholar 

  • Cullen PJ, Cozier GE, Banting G, Mellor H (2001) Modular phosphoinositide-binding domains—their role in signalling and membrane trafficking. Curr Biol 11:R882–893

    PubMed  CAS  Google Scholar 

  • Czech MP (2002) Dynamics of phosphoinositides in membrane retrieval and insertion. Annu Rev Physiol 65:33.1–33.25

    Google Scholar 

  • D’Santos CS, Clarke JH, Divecha N (1998) Phospholipid signalling in the nucleus. Biochim Biophys Acta 1436:201–232

    PubMed  Google Scholar 

  • D’Santos CS, Clarke JH, Irvine RF, Divecha N (1999) Nuclei contain two differentially regulated pools of diacylglycerol. Curr Biol 9:437–440

    PubMed  Google Scholar 

  • De Vries KJ, Westerman J, Bastiaens PI, Jovin TM, Wirtz KW, Snoek GT (1996) are targeted to distinct intracellular sites. Exp Cell Res 227:33–39

    PubMed  Google Scholar 

  • Didichenko SA, Thelen M (2001) Phosphatidylinositol 3-kinase c2alpha contains a nuclear localization sequence and associates with nuclear speckles. J Biol Chem 276:48135–48142

    PubMed  CAS  Google Scholar 

  • Divecha N, Banfic H, Irvine RF (1991) The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J 10:3207–3214

    PubMed  CAS  Google Scholar 

  • Divecha N, Banfic H, Irvine RF (1993) Inositides and the nucleus and inositides in the nucleus. Cell 74:405–407

    PubMed  CAS  Google Scholar 

  • Drobak BK, Heras B (2002) Nuclear phosphoinositides could bring FYVE alive. Trends Plant Sci 7:132–138

    PubMed  CAS  Google Scholar 

  • Felsenfeld G, Groudine M (2003) Controlling the double helix. Nature 421:448–453

    PubMed  Google Scholar 

  • Feng Y, Wente SR, Majerus PW (2001) Overexpression of the inositol phosphatase SopB in human 293 cells stimulates cellular chloride influx and inhibits nuclear mRNA export. Proc Natl Acad Sci USA 98:875–879

    PubMed  CAS  Google Scholar 

  • Fricker M, Hollinshead M, White N, Vaux D (1997) Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J Cell Biol 136:531–544

    PubMed  CAS  Google Scholar 

  • Friedberg EC (2003) DNA damage and repair. Nature 421:436–440

    PubMed  Google Scholar 

  • Fukami K, Sawada N, Endo T, Takenawa T (1996) Identification of a phosphatidylinositol 4,5-bisphosphate-binding site in chicken skeletal muscle alpha-actinin. J Biol Chem 271:2646–2650

    PubMed  CAS  Google Scholar 

  • Fukami K, Furuhashi K, Inagaki M, Endo T, Hatano S, Takenawa T (1992) Requirement of phosphatidylinositol 4,5-bispho sphate for alpha-actinin function. Nature 359:150–152

    PubMed  CAS  Google Scholar 

  • Gillooly DJ, Morrow IC, Lindsay M, Gould R, Bryant NJ, Gaullier JM, Parton RG, Stenmark H (2000) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19:4577–4588

    PubMed  CAS  Google Scholar 

  • Gimm O, Perren A, Weng LP, Marsh DJ, Yeh JJ, Ziebold U, Gil E, Hinze R, Delbridge L, Lees JA, Mutter GL, Robinson BG, Komminoth P, Dralle H, Eng C (2000) Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am J Pathol 156:1693–1700

    PubMed  CAS  Google Scholar 

  • Gross SD, Loijens JC, Anderson RA (1999) The casein kinase Iα isoform is both physically positioned and functionally competent to regulate multiple events of mRNA metabolism. J Cell Sci 112:2647–2656

