Skip to main content

Interfacial Behavior of Fluorescent Dyes

Power and Weakness of Nanoscopic Description

  • Chapter
  • First Online:
Advanced Fluorescence Reporters in Chemistry and Biology III

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 113))

Abstract

Our macroscopic world and the world of atoms and small molecules are separated by length scales differing by seven or more orders of magnitude. Describing the latter world with fluorescence probes in terms of structure and dynamics has both merits and difficulties due to peculiarities and limitations of fluorescence method. Demonstrating unique resolution in time and very high sensitivity to interaction energies, this method generally lacks structural resolution on the level of atomic details. Therefore, presentation of fluorescent probe by its molecular structure or its derivatives (size, charge distribution, dipole moment, etc.) and of its tested molecular environment in terms of continuous medium (such as micropolarity, microfluidity, or proticity) became the common method of analysis. This description that combines molecular-level parameters and reduced to molecularlevel macroscopic parameters can be termed “nanoscopic”. The strong demand towards rational description of systems with molecular and nanoscale heterogeneity (surfaces of liquids and solids, liquid–liquid and liquid–solid interfaces, nanoparticles and porous nanocomposites) requires critical analysis of methodology when applied to these systems. This will be the subject of the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reichardt C (1990) Solvents and solvent effects in organic chemistry, 2nd edn. VC, Germany

    Google Scholar 

  2. Berendsen HJC (1996) Bio-molecular dynamics comes of age. Science 271:954–955

    CAS  Google Scholar 

  3. van Gunsteren WF, Bakowies D, Baron R, Chandrasekhar I, Christen I, Daura X, Gee P, Geerke DP, Glattli A, Hunenberger PH, Kastenholz MA, Oostenbrink C, Schenk M, Trzesniak D, van der Vegt NFA, Yu HB (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem Int Ed 45:4064–4092

    Google Scholar 

  4. Leontiadou H, Mark AE, Marrink S-J (2007) Ion transport across transmembrane pores. Biophys J 92:4209–4215

    CAS  Google Scholar 

  5. Singh UC, Kollman PA (1986) A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the CH3Cl + Cl− exchange reaction and gas phase protonation of polyethers. Journal of Computational Chemistry 7(6):718–730

    Google Scholar 

  6. Ding L, Kang J, Lü F, Gao L, Yin X, Fang Y (2006) Fluorescence behaviors of 5-dimethylamino-1-naphthalene-sulfonyl-functionalized self-assembled monolayer on glass wafer surface and its sensing properties for nitrobenzene. Thin Solid Films 515:3112–3119

    Google Scholar 

  7. Demchenko AP, Yesylevskyy SO (2009) Nanoscopic description of biomembrane electrostatics: results of molecular dynamics simulations and fluorescence probing. Chem Phys Lipids 160:63–84

    CAS  Google Scholar 

  8. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible and free. J Comp Chem 26:1701–1718

    Google Scholar 

  9. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts BP, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 11. University of California, San Francisco

    Google Scholar 

  10. Sulpizi M, Rohrig UF, Hutter J, Röthlisberger U (2005) Optical properties of molecules in solution via hybrid TDDFT/MM simulations. Int J Quantum Chem 101:671–682

    CAS  Google Scholar 

  11. Ando K (2008) Ligand-to-metal charge-transfer dynamics in a blue copper protein plastocyanin: a molecular dynamics study. J Phys Chem B 112:250–256

    CAS  Google Scholar 

  12. Dal Peraro M, Villa AJ, Carloni P, Klein ML (2007) Role of zinc content and the catalytic efficiency of B1 metallo β-Lactamases. JACS 129:2808–2816

    CAS  Google Scholar 

  13. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 55:2471–2474

    CAS  Google Scholar 

  14. Kina D, Arora P, Nakayama A, Noro T, Gordon MS, Taketsugu T (2009) Ab initio QM/MM excited-state molecular dynamics study of coumarin 151 in water solution. Int J Quantum Chem 109:2308–2318

    CAS  Google Scholar 

  15. Ma JY, Wang JB, Li XY, Huang Y, Zhu Q, Fu KX (2008) A study on orientation and absorption spectrum of interfacial molecules by using continuum model. J Comput Chem 29:198–210

    CAS  Google Scholar 

  16. Feig M, Brooks CLI (2004) Recent advances in the development and application of implicit solvent models in biomolecule simulations. Curr Opin Struct Biol 14:217–224

    CAS  Google Scholar 

  17. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805

    Google Scholar 

  18. Yesylevskyy SO, Klymchenko AS, Demchenko AP (2005) Semi-empirical study of two-color fluorescent dyes based on 3-hydroxychromone. J Mol Struct THEOCHEM 755:229–239

    CAS  Google Scholar 

  19. Chipman DM (2009) Vertical electronic excitation with a dielectric continuum model of solvation including volume polarization I. Theory. J Chem Phys 131:014103

    Google Scholar 

  20. Chipman DM (2009) Vertical electronic excitation with a dielectric continuum model of solvation including volume polarization II. Implementation and applications. J Chem Phys 131:014104

    Google Scholar 

  21. Mennucci B (2006) Time dependent solvation: a new frontier for quantum mechanical continuum models. Theor Chem Acc 116:31–42

