Skip to main content

Attempts to Improve Axonal Pathfinding and Quality of Target Reinnervation

  • Chapter
  • 660 Accesses

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 210))

Abstract

In the first major set, we report our attempts to improve axonal pathfinding by reduction of collateral axonal branching at the lesion site by means of (1) local trophic factor neutralization or (2) application of established pharmacological agents to perturb microtubule assembly.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahlborn P, Schachner M, Irintchev A (2007) One hour electrical stimulation accelerates functional recovery after femoral nerve repair. Exp Neurol 208:137–144

    PubMed  Google Scholar 

  • Aldes LD (1995) Subcompartmental organization of the ventral (protrusor) compartment in the hypoglossal nucleus of the rat. J Comp Neurol 1995(353):89–108

    Google Scholar 

  • Aldskogius H, Thomander L (1986) Selective reinnervation of somatotopically appropriate muscles after facial nerve transection and regeneration in the neonatal rat. Brain Res 375:126–134

    CAS  PubMed  Google Scholar 

  • Al-Majed AA, Neumann CM, Brushart TM, Gordon T (2000) Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci 20:2602–2608

    CAS  PubMed  Google Scholar 

  • Al-Majed AA, Tam SL, Gordon T (2004) Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons. Cell Mol Neurobiol 24:379–402

    CAS  PubMed  Google Scholar 

  • Angelov DN, Gunkel A, Stennert E, Neiss WF (1993) Recovery of original nerve supply after hypoglossal-facial anastomosis causes permanent motor hyperinnervation of the whisker-pad muscles in the rat. J Comp Neurol 338:214–224

    CAS  PubMed  Google Scholar 

  • Angelov DN, Neiss WF, Gunkel A, Guntinas-Lichius O, Stennert E (1994) Axotomy induces intranuclear immunolocalization of neuron-specific enolase (NSE) in facial and hypoglossal neurons of the rat. J Neurocytol 23:218–233

    CAS  PubMed  Google Scholar 

  • Angelov DN, Neiss WF, Streppel M, Andermahr J, Mader K, Stennert E (1996) Nimodipine accelerates axonal sprouting after surgical repair of rat facial nerve. J Neurosci 16:1041–1048

    CAS  PubMed  Google Scholar 

  • Angelov DN, Skouras E, Guntinas-Lichius O, Streppel M, Popratiloff A, Walther M, Klein J, Stennert E, Neiss WF (1999) Contralateral trigeminal nerve lesion reduces polyneuronal muscle innervation after facial nerve repair in rats. Eur J Neurosci 11:1369–1378

    CAS  PubMed  Google Scholar 

  • Angelov DN, Guntinas-Lichius O, Wewetzer K, Neiss WF, Streppel M (2005) Axonal branching and recovery of coordinated muscle activity after transection of the facial nerve in adult rats. Adv Anat Embryol Cell Biol 180:1–130

    CAS  PubMed  Google Scholar 

  • Angelov DN, Ceynowa M, Guntinas-Lichius O, Streppel M, Grosheva M, Kiryakova SI, Skouras E, Maegele M, Irintchev AP, Neiss WF, Sinis N, Alvanou A, Dunlop SA (2007) Mechanical stimulation of paralyzed vibrissal muscles following facial nerve injury in adult rat promotes full recovery of whisking. Neurobiol Dis 26:229–242

    PubMed  Google Scholar 

  • Arvidsson J (1982) Somatotopic organization of vibrissae afferents in the trigeminal sensory nuclei of the rat studied by transganglionic transport of HRP. J Comp Neurol 211:84–92

    CAS  PubMed  Google Scholar 

  • Ashley Z, Salmons S, Boncompagni S, Protasi F, Russold MF, Lanmuller H, Mayr W, Sutherland H, Jarvis JC (2007) Effects of chronic electrical stimulation on long-term denervated muscles of the rabbit hind limb. J Muscle Res Cell Motil 28:203–217

    PubMed  Google Scholar 

  • Ashley Z, Sutherland H, Russold MF, Lanmuller H, Mayr W, Jarvis JC, Salmons S (2008) Therapeutic stimulation of denervated muscles: the influence of pattern. Muscle Nerve 38:875–886

    PubMed  Google Scholar 

  • Bardosi A, Goebel HH, Stennert E (1987) The ultrastructure of normal and denrvated human facial muscles. Plast Reconstruct Surg 79:171–176

    CAS  Google Scholar 

  • Bedi K, Winter J, Berry M, Cohen J (1992) Adult rat dorsal root ganglion neurons extent neurites on predegenerated but not on normal peripheral nerves in vitro. Eur J Neurosci 4:193–200

    PubMed  Google Scholar 

  • Berg RW, Kleinfeld D (2003) Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. J Neurophysiol 89:104–117

    PubMed  Google Scholar 

  • Bermejo R, Harvey M, Gao P, Zeigler HP (1996) Conditioned whisking in the rat. Somatosens Mot Res 13:225–233

    CAS  PubMed  Google Scholar 

  • Bertelli JA, Mira JC (1995) The grasping test: a simple behavioral method for objective quantitative assessment of peripheral nerve regeneration in the rat. J Neurosci Methods 58:151–155

    CAS  PubMed  Google Scholar 

  • Beurskens CHG (1990) The functional rehabilitation of facial muscles and facial expression. In: Castro D (ed) Facial nerve, Proceedings of the Sixth International Symposium on the Facial Nerve.. Kugler Publications, Amsterdam, pp 509–511