    PubMed  CAS  Google Scholar 

  • Guo K, Nichol R, Skehel P, Dormann D, Weijer CJ, Williams JG, Pears C (2001) A Dictyostelium nuclear phosphatidylinositol phosphate kinase required for developmental gene expression. EMBO J 20:6017–6027

    PubMed  CAS  Google Scholar 

  • Hanakahi LA, West SC (2002) Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. EMBO J 21:2038–2044

    PubMed  CAS  Google Scholar 

  • Hanakahi LA, Bartlet-Jones M, Chappell C, Pappin D, West SC (2000) Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102:721–729

    PubMed  CAS  Google Scholar 

  • Hinchliffe KA, Giudici ML, Letcher AJ, Irvine RF (2002) Type IIα phosphatidylinositol phosphate kinase associates with the plasma membrane via interaction with type I isoforms. Biochem J 363:563–570

    PubMed  CAS  Google Scholar 

  • Hocevar BA, Burns DJ, Fields AP (1993) Identification of protein kinase C (PKC) phosphorylation sites on human lamin B. Potential role of PKC in nuclear lamina structural dynamics. J Biol Chem 268:7545–7552

    PubMed  CAS  Google Scholar 

  • Hopfner KP, Putnam CD, Tainer JA (2002) DNA double-strand break repair from head to tail. Curr Opin Struct Biol 12:115–122

    PubMed  CAS  Google Scholar 

  • Horn PJ, Peterson CL (2002) Molecular biology. Chromatin higher order folding-wrapping up transcription. Science 297:1824–1827

    PubMed  CAS  Google Scholar 

  • Iborra FJ, Jackson DA, Cook PR (2001) Coupled transcription and translation within nuclei of mammalian cells. Science 293:1139–1142

    PubMed  CAS  Google Scholar 

  • Irvine RF (2002) Nuclear lipid signaling. Sci STKE 2002:RE13

    PubMed  Google Scholar 

  • Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2:327–338

    PubMed  CAS  Google Scholar 

  • Kuriki H, Tamiya-Koizumi K, Asano M, Yoshida S, Kojima K, Nimura Y (1992) Existence of phosphoinositide-specific phospholipase C in rat liver nuclei and its change during liver regeneration. J Biochem (Tokyo) 111:283–286

    CAS  Google Scholar 

  • Lachyankar MB, Sultana N, Schonhoff CM, Mitra P, Poluha W, Lambert S, Quesenberry PJ, Litofsky NS, Recht LD, Nabi R, Miller SJ, Ohta S, Neel BG, Ross AH (2000) A role for nuclear PTEN in neuronal differentiation. J Neurosci 20:1404–1413

    PubMed  CAS  Google Scholar 

  • Lallena MJ, Correas I (1997) Transcription-dependent redistribution of nuclear protein 4.1 to SC35-enriched nuclear domains. J Cell Sci 110:239–247

    PubMed  CAS  Google Scholar 

  • Larijani B, Barona TM, Poccia DL (2001) Role for phosphatidylinositol in nuclear envelope formation. Biochem J 356:495–501

    PubMed  CAS  Google Scholar 

  • Lee MS, Silver PA (1997) RNA movement between the nucleus and the cytoplasm. Curr Opin Genet Dev 7:212–219

    PubMed  CAS  Google Scholar 

  • Leser GP, Fakan S, Martin TE (1989) Ultrastructural distribution of ribonucleoprotein complexes during mitosis. snRNP antigens are contained in mitotic granule clusters. Eur J Cell Biol 50:376–389

    PubMed  CAS  Google Scholar 

  • Lewis JD, Tollervey D (2000) Like attracts like: getting RNA processing together in the nucleus. Science 288:1385–1389

    PubMed  CAS  Google Scholar 

  • Liu N, Fukami K, Yu H, Takenawa T (1996) A new phospholipase C δ 4 is induced at S-phase of the cell cycle and appears in the nucleus. J Biol Chem 271:355–360

    PubMed  CAS  Google Scholar 

  • Lu PJ, Hsu AL, Wang DS, Yan HY, Yin HL, Chen CS (1998) Phosphoinositide 3-kinase in rat liver nuclei. Biochemistry 37:5738–5745

    PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260

    PubMed  CAS  Google Scholar 

  • Luo HR, Saiardi A, Yu H, Nagata E, Ye K, Snyder SH (2002) Inositol pyrophosphates are required for DNA hyperrecombination in protein kinase c1 mutant yeast. Biochemistry 41:2509–2515

    PubMed  CAS  Google Scholar 

  • Manzoli L, Billi AM, Rubbini S, Bavelloni A, Faenza I, Gilmour RS, Rhee SG, Cocco L (1997) Essential role for nuclear phospholipase C β1 in insulin-like growth factor I-induced mitogenesis. Cancer Res 57:2137–2139

    PubMed  CAS  Google Scholar 

  • Manzoli L, Billi AM, Faenza I, Matteucci A, Martelli AM, Peruzzi D, Falconi M, Rhee SG, Gilmour RS, Cocco L (1999) Nuclear phospholipase C: a novel aspect of phosphoinositide signalling. Anticancer Res 19:3753–3756

    PubMed  CAS  Google Scholar 

  • Maraldi NM, Zini N, Squarzoni S, Del Coco R, Sabatelli P, Manzoli FA (1992) Intranuclear localization of phospholipids by ultrastructural cytochemistry. J Histochem Cytochem 40:1383–1392

    PubMed  CAS  Google Scholar 

  • Martelli AM, Sang N, Borgatti P, Capitani S, Neri LM (1999) Multiple biological responses activated by nuclear protein kinase C. J Cell Biochem 74:499–521

    PubMed  CAS  Google Scholar 

  • Martelli AM, Gilmour RS, Bertagnolo V, Neri LM, Manzoli L, Cocco L (1992) Nuclear localization and signalling activity of phosphoinositidase C β in Swiss 3T3 cells. Nature 358:242–245

    PubMed  CAS  Google Scholar 

  • Martelli AM, Tabellini G, Borgatti P, Bortul R, Capitani S, Neri LM (2003) Nuclear lipids: New functions for old molecules? J Cell Biochem 88:455–461

    PubMed  CAS  Google Scholar 

  • Martelli AM, Neri LM, Gilmour RS, Barker PJ, Huskisson NS, Manzoli FA, Cocco L (199l) Temporal changes in intracellular distribution of protein kinase C in Swiss 3T3 cells during mitogenic stimulation with insulin-like growth factor I and bombesin: translocation to the nucleus follows rapid changes in nuclear polyphosphoinositides. Biochem Biophys Res Commun 177:480–487

    Google Scholar 

  • Mazzotti G, Zini N, Rizzi E, Rizzoli R, Galanzi A, Ognibene A, Santi S, Matteucci A, Martelli AM, Maraldi NM (1995) Immunocytochemical detection of phosphatidylinositol 4,5-bisphosphate localization sites within the nucleus. J Histochem Cytochem 43:181–191

    PubMed  CAS  Google Scholar 

  • Metjian A, Roll RL, Ma AD, Abrams CS (1999) Agonists cause nuclear translocation of phosphatidylinositol 3-kinase γ. A Gβγ-dependent pathway that requires the p110γ amino terminus. J Biol Chem 274:27943–27947

    PubMed  CAS  Google Scholar 

  • Nakielny S, Dreyfuss G (1999) Transport of proteins and RNAs in and out of the nucleus. Cell 99:677–690

    PubMed  CAS  Google Scholar 

  • Neri LM, Borgatti P, Capitani S, Martelli AM (1998) Nuclear diacylglycerol produced by phosphoinositide-specific phospholipase C is responsible for nuclear translocation of protein kinase C-α. J Biol Chem 273:29738–29744

    PubMed  CAS  Google Scholar 

  • Neri LM, Bortul R, Borgatti P, Tabellini G, Baldini G, Capitani S, Martelli AM (2002) Proliferating or differentiating stimuli act on different lipid-dependent signaling pathways in nuclei of human leukemia cells. Mol Biol Cell 13:947–964