    CAS  Google Scholar 

  22. Suppan P, Ghoneim N (1997) Solvatochromism. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  23. Mataga N, Kubota T (1970) Molecular interactions and electronic spectra. Marcel Dekker, New York

    Google Scholar 

  24. Sharma VK, Sahare PD, Rastogi RC, Ghoshal SK, Mohan D (2003) Excited state characteristics of acridine dyes: acriflavine and acridine orange. Spectrochim Acta A 59:1799–1804

    Google Scholar 

  25. Umadevi M, Vanelle P, Terme T, Ramakrishnan V (2006) Spectral investigations on 2, 3-bis(chloromethyl)-1, 4- anthraquinone: solvent effects and host-guest interactions. J Fluoresc 16:569–579

    CAS  Google Scholar 

  26. Nemkovich NA, Rubinov AN, Tomin VI (1991) In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, principles. Plenum, New York, pp 367–428

    Google Scholar 

  27. Bakhshiev NG (1972) Spectroscopy of intermolecular interactions. Nauka, Leningrad

    Google Scholar 

  28. Hunt J, Hunt KLC (2003) Non-local dielectric functions on the nanoscale: electronic polarization and fluctuations. J Mol Struct THEOCHEM 633:145–155

    Google Scholar 

  29. Bublitz GU, Boxer SG (1997) Stark spectroscopy: applications in chemistry, biology, and materials science. Annu Rev Phys Chem 48:213–242

    CAS  Google Scholar 

  30. Liptay W (1969) Electrochromism and solvatochromism. Angew Chem Int Ed 8:177–188

    CAS  Google Scholar 

  31. Tsuchida M, Tsujita W, Majima Y, Iwamoto M (2001) Interfacial electrostatic phenomena in phthalocyanine Langmuir-Blodgett films under photoillumination. Jpn J Appl Phys 40:1315–1321

    CAS  Google Scholar 

  32. Clarke RJ (2010) Electric field sensitive dyes. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology I: Fundamentals and molecular design. Springer Series on Fluorescence 8. Springer, Heidelberg, pp 331–344

    Google Scholar 

  33. Demchenko AP, Mely Y, Duportail G, Klymchenko AS (2009) Biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys J 96:3461–3470

    CAS  Google Scholar 

  34. Pivovarenko VG, Klueva AV, Doroshenko AO, Demchenko AP (2000) Bands separation in fluorescence spectra of ketocyanine dyes: evidence for their complex formation with monohydric alcohols. Chem Phys Lett 325:389–398

    CAS  Google Scholar 

  35. Catalan J, Perez P, Laynez J, Garcia-Blanco F (1991) Analysis of the solvent effect on the photophysics properties of 6-propionyl-2-(dimethylamino)naphthalene (PRODAN). J Fluoresc 4:215–223

    Google Scholar 

  36. del Valle JC, Catalan J (2001) Understanding the solvatochromism of 10-hydroxybenzo[h]quinoline. An appraisal of a polarity calibrator. Chem Phys 270:1–12

    Google Scholar 

  37. Zhang L, Wang L, Kao Y-T, Qiu W, Yang Y, Okobiah O, Zhong D (2007) Mapping hydration dynamics around a protein surface. PNAS 104:18461–18466

    CAS  Google Scholar 

  38. Aschi M, Fontana A, Di Meo EM, Zazza C, Amadei A (2010) Characterization of electronic properties in complex molecular systems: modeling of a micropolarity probe. J Phys Chem 114:1915–1924

    CAS  Google Scholar 

  39. Mazur M, Blanchard GJ (2005) Probing intermolecular communication with surface-attached pyrene. J Phys Chem B 109:4076–4083

    CAS  Google Scholar 

  40. Berezin MY, Lee H, Akers W, Achilefu S (2007) Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems. Biophys J 93:2892–2899

    CAS  Google Scholar 

  41. Lakowicz JR (2007) Principles of fluorescence spectroscopy. Springer, New York

    Google Scholar 

  42. Dela Cruz JL, Blanchard GJ (2002) The influence of chromophore structure on intermolecular interactions. A study of selected rhodamines in polar protic and aprotic solvents. J Phys Chem A 106:10718–10724

    CAS  Google Scholar 

  43. Horng M-L, Gardecki JA, Maroncelli M (1997) Rotational dynamics of Coumarin 153: time-dependent friction, dielectric friction, and other nonhydrodynamic effects. J Phys Chem A 101:1030–1047

    CAS  Google Scholar 

  44. Ferrer ML, del Monte F, Levy D (2001) Microviscosities at the porous cage of silica gel-glasses and Ormosils through fluorescence anisotropy. J Phys Chem B 105:11076–11080

    CAS  Google Scholar 

  45. Baptista MS, Indig GL (1998) Effect of BSA binding on photophysical and photochemical properties of triarylmethane dyes. J Phys Chem 102:4678–4688

    CAS  Google Scholar 

  46. Haidekker MA, Nipper M, Mustafic A, Lichlyter D, Marianna Dakanali M, Theodorakis EA (2010) Dyes with segmental mobility: molecular rotors. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology I: Fundamentals and molecular design. Springer Series on Fluorescence 8. Springer, Heidelberg, pp 267–308

    Google Scholar 

  47. Haidekker MA, Theodorakis EA (2007) Molecular rotors–fluorescent biosensors for viscosity and flow. Org Biomol Chem 5:1669–1678