    Google Scholar 

  • Bisler S, Schleicher A, Gass P, Stehle JH, Zilles K, Staiger JF (2002) Expression of c-Fos, ICER, Krox-24 and JunB in the whisker-to-barrel pathway of rats: time course of induction upon whisker stimulation by tactile exploration of an enriched environment. J Chem Neuroanat 23:187–198

    CAS  PubMed  Google Scholar 

  • Blanco JE, Anderson KD, Steward O (2007) Recovery of forepaw gripping ability and reorganization of cortical motor control following cervical spinal cord injuries in mice. Exp Neurol 203:333–348

    PubMed  Google Scholar 

  • Bontioti EN, Kanje M, Dahlin LB (2003) Regeneration and functional recovery in the upper extremity of rats after various types of nerve injuries. J Peripher Nerv Syst 8:159–68

    PubMed  Google Scholar 

  • Brecht M, Preilowski B, Merzenich MM (1997) Functional architecture of the mystacial vibrissae. Behav Brain Res 84:81–97

    CAS  PubMed  Google Scholar 

  • Brown MC, Holland RL, Hopkins WG, Keynes RJ (1981) An assessment of the spread of the signal for terminal sprouting within and between muscles. Brain Res 210:145–151

    CAS  PubMed  Google Scholar 

  • Brushart TM, Hoffman PN, Royall RM, Murinson BB, Witzel C, Gordon T (2002) Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. J Neurosci 22:6631–6638

    CAS  PubMed  Google Scholar 

  • Brushart TM, Jari R, Verge V, Rohde C, Gordon T (2005) Electrical stimulation restores the specificity of sensory axon regeneration. Exp Neurol 194:221–229

    PubMed  Google Scholar 

  • Calhoun ME, Jucker M, Martin LJ, Thinakaran G, Price DL, Mouton PR (1996) Comparative evaluation of synaptophysin-based methods for quantification of synapses. J Neurocytol 25:821–828

    CAS  PubMed  Google Scholar 

  • Carvell GE, Simons DJ (1990) Biometric analyses of vibrissal tactile discrimination in the rat. J Neurosci 10:2638–2648

    CAS  PubMed  Google Scholar 

  • Challacombe JF, Snow DM, Letourneau PC (1996) Actin filament bundles are required for microtubule reorientation during growth cone turning to avoid an inhibitory guidance cue. J Cell Sci 109:2031–2040

    CAS  PubMed  Google Scholar 

  • Challacombe JF, Snow DM, Letourneau PC (1997) Dynamic microtubule ends are required for growth cone turning to avoid an inhitory guidance cue. J Neurosci 17:3085–3095

    CAS  PubMed  Google Scholar 

  • Choi D, Raisman G (2005) Disorganization of the facial nucleus after nerve lesioning and regeneration in the rat: effects of transplanting candidate reparative cells to the site of injury. Neurosurgery 56:1093–100

    PubMed  Google Scholar 

  • Chuckowree JA, Vickers JC (2003) Cytoskeletal and morphological alterations underlying axonal sprouting after localized transection of cortical neuron axons in vitro. J Neurosci 23:3715–25

    CAS  PubMed  Google Scholar 

  • Clatterbuck RE, Price DL, Koliatsos VE (1994) Further characterization of the effects of BDNF and CNTF on axotomized neonatal and adult mammalian motor neurons. J Comp Neurol 342:45–56

    CAS  PubMed  Google Scholar 

  • Coulson SE (2005) Physiotherapy rehabilitation following facial nerve paresis. In: Beurskens CHG, van Gelder RS, Heymans PG, Manni J, Nicolai JPA (eds) The facial palsies. Complementary approaches. Lemma Publishers, Utrecht, The Netherlands, pp 263–274

    Google Scholar 

  • D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, La Vail MM, Vollrath D (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651

    PubMed  Google Scholar 

  • de Bilbao F, Dubois-Dauphin M (1996) Time course of axotomy-induced apoptotic cell death in facial motoneurons of neonatal wild type and bcl-2 transgenic mice. Neuroscience 71:1111–1119

    PubMed  Google Scholar 

  • Decker MM, Berman HA (1990) Denervation-induced alterations of acetylcholinesterase in denrvated and nondenervated muscle. Exp Neurol 109:247–255

    CAS  PubMed  Google Scholar 

  • Deckwerth TL, Elliott JL, Knudson CM, Johnson EM Jr, Snider WD, Korsmeyer SJ (1996) BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17:401–411

    CAS  PubMed  Google Scholar 

  • Dedkov EI, Kostrominova TY, Borisov AB, Carlson BM (2001) Reparative myogenesis in long-term denervated skeletal muscles of adult rats results in a reduction of the satellite cell population. Anat Rec 263:139–154

    CAS  PubMed  Google Scholar 

  • Diamond J, Holmes M, Coughlin M (1992) Endogenous NGF and nerve impulses regulate the collateral sprouting of sensory axons in the skin of the adult rat. J Neurosci 12:1454–1466

    CAS  PubMed  Google Scholar 

  • Ding M, Hart RP, Shadiack AM, Jonakait GM (1994) The interleukin-1-induced increase of substance P in sympathetic ganglia is not mediated by ciliary neurotrophic factor. J Neurosci Res 38:640–647

    CAS  PubMed  Google Scholar 

  • Dohm S, Streppel M, Guntinas-Lichius O, Pesheva P, Probstmeier R, Neiss WF, Angelov DN (2000) Local application of extracellular matrix proteins fails to reduce the number of axonal branches during regeneration. Restor Neurol Neurosci 16:117–126