    PubMed  CAS  Google Scholar 

  • Odom AR, Stahlberg A, Wente SR, York JD (2000) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287:2026–2029

    PubMed  CAS  Google Scholar 

  • Osborne SL, Meunier FA, Schiavo G (2001a) Phosphoinositides as key regulators of synaptic function. Neuron 32:9–12

    PubMed  CAS  Google Scholar 

  • Osborne SL, Thomas CL, Gschmeissner S, Schiavo G (2001b) Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci 114:2501–2511

    PubMed  CAS  Google Scholar 

  • Payrastre B, Nievers M, Boonstra J, Breton M, Verkleij AJ, Van Bergen en Henegouwen PM (1992) A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J Biol Chem 267:5078–5084

    Google Scholar 

  • Pederson T (2000) Half a century of “the nuclear matrix”. Mol Biol Cell 11:799–805

    PubMed  CAS  Google Scholar 

  • Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404:604–609

    PubMed  CAS  Google Scholar 

  • Platani M, Goldberg I, Lamond AI, Swedlow JR (2002) Cajal body dynamics and association with chromatin are ATP-dependent. Nat Cell Biol 4:502–508

    PubMed  CAS  Google Scholar 

  • Rando OJ, Zhao K, Crabtree GR (2000) Searching for a function for nuclear actin. Trends Cell Biol 10:92–97

    PubMed  CAS  Google Scholar 

  • Rando OJ, Zhao K, Janmey P, Crabtree GR (2002) Phosphatidylinositol-dependent actin filament binding by the SWIISNF-like BAFchromatin remodeling complex. Proc Natl Acad Sci USA 99:2824–2829

    PubMed  CAS  Google Scholar 

  • Saiardi A, Caffrey JJ, Snyder SH, Shears SB (2000) Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett 468:28–32

    PubMed  CAS  Google Scholar 

  • Saiardi A, Erdjument-Bromage H, Snowman AM, Tempst P, Snyder SH (1999) Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr Biol 9:1323–1326

    PubMed  CAS  Google Scholar 

  • Shears SB (2000) Transcriptional regulation: a new dominion for inositol phosphate signaling? Bioessays 22:786–789

    PubMed  CAS  Google Scholar 

  • Shen X, Xiao H, Ranallo R, Wu WH, Wu C (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299:112–114

    PubMed  CAS  Google Scholar 

  • Sindic A, Aleksandrova A, Fields AP, Volinia S, Banfic H (2001) Presence and activation of nuclear phosphoinositide 3-kinase C2β during compensatory liver growth. J Biol Chem 276:17754–17761

    PubMed  CAS  Google Scholar 

  • Sotiropoulos A, Gineitis D, Copeland J, Treisman R (1999) Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98:159–169

    PubMed  CAS  Google Scholar 

  • Spector DL, Fu XD, Maniatis T (1991) Associations between distinct pre-mRNA splicing components and the cell nucleus. EMBO J 10:3467–3481

    PubMed  CAS  Google Scholar 

  • Steger DJ, Haswell ES, Miller AL, Wente SR, O’Shea EK (2003) Regulation of chromatin remodeling by inositol polyphosphates. Science 299:114–116

    PubMed  CAS  Google Scholar 

  • Stevenson-Paulik J, Odom AR, York JD (2002) Molecular and biochemical characterization of two plant inositol polyphosphate 6-/3-/5-kinases. J Biol Chem 277:42711–42718

    PubMed  CAS  Google Scholar 

  • Sun B, Murray NR, Fields AP (1997) A role for nuclear phosphatidylinositol-specific phospholipase C in the G2/M phase transition. J Biol Chem 272:26313–26317

    PubMed  CAS  Google Scholar 

  • Sylvia V, Curtin G, Norman J, Stec J, Busbee D (1988) Activation of a low specific activity form of DNApolymerase a by inositol-1,4-bisphosphate. Cell 54:651–658