    CAS  Google Scholar 

  48. Kuimova MK, Yahioglu G, Levitt JA, Suhling K (2008) Molecular rotor measures viscosity of live cells via fluorescence lifetime imaging. J Am Chem Soc 130:6672–6673

    CAS  Google Scholar 

  49. Pandey S, Fletcher KA, Baker SN, Baker GA (2004) Correlation between the fluorescent response of microfluidity probes and the water content and viscosity of ionic liquid and water mixtures. Analyst 129:569–573

    CAS  Google Scholar 

  50. Zana R (1999) Microviscosity of aqueous surfactant micelles: effect of various parameters. J Phys Chem B 103:9117–9125

    CAS  Google Scholar 

  51. Volovik Z, Demchenko A, Skursky S (1994) Solvent-dependent photophysics of non-symmetric polymethine dyes as fluorescence probes: dual emission and inhomogeneous broadening. Proc SPIE Int Soc Opt Eng 2137:600–607

    CAS  Google Scholar 

  52. Wandelt B, Cywinski P, Darling GD, Stranix BR (2005) Single cell measurement of micro-viscosity by ratio imaging of fluorescence of styrylpyridinium probe. Biosens Bioelectron 20:1728–1736

    CAS  Google Scholar 

  53. Dutt GB, Raman S (2001) Rotational dynamics of coumarins: an experimental test of dielectric friction theories. J Chem Phys 114:6702

    CAS  Google Scholar 

  54. Papazyan A, Maroncelli M (1995) Rotational dielectric friction and dipole solvation: tests of theory based on simulations of simple model solutions. J Chem Phys 102:2888–2919

    CAS  Google Scholar 

  55. Gakamsky DM, Nemkovich NA, Rubinov AN (1992) Wavelength-dependent rotation of dye molecules in a polar solution. J Fluoresc 2:81–92

    CAS  Google Scholar 

  56. Maroncelli M, Castner EW, Bagchi B, Fleming GR (1988) Dipolar solvation dynamics. Faraday Discuss Chem Soc 85:199–210

    CAS  Google Scholar 

  57. Bhattacharyya K (2008) Nature of biological water: a femtosecond study. Chem Commun (Camb):2848–2857

    Google Scholar 

  58. Magee MD (1974) Dielectric relaxation time, a non-linear function of solvent viscosity. J Chem Soc Faraday Trans 70:929–938

    CAS  Google Scholar 

  59. Mazurenko YT, Bakhshiev NG (1970) The influence of orientational dipolar relaxation on spectral, temporal and polarizational properties of luminescence in solutions. Optika Spektr 28:905–913

    CAS  Google Scholar 

  60. Bagchi B, Fleming GR (1990) Dynamics of activationless reactions in solution. J Phys Chem 94:9–20

    CAS  Google Scholar 

  61. Gardecki JA, Maroncelli M (1999) Comparison of the single-wavelength and spectral-reconstruction methods for determining the solvation-response function. J Phys Chem A 103:1187–1197

    CAS  Google Scholar 

  62. Bhattacharyya K (2003) Solvation dynamics and proton transfer in supramolecular assemblies. Acc Chem Res 36:95–101

    CAS  Google Scholar 

  63. Childs W, Boxer SG (2010) Solvation response along the reaction coordinate in the active site of ketosteroid isomerase. J Am Chem Soc 132:6474–6480

    CAS  Google Scholar 

  64. Furse KE, Corcelli SA (2010) Molecular dynamics simulations of DNA solvation dynamics. J Phys Chem Lett 1:1813–1820

    CAS  Google Scholar 

  65. Granick S (1991) Motions and relaxations of confined liquids. Science 253:1374–1379

    CAS  Google Scholar 

  66. Butt H, Graf K, Kappl M (2003) Physics and chemistry of interfaces. Wiley-VCH, Weinheim

    Google Scholar 

  67. Renge I (2006) Influence of temperature and pressure on shape and shift of impurity optical bands in polymer glasses. J Phys Chem A 110:3533–3545

    CAS  Google Scholar 

  68. Demchenko AP (2002) The red-edge effects: 30 years of exploration. Luminescence 17:19–42

    CAS  Google Scholar 

  69. Demchenko AP (2008) Site-selective Red-Edge effects, Chap. 4. Methods Enzymol 450:59–78

    CAS  Google Scholar 

  70. Demchenko AP (1986) Ultraviolet spectroscopy of proteins. Springer, Berlin

    Google Scholar 

  71. Demchenko AP (1988) Red-edge-excitation fluorescence spectroscopy of single-tryptophan proteins. Eur Biophys J 16:121–129

    CAS  Google Scholar 

  72. Datta A, Mandal D, Pal SK, Bhattacharyya K (1997) Intramolecular charge transfer processes in confined systems Nile Red in reverse micelles. J Phys Chem B 101:10221–10225

    CAS  Google Scholar 

  73. Rubinov AN, Tomin VI, Bushuk BA (2008) Kinetic spectroscopy of orientational states of solvated dye molecules in polar solutions. J Luminesc 26:377–391

    Google Scholar 

  74. Vincent M, Gallay J, Demchenko AP (1995) Solvent relaxation around the excited-state of indole – analysis of fluorescence lifetime distributions and time-dependence spectral shifts. J Phys Chem 99:14931–14941

    CAS  Google Scholar 

  75. Rubinov AN, Tomin VI, Bushuk BA (1982) Kinetic spectroscopy of orientational states of solvated dye molecules in polar solutions. J Luminesc 26:377–391

    CAS  Google Scholar 

  76. Demchenko AP, Sytnik AI (1991) Solvent reorganizational red-edge effect in intramolecular electron transfer. Proc Natl Acad Sci USA 88:9311–9314

    CAS  Google Scholar 

  77. Demchenko AP, Sytnik AI (1991) Site-selectivity in excited-state reactions in solutions. J Phys Chem 95:10518–10524

    CAS  Google Scholar 

  78. Demchenko AP, Ercelen S, Klymchenko AS (2002) Site-selective Red-Edge spectroscopy of disordered materials and microheterogeneous systems: polymers, phospholipid membranes and proteins. Proc SPIE 4938:294–304

    Google Scholar 

  79. Nemkovich NA, Gulis IM, Tomin VI (1982) Excitation-frequency dependence of the efficiency of directed nonradiative energy transfer in two-component solid solutions of organic compounds. Opt Spectr 53:140–143

    Google Scholar 

  80. Ghoneim N (2000) Photophysics of Nile red in solution: Steady state spectroscopy. Spectrochim Acta A Mol Biomol Spectr 56:1003–1010

    CAS  Google Scholar 

  81. Giusti LA, Marini VG, Machado VG (2009) Solvatochromic behavior of 1-(p-dimethylaminophenyl)-2-nitroethylene in 24 binary solvent mixtures composed of amides and hydroxylic solvents. J Mol Liq 150:9–15

    CAS  Google Scholar 

  82. Jozefowicz M (2008) Spectroscopic determination of solvation shell composition of fluorenone and 4-hydroxyfluorenone in binary solvent mixtures. Spectrochim Acta A Mol Biomol Spectrosc 71:537–542

    Google Scholar 

  83. Samios J, Durov VA (2004) Novel approaches to the structure and dynamics of liquids: experiments, theories and simulations. Kluwer Academic, Dordrecht

    Google Scholar 

  84. Martins LR, Tamashiro A, Laria D, Skaf MS (2003) Solvation dynamics of coumarin 153 in dimethylsulfoxide–water mixtures: molecular dynamics simulations. J Chem Phys 118:5955–5963

    CAS  Google Scholar 

  85. Kozinski M, Jarzeba W, Vuilleumier R (2004) Solvation dynamics of coumarin 153 in benzene-acetonitrile and benzene-methanol mixtures: a Molecular Dynamics study. In: Martin MM, Hynes JT (eds) Femtochemistry and femtobiology: ultrafast events in molecular science. Maison de la Chimie, France, Paris

    Google Scholar 

  86. Gratias R, Kessler H (1998) Molecular dynamics study on microheterogeneity and preferential solvation in methanol/chloroform mixtures. J Phys Chem 102:2027–2031

    CAS  Google Scholar 

  87. Lerf C, Suppan P (1992) Hydrogen bonding and dielectric effects in solvatochromic shifts. J Chem Soc Faraday Trans 88:963–969

    CAS  Google Scholar 

  88. Klymchenko AS, Demchenko AP (2003) Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys Chem Chem Phys 5:461–468

    CAS  Google Scholar 

  89. Wetzler DE, Chesta C, Fernández-Prini R, Aramendía PF (2002) Dynamic solvation of aminophthalimides in solvent mixtures. J Phys Chem A 106:2390–2400

    CAS  Google Scholar 

  90. Molotsky T, Huppert D (2003) Site specific solvation statics and dynamics of coumarin dyes in hexane−methanol mixture. J Phys Chem 107:2769–2780

    CAS  Google Scholar 

  91. Samanta A (2010) Fluorescence probing of the physicochemical characteristics of the room temperature ionic liquids. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology III: Applications. Springer Series on Fluorescence 10. Springer, Heidelberg, pp 65–90

    Google Scholar 

  92. Chakrabartya D, Chakrabortya A, Setha D, Hazraa P, Sarkar N (2004) Dynamics of solvation and rotational relaxation of Coumarin 153 in 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6]-water mixtures. Chem Phys Lett 397:469–474

    Google Scholar 

  93. Shirota H, Castner EW (2000) Solvation in highly nonideal solutions: a study of aqueous 1-propanol using the coumarin 153 probe. J Chem Phys 112:2367

    CAS  Google Scholar 

  94. Tucker SC (1999) Solvent density inhomogeneities in supercritical fluids. Chem Rev 99:391–418

    CAS  Google Scholar 

  95. Gohres JL, Kitchens CL, Hallett JP, Popov AV, Hernandez R, Liotta CL, Eckert CA (2008) A spectroscopic and computational exploration of the cybotactic region of gas-expanded liquids: methanol and acetone. J Phys Chem B 112:4666–4673

    CAS  Google Scholar 

  96. Abbott AP, Hope EG, Palmer DJ (2007) Probing solute clustering in supercritical solutions using solvatochromic parameters. J Phys Chem B 111:8119–8125

    CAS  Google Scholar 

  97. Barroso M, Chattopadhyay N, Klymchenko AS, Demchenko AP, Arnaut LG, Formosinho SJ (2006) Dramatic pressure-dependent quenching effects in supercritical CO2 assessed by the fluorescence of 4′-dimethylamino-3-hydroxyflavone. Thermodynamic versus kinetics control of excited-state intramolecular proton transfer. J Phys Chem A 110:13419–13424

    CAS  Google Scholar 

  98. Shukla CL, Hallett JP, Popov AV, Hernandez R, Liotta CL, Eckert CA (2006) Molecular dynamics simulation of the cybotactic region in gas-expanded methanol−carbon dioxide and acetone−carbon dioxide mixtures. J Phys Chem 110:24101–24111

    CAS  Google Scholar 

  99. Swalina C, Arzhantsev S, Li H, Maroncelli M (2008) Solvation and solvatochromism in CO2-expanded liquids. 3. The dynamics of nonspecific preferential solvation. J Phys Chem 112:14959–14970

    CAS  Google Scholar 

  100. Li H, Arzhantsev S, Maroncelli M (2007) Solvation and solvatochromism in CO2-expanded liquids. 2. Experiment−simulation comparisons of preferential solvation in three prototypical mixtures. J Chem Phys 111:3208–3221

    CAS  Google Scholar 

  101. Demchenko AP (2010) Comparative analysis of fluorescence reporter signals based on intensity, anisotropy, time-resolution, and wavelength-ratiometry. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology I: Fundamentals and molecular design. Springer Series on Fluorescence 8. Springer, Heidelberg, pp 3–24

    Google Scholar 

  102. Resch-Genger U, Grabolle M, Nitschke R, Nann T (2010) Nanocrystals and nanoparticles versus molecular fuorescent labels as reporters for bioanalysis and the life sciences: a critical comparison. In Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology II: Molecular constructions, polymers and nanoparticles. Springer Series on Fluorescence 9. Springer, Heidelberg, pp 3–40

    Google Scholar 

  103. de Silva AP, Gunaratne HQN, Gunnaugsson T, Huxley AJM, McRoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Google Scholar 

  104. Borisov SM, Mayr T, Mistlberger G, Klimant I (2010) Dye-doped polymeric particles for sensing and imaging. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology II: Molecular constructions, polymers and nanoparticles. Springer Series on Fluorescence 9. Springer, Heidelberg, pp 193–228

    Google Scholar 

  105. Liang S, John CL, Xu S, Chen J, Jin Y, Yuan Q, Tan W, Zhao JX (2010) Silica-based nanoparticles: design and properties. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology II: Molecular constructions, polymers and nanoparticles. Springer Series on Fluorescence 9. Springer, Heidelberg, pp 229–252

    Google Scholar 

  106. Reppy MA (2010) Structure, emissive properties, and reporting abilities of conjugated polymers. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology II: Molecular constructions, polymers and nanoparticles. Springer Series on Fluorescence 9. Springer, Heidelberg, pp 357–388

    Google Scholar 

  107. Demchenko AP (2010) The concept of lambda-ratiometry in fluorescence sensing and imaging. J Fluoresc 20:1099–1128

    Google Scholar 

  108. Hoefelschweiger BK, Pfeifer L, Wolfbeis OS (2005) Screening scheme based on measurement of fluorescence lifetime in the nanosecond domain. J Biomol Screen 10:687–694

    CAS  Google Scholar 

  109. Povrozin YA, Kolosova OS, Obukhova OM, Tatarets AL, Sidorov VI, Terpetschnig EA, Patsenker LD (2009) Seta-633 – a NIR fluorescence lifetime label for low-molecular-weight analytes. Bioconjug Chem 20:1807–1812

    CAS  Google Scholar 

  110. Patsenker LD, Tatarets AL, Terpetschnig EA (2010) Long-wavelength probes and labels based on cyanines and squaraines. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology I: Fundamentals and molecular design. Springer Series on Fluorescence 8. Springer, Heidelberg, pp 65–104

    Google Scholar 

  111. Hermant RM, Bakker NAC, Scherer T, Krijnen B, Verhoeven JW (1990) Systematic studies of a series of highly shaped donor-acceptor systems. J Am Chem Soc 112:1214–1221

    CAS  Google Scholar 

  112. Adhikary R, Barnes CA, Petrich JW (2009) Solvation dynamics of the fluorescent probe PRODAN in heterogeneous environments: contributions from the locally excited and charge-transferred states. J Phys Chem B 113:11999–12004

    CAS  Google Scholar 

  113. Arzhantsev S, Zachariasse KA, Maroncelli M (2006) Photophysics of trans-4-(dimethylamino)-4′-cyanostilbene and its use as a solvation probe. J Phys Chem A 110:3454–3470

    CAS  Google Scholar 

  114. Kucherak OA, Oncul S, Darwich Z, Yushchenko DA, Arntz Y, Didier P, Mely Y, Klymchenko AS (2010) Switchable Nile Red-based probe for cholesterol and lipid order at the outer leaflet of biomembranes. J Am Chem Soc 132:4907–4916

    CAS  Google Scholar 

  115. Cser A, Nagy K, Biczók L (2002) Fluorescence lifetime of Nile Red as a probe for the hydrogen bonding strength with its microenvironment. Chem Phys Lett 360:473–478

    CAS  Google Scholar 

  116. Kucherak OA, Didier P, Mely Y, Klymchenko AS (2010) Fluorene analogues of Prodan with superior fluorescence brightness and solvatochromism. J Phys Chem Lett 1:616–620

    CAS  Google Scholar 

  117. Terenziani F, Painelli A, Girlando A (2004) From solution to Langmuir−Blodgett films: Spectroscopic study of a zwitterionic dye. J Phys Chem B 108:10743–10750

    CAS  Google Scholar 

  118. Shynkar VV, Klymchenko AS, Piemont E, Demchenko AP, Mely Y (2004) Dynamics of intermolecular hydrogen bonds in the excited states of 4′-dialkylamino-3-hydroxyflavones. On the pathway to an ideal fluorescent hydrogen bonding sensor. J Phys Chem A 108:8151–8159

    CAS  Google Scholar 

  119. Caarls W, Celej MS, Demchenko AP, Jovin TM (2009) Characterization of coupled ground state and excited state equilibria by fluorescence spectral deconvolution. J Fluoresc 20:181–190

    Google Scholar 

  120. Tajalli H, Gilani AG, Zakerhamidi MS, Tajalli P (2008) The photophysical properties of Nile red and Nile blue in ordered anisotropic media. Dyes Pigments 78:15–24

    CAS  Google Scholar 

  121. Hermanson GT (1995) Bioconjugation techniques. Academic, San Diego

    Google Scholar 

  122. Huster D, Muller P, Arnold K, Herrmann A (2001) Dynamics of membrane penetration of the fluorescent 7-nitrobenz-2-oxa-1, 3-diazol-4-yl (NBD) group attached to an acyl chain of phosphatidylcholine. Biophys J 80:822–831

    CAS  Google Scholar 

  123. Loura LM, Ramalho JP (2007) Location and dynamics of acyl chain NBD-labeled phosphatidylcholine (NBD-PC) in DPPC bilayers. A molecular dynamics and time-resolved fluorescence anisotropy study. Biochim Biophys Acta 1768:467–478

    CAS  Google Scholar 

  124. Lenhart JL, van Zanten JH, Dunkers JP, Zimba CG, James CA, Pollack SK, Parnas RS (2000) Immobilizing a fluorescent dye offers potential to investigate the glass/resin interface. J Colloid Interf Sci 221:75–86

    CAS  Google Scholar 

  125. Yesylevskyy SO, Demchenko AP (2011) Fluorescence probing in structurally anisotropic materials. From liquid crystals to macromolecules, micelles and lipid bilayers. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology III: Applications. Springer Series on Fluorescence. Springer, Heidelberg, pp 119–158

    Google Scholar 

  126. Grant CD, Steege KE, Bunagan MR, Castner EW Jr (2005) Microviscosity in multiple regions of complex aqueous solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide). J Phys Chem B 109:22273–22284

    CAS  Google Scholar 

  127. Uchiyama S, Takehira K, Yoshihara T, Tobita S, Ohwada T (2006) Environment-sensitive fluorophore emitting in protic environments. Org Lett 8:5869–5872

    CAS  Google Scholar 

  128. Gengeliczki Z, Rosenfeld DE, Fayer MD (2010) Theory of interfacial orientational relaxation spectroscopic observables. J Chem Phys 132:244703

    Google Scholar 

  129. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6:24–32

    CAS  Google Scholar 

  130. Spagnuolo C, Joselevich M, Leskow FC, Jares-Erijman EA (2010) Tetracysteine and bipartite tags for biarsenical organic fluorophores. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology III: Applications. Springer Series on Fluorescence 10. Springer, Heidelberg, pp 263–296

    Google Scholar 

  131. Asuncion-Punzalan E, London E (1995) Control of the depth of molecules within membranes by polar groups: determination of the location of anthracene-labeled probes in model membranes by parallax analysis of nitroxide-labeled phospholipid induced fluorescence quenching. Biochemistry 34:11460–11466

    CAS  Google Scholar 

  132. Kachel K, Asuncion-Punzalan E, London E (1998) The location of fluorescence probes with charged groups in model membranes. Biochim Biophys Acta 1374:63–76

    CAS  Google Scholar 

  133. Ory JJ, Banaszak LJ (1999) Studies of the ligand binding reaction of adipocyte lipid binding protein using the fluorescent probe 1, 8-anilinonaphthalene-8-sulfonate. Biophys J 77:1107–1116

    CAS  Google Scholar 

  134. Baudet-Nessler S, Jullien M, Crosio MP, Janin J (1993) Crystal structure of a fluorescent derivative of RNase A. Biochemistry 32:8457–8464

    CAS  Google Scholar 

  135. Bammel BP, Hamilton DD, Haugland RP, Hopkins HP, Schuette J, Szalecki W, Smith JC (1990) NMR, calorimetric, spin-label, and optical studies on a trifluoromethyl-substituted styryl molecular probe in dimyristoylphosphatidylcholine vesicles and multilamellar suspensions: a model for location of optical probes. Biochim Biophys Acta 1024:61–81

    CAS  Google Scholar 

  136. Osakai T, Sawada J, Nagatani H (2009) Potential-modulated fluorescence spectroscopy of the membrane potential-sensitive dye di-4-ANEPPS at the 1, 2-dichloroethane/water interface. Anal Bioanal Chem 395:1055–1061

    CAS  Google Scholar 

  137. Repáková J, Čapková P, Holopainen JM, Vattulainen I (2004) Distribution, orientation, and dynamics of DPH probes in DPPC bilayer. J Phys Chem B 108:13438–13448

    Google Scholar 

  138. Repakova J, Holopainen JM, Morrow MR, McDonald MC, Capkova P, Vattulainen I (2005) Influence of DPH on the structure and dynamics of a DPPC bilayer. Biophys J 88:3398–3410

    CAS  Google Scholar 

  139. Hoff B, Strandberg E, Ulrich AS, Tieleman DP, Posten C (2005) 2H-NMR study and molecular dynamics simulation of the location, alignment, and mobility of pyrene in POPC bilayers. Biophys J 88:1818–1827

    CAS  Google Scholar 

  140. Watanabe H, Yamaguchi S, Sen S, Morita A, Tahara T (2010) “Half-hydration” at the air/water interface revealed by heterodyne-detected electronic sum frequency generation spectroscopy, polarization second harmonic generation, and molecular dynamics simulation. J Chem Phys 132:144701

    Google Scholar 

  141. Benderskii AV, Eisenthal KB (2000) Effect of organic surfactant on femtosecond solvation dynamics at the air-water interface. J Phys Chem 104:11723–11728

    CAS  Google Scholar 

  142. Yamaguchi S, Tahara T (2006) Determining electronic spectra at interfaces by electronic sum frequency generation: one- and two-photon double resonant oxazine 750 at the air/water interface. J Chem Phys 125:194711

    Google Scholar 

  143. Pal N, Verma SD, Sen S (2010) Probe position dependence of DNA dynamics: comparison of the time-resolved stokes shift of groove-bound to base-stacked probes. JACS 132:9277–9279

    CAS  Google Scholar 

  144. Nguyen KT, Shang X, Eisenthal KB (2006) Molecular rotation at negatively charged surfactant/aqueous interfaces. J Phys Chem 110:19788–19792

    CAS  Google Scholar 

  145. Pantano DA, Sonoda MT, Skaf MS, Laria D (2005) Solvation of Coumarin 314 at water/air interfaces containing anionic surfactants. I. Low coverage. J Phys Chem 109:7365–7372

    CAS  Google Scholar 

  146. De Paula R, Machado AED, de Miranda JA (2004) 3-benzoxazol-2-yl-7-(N, N-diethylamino)-chromen-2-one as a fluorescence probe for the investigation of micellar microenvironments. J Photochem Photobiol A Chem 165:109–114

    Google Scholar 

  147. Liu P, Harder E, Berne BJ (2005) Hydrogen-bond dynamics in the air−water interface. J Phys Chem 109:2949–2955

    CAS  Google Scholar 

  148. Paul S (2009) Liquid–vapour interfaces of aqueous trimethylamine-N-oxide solutions: a molecular dynamics simulation study. Chem Phys 368:7–13

    Google Scholar 

  149. Johnson ML, Rodriguez C, Benjamin I (2009) Rotational dynamics of strongly adsorbed solute at the water surface. J Phys Chem 113:2086–2091

    CAS  Google Scholar 

  150. Paul S, Chandra A (2005) Liquid-vapor interfacial properties of water-ammonia mixtures: dependence on ammonia concentration. J Chem Phys 123:174712

    Google Scholar 

  151. Perera JM, Stevens GW (2009) Spectroscopic studies of molecular interaction at the liquid– liquid interface. Anal Bioanal Chem 395:1019–1032

    CAS  Google Scholar 

  152. Bessho K, Uchida T, Yamauchi A, Shioya T, Teramae N (1997) Microenvironments of 8-anilino-1-naphthalenesulfonate at the heptane–water interface: time-resolved total internal reflection fluorescence spectroscopy. Chem Phys Lett 264:381–386

    CAS  Google Scholar 

  153. Ishizaka S, Kim HB, Kitamura N (2001) Time-resolved total internal reflection fluorometry study on polarity at a liquid/liquid interface. Anal Chem 73:2421–2428

    CAS  Google Scholar 

  154. Demchenko AP, Shcherbatska NV (1985) Nanosecond dynamics of charged fluorescent-probes at the polar interface of a membrane phospholipid-bilayer. Biophys Chem 22:131–143

    CAS  Google Scholar 

  155. Steel WH, Beildeck CL, Walker RA (2004) Solvent polarity across strongly associating interfaces. J Phys Chem 108:16107–16116

    CAS  Google Scholar 

  156. Michael D, Benjamin I (2001) Molecular dynamics computer simulations of solvation dynamics at liquid/liquid interfaces. J Chem Phys 114:2817

    CAS  Google Scholar 

  157. Walker DS, Richmond GL (2008) Interfacial depth profiling of the orientation and bonding of water molecules across liquid–liquid interfaces. J Phys Chem 112:201–209

    CAS  Google Scholar 

  158. Negishi M, Sakaue T, Yoshikawa K (2010) Mismatch of bulk viscosity reduces interfacial diffusivity at an aqueous-oil system. Phys Rev E Stat Nonlin Soft Matter Phys 81:020901

    Google Scholar 

  159. El-Rayyes AA, Al-Betar A, Htun T, Klein UKA (2005) Fluorescence emission from rhodamine-B lactone adsorbed at solid catalysts. Chem Phys Lett 414:287–291

    CAS  Google Scholar 

  160. Brindza MR, Walker RA (2009) Differentiating solvation mechanisms at polar solid/liquid interfaces. JACS 131:6207–6214

    CAS  Google Scholar 

  161. Sánchez VM, Sued M, Scherlis DA (2009) First-principles molecular dynamics simulations at solid–liquid interfaces with a continuum solvent. J Chem Phys 131:174108

    Google Scholar 

  162. Lenhart JL, van Zanten JH, Dunkers JP, Parnas RS (2001) Studying the buried interfacial region with an immobilized fluorescence probe. Macromolecules 34:2225–2231

    CAS  Google Scholar 

  163. Ellison CJ, Torkelson JM (2002) Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels. J Polym Sci B Polym Phys 40:2745–2758

    CAS  Google Scholar 

  164. Fischer K, Prause S, Spange S, Cichos C, von Borczyskowski C (2003) Surface polarity of cellulose derivates observed by Coumarin 151 and 153 as solvatochromic and fluorochromic probes. J Polym Sci B Polym Phys 41:1210–1218

    CAS  Google Scholar 

  165. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753

    CAS  Google Scholar 

  166. Balabai N, Linton B, Napper A, Priyadarshy S, Sukharevsky AP, Waldeck DH (1998) Orientational dynamics of beta-cyclodextrin inclusion complexes. J Phys Chem B 102:9617–9624

    CAS  Google Scholar 

  167. Douhal A (2004) Ultrafast guest dynamics in cyclodextrin nanocavities. Chem Rev 104:1955–1976

    CAS  Google Scholar 

  168. Sen P, Roy D, Mondal SK, Sahu K, Ghosh S, Bhattacharyya K (2005) Fluorescence anisotropy decay and solvation dynamics in a nano-cavity: Coumarin 153 in methyl beta-cyclodextrins. J Phys Chem A 109:9716–9722

    CAS  Google Scholar 

  169. Nandi N, Bhattacharyya K, Bagchi B (2000) Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chem Rev 100:2013–2046

    CAS  Google Scholar 

  170. Organero JA, Tormo L, Sanz M, Roshal A, Douhal A (2007) Complexation effect of gamma-cyclodextrin on a hydroxyflavone derivative: formation of excluded and included anions. J Photochem Photobiol A Chem 188:74–82

    CAS  Google Scholar 

  171. Rodriguez J, Martí J, Guardia E, Laria D (2008) Exploring the picosecond time domain of the solvation dynamics of Coumarin 153 within β-cyclodextrins. J Phys Chem B 112:8990–8998

    CAS  Google Scholar 

  172. Kubinyi M, Vidoczy T, Varga O, Nagy K, Bitter I (2005) Absorption and fluorescence spectroscopic study on complexation of oxazine 1 dye by calix 8 arenesulfonate. Appl Spectrosc 59:134–139

    CAS  Google Scholar 

  173. Bergamini G, Marchi E, Ceroni P (2010) Luminescent dendrimers as ligands and sensors of metal ions. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology II: Molecular constructions, polymers and nanoparticles. Springer Series on Fluorescence 9. Springer, Heidelberg, pp 253–284

    Google Scholar 

  174. Richter-Egger DL, Tesfai A, Tucker SA (2001) Spectroscopic investigations of poly(propyleneimine)dendrimers using the solvatochromic probe phenol blue and comparisons to poly(amidoamine) dendrimers. Anal Chem 73:5743–5751

    CAS  Google Scholar 

  175. Teobaldi G, Zerbetto F (2003) Molecular dynamics of a dendrimer-dye guest-host system. JACS 125:7388–7393

    CAS  Google Scholar 

  176. Aumanen J, Kesti T, Sundström V, Teobaldi G, Zerbetto F, Werner N, Richardt G, van Heyst J, Vögtle F, Korppi-Tommola J (2010) Internal dynamics and energy transfer in dansylated POPAM dendrimers and their eosin complexes. J Phys Chem 114:1548–1558

    CAS  Google Scholar 

  177. Dunn B, Zink JI (1997) Probes of pore environment and molecule−matrix interactions in sol−gel materials. Chem Mater 9:2280–2291

    CAS  Google Scholar 

  178. Hungerford G, Ferreira JA (2001) The effect of the nature of retained solvent on the fluorescence of Nile Red incorporated in sol–gel-derived matrices. J Luminesc 93:155–165

    CAS  Google Scholar 

  179. Grando SR, Pessoa CM, Gallas MR, Costa TM, Rodembusch FS, Benvenutti EV (2009) Modulation of the ESIPT emission of benzothiazole type dye incorporated in silica-based hybrid materials. Langmuir 25:13219–13223

    CAS  Google Scholar 

  180. Baumann R, Ferrante C, Kneuper E, Deeg F-W, Bräuchle C (2003) Influence of confinement on the solvation and rotational dynamics of Coumarin 153 in ethanol. J Phys Chem A 107:2422–2430

    CAS  Google Scholar 

  181. Blaak R, Hansen JP (2006) Dielectric response of a polar fluid trapped in a spherical nanocavity. J Chem Phys 124:144714

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Demchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demchenko, A.P., Yesylevskyy, S.O. (2011). Interfacial Behavior of Fluorescent Dyes. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology III. Springer Series on Fluorescence, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18035-4_1

Download citation

Publish with us

Policies and ethics