    CAS  PubMed  Google Scholar 

  • Donoghue JP, Wise SP (1982) Rat motor cortex: cytoarchitecture and microstimulation mapping. J Comp Neurol 212:76–88

    CAS  PubMed  Google Scholar 

  • Dörfl J (1982) The musculature of the mystacial vibrissae of the white mouse. J Anat 135:147–154

    PubMed Central  PubMed  Google Scholar 

  • Dörfl J (1985) The innervation of the mystacial region of the white mouse. A topographical study. J Anat 142:173–184

    PubMed Central  PubMed  Google Scholar 

  • Eberhardt KA, Irintchev A, Al-Majed AA, Simova O, Brushart TM, Gordon T, Schachner M (2006) BDNF/TrkB signaling regulates HNK-1 carbohydrate expression in regenerating motor nerves and promotes functional recovery after peripheral nerve repair. Exp Neurol 198:500–10

    CAS  PubMed  Google Scholar 

  • Eccles JC (1944) Investigations on muscle atrophies arising from disuse and tenotomy. J Physiol 103:253–266

    PubMed Central  CAS  PubMed  Google Scholar 

  • English AW, Schwartz G, Meador W, Sabatier MJ, Mulligan A (2007) Electrical stimulation promotes peripheral axon regeneration by enhanced neuronal neurotrophin signaling. Dev Neurobiol 67:158–172

    CAS  PubMed  Google Scholar 

  • Erzurumlu RS, Killackey HP (1979) Efferent connections of the brainstem trigeminal complex with the facial nucleus of the rat. J Comp Neurol 188:75–86

    CAS  PubMed  Google Scholar 

  • Esslen E (1960) Electromyographic findings on two types of misdirection of regenerating axons. EEG Clin Neurophysiol 12:738–741

    CAS  Google Scholar 

  • Evgenieva E, Schweigert P, Guntinas-Lichius O, Pavlov SP, Grosheva M, Angelova SK, Streppel M, Irintchev A, Skouras E, Sinis N, Dunlop SA, Radeva V, Angelov DN (2008) Manual stimulation of tongue muscles diminishes polynnervation of the motor endplates and improves recovery of function after hypoglossal nerve injury in rats. Neurorehab Neural Repair 22:754–68

    Google Scholar 

  • Frach JP, Osterbauer PJ, Fuhr AW (1992) Treatment of Bell´s palsy by mechanical force, manually assisted chropractic adjusting and high-voltage electrotherapy. J Manipulative Physiol Ther 15:596–598

    CAS  PubMed  Google Scholar 

  • Geremia NM, Gordon T, Brushart TM, Al-Majed AA, Verge VM (2007) Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp Neurol 205:347–59

    CAS  PubMed  Google Scholar 

  • Gong S, Zhou Q, LeDoux MS (2003) Blink-related sensorimotor anatomy in the rat. Anat Embryol 207:193–208

    PubMed  Google Scholar 

  • Gordon T, Brushart TM, Amirjani N, Chan KM (2007) The potential of electrical stimulation to promote functional recovery after peripheral nerve injury – comparisons between rats and humans. Acta Neurochir Suppl 100:3–11

    CAS  PubMed  Google Scholar 

  • Gordon T, Brushart TM, Chan KM (2008) Augmenting nerve regeneration with electrical stimulation. Neurol Res 30:1012–1020

    CAS  PubMed  Google Scholar 

  • Grant GA, Rostomily RR, Kim DK, Mayberg MR, Farrell D, Avellino A, Duckert LG, Gates GA, Winn HR (2002) Delayed facial palsy after resection of vestibular schwannoma. J Neurosurg 97:93–96

    PubMed  Google Scholar 

  • Greene EC (1935) Anatomy of the rat. Transactions of the American Philosophical Society, Philadelphia, New Series, Volume XXVII

    Google Scholar 

  • Guidry C, Grinnell F (1987) Heparin modulates the organization of hydrated collagen gels and inhibits gel contraction by fibroblasts. J Cell Biol 104:1097–1103

    CAS  PubMed  Google Scholar 

  • Gundersen HJ (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 143:3–45

    CAS  PubMed  Google Scholar 

  • Gundersen HJG, Bendtsen TF, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sorensen FB, Vesterby A, West MJ (1988) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. Acta Pathol Microbiol Immunol Scand 96:379–394

    CAS  Google Scholar 

  • Guntinas-Lichius O, Irintchev A, Streppel M, Lenzen M, Grosheva M, Wewetzer K, Neiss WF, Angelov DN (2005) Factors limiting motor recovery after facial nerve transection in the rat: combined structural and functional analyses. Eur J Neurosci 21:391–402

    PubMed  Google Scholar 

  • Hattox AM, Priest CA, Keller A (2002) Functional circuitry involved in the regulation of whisker movements. J Comp Neurol 442:266–76

    PubMed Central  PubMed  Google Scholar 

  • Hennig R, Dietrichs E (1994) Transient reinnervation of antagonistic muscles by the same motoneuron. Exp Neurol 130:331–336

    CAS  PubMed  Google Scholar 

  • Hinrichsen CF, Watson D (1983) Brain stem projections to the facial nucleus of the rat. Brain Behav Evol 22:153–163

    CAS  PubMed  Google Scholar 

  • Hinrichsen CF, Watson CD (1984) The facial nucleus of the rat: representation of facial muscles revealed by retrograde transport of horseradish peroxidase. Anat Rec 209:407–415

    CAS  PubMed  Google Scholar 

  • Hovind H, Nielsen S (1974) Effect of massage on blood flow in skeletal muscle. Scand J Rehab Med 6:74–77

    CAS  Google Scholar 

  • Ijkema-Paassen J, Meek MF, Gramsbergen A (2002) Reinnervation of muscles after transection of the sciatic nerve in adult rats. Muscle Nerve 25:891–897

    PubMed  Google Scholar 

  • Irintchev A, Draguhn A, Wernig A (1990) Reinnervation and recovery of mouse soleusmuscle after long-term denervation. Neuroscience 39:231–243

    CAS  PubMed  Google Scholar 

  • Isokawa-Akesson M, Komisaruk BR (1987) Difference in projections to the lateral and medial facial nucleus: anatomically separate pathways for rhythmical vibrissa movement in rats. Exp Brain Res 65:385–398

    CAS  PubMed  Google Scholar 

  • Ito M, Kudo M (1994) Reinnervation by axon collaterals from single facial motoneurons to multiple muscle targets following axotomy in the adult guinea pig. Acta Anat (Basel) 151:124–130

    CAS  Google Scholar 

  • Jacquin MF, Zahm DS, Henderson TA, Golden JP, Johnson EM, Renehan WE, Klein BG (1993) Structure-function relationships in rat brainstem subnucleus interpolaris. X. Mechanisms underlying enlarged spared whisker projections after infraorbital nerve injury at birth. J Neurosci 13:2946–2964

    CAS  PubMed  Google Scholar 

  • Jergovic D, Stal P, Lidman D, Lindvall B, Hildebrand C (2001) Changes in a rat facial muscle after facial nerve injury and repair. Muscle Nerve 24:1202–1212

    CAS  PubMed  Google Scholar 

  • Jevsek M, Mars T, Mis K, Grubic Z (2004) Origin of acetylcholinesterase in the neuromuscular junction formed in the in vitro innervated human muscle. Eur J Neurosci 20:2865–2871

    PubMed  Google Scholar 

  • Kelly EJ, Jacoby C, Terenghi G, Mennen U, Ljungberg C, Wiberg M (2007) End-to-side nerve coaptation: a qualitative and quantitative assessment in the primate. J Plast Reconstr Aesthet Surg 60:1–12

    CAS  PubMed  Google Scholar 

  • Kern H, Hofer C, Modlin M, Forstner C, Raschka-Hogler D, Mayr W, Stohr H (2002) Denervated muscles in humans: limitations and problems of currently used functional electrical stimulation training protocols. Artif Organs 26:216–218

    PubMed  Google Scholar 

  • Kern H, Salmons S, Mayr W, Rossini K, Carraro U (2005) Recovery of long-term denervated human muscles induced by electrical stimulation. Muscle Nerve 31:98–101

    PubMed  Google Scholar 

  • Kimura J, Lyon LW (1972) Orbicularis oculi reflex in the Wallenberg syndrome: alteration of the late reflex by lesions of the spinal tract and nucleus of the trigeminal nerve. J Neurol Neurosurg Psychiatry 35:228–233

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klein BG, Rhoades RW (1985) Representation of whisker follicle intrinsic musculature in the facial motor nucleus of the rat. J Comp Neurol 232:55–69

    CAS  PubMed  Google Scholar 

  • Komisaruk BR (1970) Synchrony between limbic system theta activity and rhythmical behaviour in rats. J Comp Physiol Psychol 70:482–492

    CAS  PubMed  Google Scholar 

  • Krammer EB, Rath T, Lischka MF (1979) Somatotopic organization of the hypoglossal nucleus: a HRP study in the rat. Brain Res 170:533–537

    CAS  PubMed  Google Scholar 

  • Lieber RL (1992) Skeletal muscle structure and function: implications for rehabilitation and sports medicine. Williams and Wilkins, Baltimore, MD, pp 210–259

    Google Scholar 

  • Lomo T, Slater CR (1980) Control of junctional acetylcholinesterase by neural and muscular influences in the rat. J Physiol 303:191–202

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lömo T, Westgaard RH (1974) Contractile properties of muscle: control by pattern of muscle activity in the rat. Proc R Soc Lond B187:99–103

    Google Scholar 

  • Love FM, Son YJ, Thompson WJ (2003) Activity alters muscle reinnervation and terminal sprouting by reducing the number of Schwann cell pathways that grow to link synaptic sites. J Neurobiol 54:566–576

    PubMed  Google Scholar 

  • Lowe AA (1981) The neural regulation of tongue movements. Progr Neurobiol 15:295–344

    Google Scholar 

  • Mackinnon SE, Dellon AL, Hudson AR, Hunter DA (1985) A primate model for chronic nerve compression. J Reconstr Microsurg 1:185–195

    CAS  PubMed  Google Scholar 

  • Mackinnon SE, Dellon AL, Obrien JP (1991) Changes in nerve fiber diameters distal to a nerve repair in the rat sciatic nerve model. Muscle Nerve 14:1116–1122

    CAS  PubMed  Google Scholar 

  • Madison RD, Archibald SJ, Lacin R, Krarup C (1999) Factors contributing to preferential motor reinnervation in the primate peripheral nervous system. J Neurosci 19:11007–11016

    CAS  PubMed  Google Scholar 

  • Marques KB, Santos LMB, Oliveira ALR (2006) Spinal motoneuron synaptic plasticity during the course of an animal model of mutiple sclerosis. Eur J Neurosci 24:3053–3062

    CAS  PubMed  Google Scholar 

  • Mauch C, Hatamoch A, Scharffetter K, Krieg T (1988) Regulation of collagen synthesis in fibroblasts within a three-dimensional collagen gel. Exp Cell Res 178:493–503

    CAS  PubMed  Google Scholar 

  • May M (1986) Surgical rehabilitation of facial palsy. In: May M (ed) The facial nerve. Thieme, New York, pp 695–777

    Google Scholar 

  • McComas AJ (1998) Oro-facial muscles: internal structure, function and ageing. Gerodontology 15:3–14

    CAS  PubMed  Google Scholar 

  • McCulloch KL, Nelson CM (1995) Electrical stimulation and electromyographic biofeedback. In: Umphred DA (ed) Neurological Rehabilitation. Mosby Year Book, St. Louis, MO, pp 853–856

    Google Scholar 

  • McPhail LT, Fernandes KJ, Chan CC, Vanderluit JL, Tetzlaff W (2004b) Axonal reinjury reveals the survival and re-expression of regeneration-associated genes in chronically axotomized adult mouse motoneurons. Exp Neurol 188:331–340

    CAS  PubMed  Google Scholar 

  • Mokrusch T, Engelhardt A, Eichhorn K-F, Prischenk G, Sack G, Meindorfer B (1990) Effects of long-impulse electrical stimulation on atrophy and fibre type composition of chronically denervated fast rabbit muscle. J Neurol 237:29–34

    CAS  PubMed  Google Scholar 

  • Moller AR, Jannetta PJ (1986) Blink reflex in patients with hemifacial spasm. Observations during microvascular decompression operations. J Neurol Sci 72:171–182

    CAS  PubMed  Google Scholar 

  • Moran LB, Graeber MB (2004) The facial nerve axotomy model. Brain Res Brain Res Rev 44:154–178

    PubMed  Google Scholar 

  • Moran LB, Kosel S, Spitzer C, Schwaiger FW, Riess O, Kreutzberg GW, Graeber MB (2001) Expression of alpha-synuclein in non-apoptotic, slowly degenerating facial motoneurones. J Neurocytol 30:515–521

    CAS  PubMed  Google Scholar 

  • Munger BL, Renehan WE (1989) Degeneration and regeneration of peripheral nerve in the rat trigeminal system: III. Abnormal sensory reinnervation of rat guard hairs following nerve transection and crush. J Comp Neurol 283:169–176

    CAS  PubMed  Google Scholar 

  • Murai N, Ueba T, Takahashi JA, Yang H-Q, Kikuchi H, Hiai H, Hatanaka M, Fukumoto M (1996) Apoptosis of human glioma cells in vitro and in vivo induced by neutralizing antibody against human basic fibroblast growth factor. J Neurosurg 85:1072–1077

    CAS  PubMed  Google Scholar 

  • Narita M, Ozaki S, Narita M, Ise Y, Yajima Y, Suzuki T (2003) Change in the expression of c-fos in the brain following sciatic nerve ligation. Neurosci Lett 352:231–233

    CAS  PubMed  Google Scholar 

  • Neafsey EJ, Bold EL, Haas G, Hurley-Gius KM, Quirk G, Sievert CF, Terreberry RR (1986) The organization of the rat motor cortex: a microstimulation mapping study. Brain Res Rev 11:77–96

    Google Scholar 

  • Neiss WF, Guntinas-Lichius O, Angelov DN, Gunkel A, Stennert E (1992) The hypoglossal-facial anastomosis as model of neuronal plasticity in the rat. Ann Anat 174:419–433

    CAS  PubMed  Google Scholar 

  • Nix WA (1990) Effects of intermittent high frequency electrical stimulation on denervated EDL muscle of rabbit. Muscle Nerve 13:580–585

    CAS  PubMed  Google Scholar 

  • Papalia I, Tos P, Stagno d’Alcontres F, Battiston B, Geuna S (2003) On the use of the grasping test in the rat median nerve model: a re-appraisal of its efficacy for quantitative assessment of motor function recovery. J Neurosci Methods 127:43–47

    PubMed  Google Scholar 

  • Pavlov S, Grosheva M, Streppel M, Guntinas-Lichius O, Irintchev A, Skouras E, Angelova S, Kuerten S, Sinis N, Dunlop SA, Angelov DN (2008) Manually stimulated recovery of motor function after facial nerve injury requires intact sensory input. Exp Neurol 211:292–300

    PubMed  Google Scholar 

  • Peeva GP, Angelova SK, Guntinas-Lichius O, Streppel M, Irintchev A, Schütz U, Popratiloff A, Savaskan NE, Bräuer AU, Alvanou A, Nitsch R, Angelov DN (2006) Improved outcome of facial nerve repair in rats is associated with enhanced regenerative response of motoneurons and augmented neocortical plasticity. Eur J Neurosci 24:2152–62

    PubMed  Google Scholar 

  • Popratiloff AS, Streppel M, Gruart A, Guntinas-Lichius O, Angelov DN, Stennert E, Delgado-Garcia JM, Neiss WF (2001) Hypoglossal and reticular interneurons involved in oro-facial coordination in the rat. J Comp Neurol 433:364–379

    CAS  PubMed  Google Scholar 

  • Raivich G, Jones LL, Kloss CU, Werner A, Neumann H, Kreutzberg GW (1998) Immune surveillance in the injured nervous system: T-lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. J Neurosci 18:5804–16

    CAS  PubMed  Google Scholar 

  • Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW (1999) Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 30:77–105

    CAS  PubMed  Google Scholar 

  • Reynolds ML, Woolf CJ (1992) Terminal Schwann cells elaborate extensive processes following denervation of the motor endplate. J Neurocytol 21:50–66

    CAS  PubMed  Google Scholar 

  • Rice FL, Kinnman E, Aldskogius H, Johansson O, Arvidsson J (1993) The innervation of the mystacial pad of the rat as revealed by PGP 9.5 immunofluorescence. J Comp Neurol 337:366–385

    CAS  PubMed  Google Scholar 

  • Rice FL, Fundin BT, Arvidsson J, Aldskogius H, Johansson O (1997) Comprehensive immunofluorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat. J Comp Neurol 385:149–184

    CAS  PubMed  Google Scholar 

  • Rich MM, Lichtman JW (1989) In vivo visualization of pre- and postsynaptic change during synapse elimination in reinnervated mouse muscle. J Neurosci 9:1781–1805

    CAS  PubMed  Google Scholar 

  • Ro L-S, Chen S-T, Tang L-M, Chang H-S (1996) Local application of anti-NGF blocks the collateral sprouting in rats following chronic construction injury of the sciatic nerve. Neurosci Lett 218:87–90

    CAS  PubMed  Google Scholar 

  • Rodel RM, Tergau F, Markus H, Laskawi R (2004) Bilateral changes in the cortical motor representation of the tongue after unilateral peripheral facial paralysis: evidence from transcranial magnetic stimulation. Ann Otol Rhinol Laryngol 113:951–955

    PubMed  Google Scholar 

  • Rossiter JP, Riopelle RJ, Bisby MA (1996) Axotomy-induced apoptotic cell death of neonatal rat facial motoneurons: time course analysis and relation to NADPH-diaphorase activity. Exp Neurol 138:33–44

    CAS  PubMed  Google Scholar 

  • Salmons S, Jarvis JC (2008) Functional electrical stimulation of denervated muscles: an experimental evaluation. Artif Organs 32:597–603

    PubMed  Google Scholar 

  • Salmons S, Ashley Z, Sutherland H, Russold MF, Li F, Jarvis JC (2005) Functional electrical stimulation of denervated muscles: basic issues. Artif Organs 29:199–202

    PubMed  Google Scholar 

  • Sanes JN, Suner S, Lando JF, Donoghue JP (1988) Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury. Proc Natl Acad Sci USA 185:2003–2007

    Google Scholar 

  • Schmalbruch H, al-Amood WS, Lewis DM (1991) Morphology of long-term denervated rat soleus muscle and the effect of chronic electrical stimulation. J Physiol 441:233–241

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schwarting S, Schröder M, Stennert E, Goebel HH (1984) Morphology of denervated human facial muscles. Oto-Rhino-Laryngol 46:248–256

    CAS  Google Scholar 

  • Semba K, Egger MD (1986) The facial “motor” nerve of the rat: control of vibrissal movement and examination of motor and sensory components. J Comp Neurol 247:144–158

    CAS  PubMed  Google Scholar 

  • Semba K, Szechtman H, Komisaruk BR (1980) Synchrony among rhythmical facial tremor, neocortical “alpha” waves, and thalamic non-sensory neuronal bursts in intact awake rats. Brain Res 195:281–298

    CAS  PubMed  Google Scholar 

  • Sharp FR, Gonzalez MF, Morgan CW, Morton MT, Sharp JW (1988) Common fur and mystacial vibrissae parallel sensory pathways: 14 C 2-deoxyglucose and WGA-HRP studies in the rat. J Comp Neurol 270:446–469

    CAS  PubMed  Google Scholar 

  • Shawe GD (1954) On the number of branches formed by regenerating nerve fibers. Br J Surg 42:474–488

    Google Scholar 

  • Sheedlo HJ, Gaur V, Seaton AD, Turner JE (1991) Transplantation to the diseased and damaged retina. Trends Neurosci 14:347–350

    CAS  PubMed  Google Scholar 

  • Simova O, Irintchev A, Mehanna A, Liu J, Dihné M, Bächle D, Sewald N, Loers G, Schachner M (2006) Carbohydrate mimics promote functional recovery after peripheral nerve repair. Ann Neurol 60:430–437

    CAS  PubMed  Google Scholar 

  • Sinis N, Schaller HE, Schulte-Eversum C, Schlosshauer B, Doser M, Dietz K, Rosner H, Muller HW, Haerle M (2005) Nerve regeneration across a 2-cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells. J Neurosurg 103:1067–76

    PubMed  Google Scholar 

  • Sinis N, Guntinas-Lichius O, Irintchev A, Skouras E, Kuerten S, Pavlov SP, Schaller HE, Dunlop SA, Angelov DN (2008) Manual stimulation of forearm muscles does not improve recovery of motor function after injury to a mixed peripheral nerve. Exp Brain Res 185:469–483

    CAS  PubMed  Google Scholar 

  • Skouras E, Merkel D, Grosheva M, Angelova SK, Schiffer G, Thelen U, Kaidoglou K, Sinis N, Igelmund P, Dunlop SA, Pavlov S, Irintchev A, Angelov DN (2009) Manual stimulation, but not acute electrical stimulation prior to reconstructive surgery, improves functional recovery after facial nerve injury in rats. Restor Neurol Neurosci 27:237–51

    PubMed  Google Scholar 

  • Stal S, Spira M, Hamilton S (1987) Skin morphology and function. Clin Plast Surg 14:201–208

    CAS  PubMed  Google Scholar 

  • Stennert E, Limberg CH (1982) Central connections between fifth, seventh, and twelfth cranial nerves and their clinical significance. In: Graham MD, House WF (eds) Disorders of the facial nerve. Raven Press, New York, pp 57–65

    Google Scholar 

  • Stennert E, Böschen C, Gunkel A, Goebel HH (1994) Effects of electrostimulation therapy: enzyme-histological and myometric changes in the denervated musculature. Eur Arch Oto-Rhino-Laryngol Suppl Proceedings of the Seventh International Symposium on the Facial Nerve, Cologne, June 9-14. 1992, pp. S37–S41

    Google Scholar 

  • Streppel M, Angelov DN, Guntinas-Lichius O, Hilgers RD, Rosenblatt JD, Stennert E, Neiss WF (1998) Slow axonal regrowth but extreme hyperinnervation of target muscle after suture of the facial nerve in aged rats. Neurobiol Aging 19:83–88

    CAS  PubMed  Google Scholar 

  • Streppel M, Azzolin N, Dohm S, Guntinas-Lichius O, Haas C, Grothe C, Neiss WF, Angelov DN (2002) Focal application of neutralizing antibodies to soluble neurotrophic faactors reduces collateral axonal branching after peripheral nerve lesion. Eur J Neurosci 15:1327–1342

    CAS  PubMed  Google Scholar 

  • Sunderland S (1950) Capacity of reinnervated muscles to function efficiently after prolonged denervation. Arch Neurol Psychiat 64:755–771

    CAS  Google Scholar 

  • Svensson P, Romaniello A, Arendt-Nielsen L, Sessle BJ (2003) Plasticity in corticomotor control of the human tongue musculature induced by tongue task-training. Exp Brain Res 152:42–51

    PubMed  Google Scholar 

  • Svensson P, Romaniello A, Wang K, Arendt-Nielsen L, Sessle BJ (2006) One hour of tongue-task training is associated with plasticity in corticomotor control of the human tongue musculature. Exp Brain Res 173:165–173

    CAS  PubMed  Google Scholar 

  • Terrell GS, Terzis JK (1994) An experimental model to study the blink reflex. J Reconstr Microsurg 10:175–183

    CAS  PubMed  Google Scholar 

  • Terzis JK, Papakonstantinou KC (2000) The surgical treatment of brachial plexus injuries in adults. Plast Reconstr Surg 106:1097–1122

    CAS  PubMed  Google Scholar 

  • Tetzlaff W, Bisby MA, Kreutzberg GW (1988a) Changes in cytoskeletal proteins in the rat facial nucleus following axotomy. J Neurosci 8:3181–3189

    CAS  PubMed  Google Scholar 

  • Tetzlaff W, Graeber MB, Bisby MA, Kreutzberg GW (1988b) Increased glial fibrillary acidic protein synthesis in astrocytes during retrograde reaction of the rat facial nucleus. Glia 1:90–5

    CAS  PubMed  Google Scholar 

  • Thanos PK, Terzis JK (1995) Motor endplate analysis of the denervated and reinnervated orbicularis oculi muscle in the rat. J Reconstr Microsurg 11:423–428

    CAS  PubMed  Google Scholar 

  • Thomander L (1984) Reorganization of the facial motor nucleus after peripheral nerve regeneration. An HRP study in the rat. Acta Otolaryngol (Stockh) 97:619–626

    CAS  Google Scholar 

  • Tokiwa MA, Gaspar EM, Doering LC (1994) CNTF is superior to NGF as a survival enhancement factor for adrenal medulla cells in vitro. Neuroreport 5:549–552

    CAS  PubMed  Google Scholar 

  • Tomov TL, Guntinas-Lichius O, Grosheva M, Streppel M, Schraermeyer U, Neiss WF, Angelov DN (2002) An example of neural plasticity evoked by putative behavioral demand and early use of vibrissal hairs after facial nerve transection. Exp Neurol 178:207–218

    PubMed  Google Scholar 

  • Tonra JR, Curtis R, Wong V, Cliffer KD, Park JS, Timmes A, Nguyen T, Lindsay RM, Acheson A, DiStefano PS (1998) Axotomy upregulates the anterograde transport and expression of brain-derived neurotrophic factor by sensory neurons. J Neurosci 18:4374–4383

    CAS  PubMed  Google Scholar 

  • Travers JB, Norgren R (1983) Afferent projections to the oral motor nuclei in the rat. J Comp Neurol 220:280–298

    CAS  PubMed  Google Scholar 

  • Tuttle GB, Mackey T, Steers WD (1994) NGF, bFGF and CNTF increase survival of major pelvic ganglion neurons cultured from the adult rat. Neurosci Lett 173:94–98

    CAS  PubMed  Google Scholar 

  • Uemura-Sumi M, Itoh M, Mizuno N (1988) The distribution of hypoglossal motoneurons in the dog, rabbit and rat. Anat Embryol 177:389–394

    CAS  PubMed  Google Scholar 

  • Umemiya A, Araki I, Kuno M (1993) Electrophysiological properties of axotomized facial motoneurones that are destined to die in neonatal rats. J Physiol 462:661–78

    PubMed Central  CAS  PubMed  Google Scholar 

  • Valero-Cabre A, Tsironis K, Skouras E, Navarro X, Neiss WF (2004) Peripheral and spinal motor reorganization after nerve injury and repair. J Neurotrauma 21:95–108

    PubMed  Google Scholar 

  • Valls-Sole J, Tolosa ES (1989) Blink reflex excitability cycle in hemifacial spasm. Neurology 39:1061–1066

    CAS  PubMed  Google Scholar 

  • Van Praag H, Kempermann G, Gage FH (2000) Neural consequences of enriched environment. Nature Rev Neurosci 1:191–198

    Google Scholar 

  • Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR (1996) GDNF activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci USA 93:10657–10661

    PubMed Central  CAS  PubMed  Google Scholar 

  • Veinante P, Deschenes M (2003) Single-cell study of motor cortex projections to the barrel field in rats. J Comp Neurol 464:98–103

    PubMed  Google Scholar 

  • Vivó M, Puigdemasa A, Casals L, Asensio E, Udina E, Navarro X (2008) Immediate electrical stimulation enhances regeneration and reinnervation and modulates spinal plastic changes after sciatic nerve injury and repair. Exp Neurol 211:180–93

    PubMed  Google Scholar 

  • Welker WI (1964) Analysis of sniffing of the albino rat. Behaviour 22:223–244

    Google Scholar 

  • Welt C, Abbs JH (1990) Musculotopic organization of the facial motor nucleus in Macaca fascicularis: a morphometric and retrograde tracing study with cholera toxin B-HRP. J Comp Neurol 291:621–636

    CAS  PubMed  Google Scholar 

  • Whitehead J, Keller-Peck C, Kucera J, Tourtellotte WG (2005) Glial cell-line derived neurotrophic factor-dependent fusimotor neuron survival during development. Mech Dev 122:27–41

    CAS  PubMed  Google Scholar 

  • Wilson JR, Sumner AJ, Eichelman J (1994) Aberrant reinnervationfollowing hypoglossal nerve damage. Muscle Nerve 17:931–935

    CAS  PubMed  Google Scholar 

  • Wineski LE (1985) Facial morphology and vibrissal movement in the golden hamster. J Morphol 183:199–217

    CAS  PubMed  Google Scholar 

  • Yu WH, Yu MC (1983) Acceleration of the regeneration of the crushed hypoglossal nerve by testosterone. Exp Neurol 80:349–60

    CAS  PubMed  Google Scholar 

  • Zheng JL, Helbig C, Gao W-Q (1997) Induction of cell proliferation by fibroblast and insulin-like growth factors in pure rat inner ear epithelial cell cultures. J Neurosci 17:216–226

    CAS  PubMed  Google Scholar 

  • Guntinas-Lichius O, Wewetzer K, Tomov TL, Azzolin A, Kazemi S, Streppel M, Neiss WF, Angelov DN (2002) Transplantation of olfactory mucosa minimizes axonal branching and promotes the recovery of vibrissae motor performance after facial nerve repair in rats. J Neurosci 22:7121–7131.

    CAS  PubMed  Google Scholar 

  • Bischoff A, Grosheva M, Irintchev A, Skouras E, Kaidoglou K, Michael J, Angelova S, Kuerten S, Sinis N, Dunlop SA, Angelov DN (2009) Manual stimulation of the orbicularis oculi muscle improves eyelid closure after facial nerve injury in adult rats. Muscle & Nerve 39:197–205

    Google Scholar 

  • Skouras E, Popratiloff AS, Guntinas-Lichius O, Streppel M, Rehm KE, Neiss WF, Angelov DN (2002) Altered sensory input improves the accuracy of muscle reinnervation. Restor Neurol Neurosci 20:1–14

    PubMed  Google Scholar 

  • Grosheva M, Arnhold S, Guntinas-Lichius O, Irintchev A, Skouras E, Kuerten S, Streppel M, Angelova SK, Wewetzer K, Radtke C, Dunlop SA, Angelov DN (2008) Transplantation of bone marrow-derived mesenchymal stem cells (BM-MSC) does not improve quality of muscle reinnervation and recovery of motor function after transection of the facial nerve in rats. Biol Chem 389:873–888

    CAS  PubMed  Google Scholar 

  • Sinis N, Horn F, Genchev B, Skouras E, Angelova SK, Kaidoglou K, Michael J, Pavlov S, Igelmund P, Schaller HE, Kuerten S, Irintchev A, Dunlop SA, Angelov DN (2009) Electrical stimulation of paralyzed vibrissal muscles reduces endplate reinnervation and does not promote motor recovery after facial nerve repair in rats. Ann Anat 191:356–370

    PubMed  Google Scholar 

  • Guntinas-Lichius O, Mockenhaupt J, Stennert E, Neiss WF (1993) Simplified nerve cell counting in the rat brainstem with the physical dissector using a drawing-microscope. J Microsc 172:177–180

    CAS  PubMed  Google Scholar 

  • Greene EC (1955) Anatomy of the Rat. New York: Hafner Publishing Co. Inc.

    Google Scholar 

  • Bontioti E, Kanje M, Lundborg G, Dahlin LB (2005) End-to-side nerve repair in the upper extremity of rat. J Peripher Nerv Syst 10:58–68

    Google Scholar 

  • Stal S, Peterson R, Spira M (1990) Aesthetic considerations and the pediatric population. Clin Plast Surg 17:133–149

    CAS  PubMed  Google Scholar 

  • Guntinas-Lichius O, Hundeshagen G, Paling T, Streppel M, Grosheva M, Irintchev AP, Skouras A, Alvanou A, Angelova SK, Kuerten S, Sinis N, Dunlop SA, Angelov DN (2007) Manual stimulation of facial muscles improves functional recovery after hypoglossal-facial anastomosis and interpositional nerve grafting of the facial nerve in adult rats. Neurobiol Disease 28:101–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doychin N. Angelov .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Angelov, D.N. (2011). Attempts to Improve Axonal Pathfinding and Quality of Target Reinnervation. In: Physical Rehabilitation of Paralysed Facial Muscles: Functional and Morphological Correlates. Advances in Anatomy, Embryology and Cell Biology, vol 210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18120-7_2

Download citation

Publish with us

Policies and ethics