    PubMed  CAS  Google Scholar 

  • Takenawa T, Itoh T (2001) Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim Biophys Acta 1533:190–206

    PubMed  CAS  Google Scholar 

  • Thomas CL, Steel J, Prestwich GD, Schiavo G (1999) Generation of phosphatidylinositol-specific antibodies and their characterization. Biochem Soc Trans 27:648–652

    PubMed  CAS  Google Scholar 

  • Toker A (2002) Phosphoinositides and signal transduction. Cell Mol Life Sci 59:761–779

    PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Ahmadi K, Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ, Waterfield MD (2001) Synthesis and function of 3-phosphorylated inositollipids. Annu Rev Biochem 70:535–602

    PubMed  CAS  Google Scholar 

  • Vann LR, Wooding FB, Irvine RF, Divecha N (1997) Metabolism and possible compartmentalization of inositol lipids in isolated rat-liver nuclei. Biochem J 327:569–576

    PubMed  CAS  Google Scholar 

  • Verbsky JW, Wilson MP, Kisseleva MV, Majerus PW, Wente SR (2002) The synthesis of inositol hexakisphosphate. Characterization of human inositol 1,3,4,5,6-pentakisphosphate 2-kinase. J Biol Chem 277:31857–31862

    PubMed  CAS  Google Scholar 

  • Visnjic D, Crljen V, Curie J, Batinic D, Volinia S, Banfic H (2002) The activation of nuclear phosphoinositide 3-kinase C2β in all-trans-retinoic acid-differentiated HL-60 cells. FEBS Lett 529:268–274

    PubMed  CAS  Google Scholar 

  • Watt SA, Kular G, Fleming IN, Downes CP, Lucocq JM (2002) Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase δ1 Col. Biochem J 363:657–666

    CAS  Google Scholar 

  • Xu A, Suh PG, Marmy-Conus N, Pearson RB, Seok OY, Cocco L, Gilmour RS (2001) Phosphorylation of nuclear phospholipase C β1 by extracellular signal-regulated kinase mediates the mitogenic action of insulin-like growth factor I. Mol Cell Biol 21:2981–2990

    PubMed  CAS  Google Scholar 

  • Ye K, Hurt KJ, Wu FY, Fang M, Luo HR, Hong JJ, Blackshaw S, Ferris CD, Snyder SH (2000) PIKE. A nuclear GTPase that enhances PI3kinase activity and is regulated by protein 4.1 N. Cell 103:919–930

    PubMed  CAS  Google Scholar 

  • York JD, Majerus PW (1994) Nuclear phosphatidylinositols decrease during S-phase of the cell cycle in HeLa cells. J Biol Chem 269:7847–7850

    PubMed  CAS  Google Scholar 

  • York JD, Xiong JP, Spiegelberg B (1998) Nuclear inositol signaling: a structural and functional approach. Adv Enzyme Regul 38:365–374

    PubMed  CAS  Google Scholar 

  • York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100

    PubMed  CAS  Google Scholar 

  • Yu H, Fukami K, Watanabe Y, Ozaki C, Takenawa T (1998) Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur J Biochem 251:281–287

    PubMed  CAS  Google Scholar 

  • Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K, Kuo A, Crabtree GR (1998) Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95:625–636

    PubMed  CAS  Google Scholar 

  • Zini N, Ognibene A, Bavelloni A, Santi S, Sabatelli P, Baldini N, Scotlandi K, Serra M, Maraldi NM (1996) Cytoplasmic and nuclear localization sites of phosphatidylinositol 3-kinase in human osteosarcoma sensitive and multidrug-resistant Saos-2 cells. Histochem Cell Biol 106:457–464

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hammond, G., Thomas, C.L., Schiavo, G. (2004). Nuclear Phosphoinositides and Their Functions. In: Stenmark, H. (eds) Phosphoinositides in Subcellular Targeting and Enzyme Activation. Current Topics in Microbiology and Immunology, vol 282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18805-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18805-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62299-1

  • Online ISBN: 978-3-642-18805-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics