Skip to main content

Smart Nano-systems for Tumour Cellular Diagnoses and Therapies

  • Chapter

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 75))

Abstract

The rapid diffusion recently experienced by minimally invasive therapies (MIT) is currently receiving a further significant boost towards modern medicine by the introduction of new nanotechnology-based techniques in the fields of medical imaging and localized therapeutic delivery. The innovative idea of “nanomedicine” is emerging, with its potential to revolutionize the entire disease management process, from diagnosis, through therapy, to serial follow-up, influencing the entire apparatus of medical devices. Nanoparticle contrast agents, in fact, can be targeted to specific cells and tissues of human body, allowing imaging of pathologic processes at a cellular scale. Moreover, nanoparticles are being increasingly involved in the development of new therapeutic approaches (e.g., site-targeted drug delivery, localized hyperthermia, optimized employment of laser and ultrasound power). This chapter reviewes recent nanotechnological applications in the field of non-ionizing cellular imaging and “personalized” therapies, with special focus on innovative strategies for selective cancer detection and treatment. Some very recent experimental results regarding automatic detection of innovative nanoparticle contrast agents on echographic images are also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liu, Y., Miyoshi, H., Nakamura, M.: Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer 120, 2527–2537 (2007)

    Article  Google Scholar 

  2. Moghimi, S.M., Hunter, A.C., Murray, J.C.: Nanomedicine: current status and future prospects. FASEB J. 19, 311–330 (2005)

    Article  Google Scholar 

  3. Caruthers, S.D., Wickline, S.A., Lanza, G.M.: Nanotechnological applications in medicine. Curr. Opin. Biotechnol. 18, 26–30 (2007)

    Article  Google Scholar 

  4. Allen, T.M., Cullis, P.R.: Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004)

    Article  Google Scholar 

  5. Moghimi, S.M., Hunter, A.C., Murray, J.C.: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53, 283–318 (2001)

    Google Scholar 

  6. Sahoo, S.K., Labhasetwar, V.: Nanotech approaches to drug delivery and imaging. Drug Discov. Today 8, 1112–1120 (2003)

    Article  Google Scholar 

  7. Kramer, M., Stumbè, J.F., Grimm, G., Kaufmann, B., Kruger, U., Weber, M., Haag, R.: Dendritic polyamines: simple access to new materials with defined treelike structures for application in nonviral gene delivery. Chem. Bio. Chem. 5, 1081–1087 (2004)

    Google Scholar 

  8. Raja, K.S., Wang, Q., Gonzalez, M.J., Manchester, M., Johnson, J.E., Finn, M.G.: Hybrid virus-polymer materials. Synthesis and properties of PEG-decorated cow-pea mosaic virus. Biomacromolecules 4, 472–476 (2003)

    Google Scholar 

  9. Fenske, D.B., MacLachlan, I., Cullis, P.R.: Long-circulating vectors for the systemic delivery of genes. Curr. Opin. Mol. Therap. 3, 153–158 (2001)

    Google Scholar 

  10. Allen, T.M.: Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2, 750–763 (2002)

    Article  Google Scholar 

  11. Sudimack, J., Lee, R.J.: Targeted drug delivery via the folate receptor. Adv. Drug. Deliv. Rev. 41, 147–162 (2000)

    Article  Google Scholar 

  12. Torchillin, V.P., Lukyanov, A.N., Gao, Z.G., Papahadjopoulos-Sternberg, B.: Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc. Natl. Acad. Sci. USA 100, 6039–6044 (2003)

    Article  Google Scholar 

  13. Drummond, D.C., Zignani, M., Leroux, J.C.: Current status of pH-sensitive liposomes in drug delivery. Prog. Lipid. Res. 39, 409–460 (2000)

    Article  Google Scholar 

  14. Panyam, J., Zhou, W.Z., Prabha, S., Sahoo, S.K., Labhasetwar, V.: Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 16, 1217–1226 (2002)

    Article  Google Scholar 

  15. Clark, H.A., Hoyer, M., Philbert, M.A., Kopeiman, R.: Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, Characterization, and Methods for Intracellular Delivery of PEBBLE Sensors. Anal Chem. 71, 4831–4836 (1999)

    Google Scholar 

  16. Wickline, S., Neubauer, A., Winter, P., Caruthers, S., Lanza, G.: Applications of nanotechnology to atherosclerosis, thrombosis, and vascular biology. Arterioscler Thromb Vasc Biol. 26, 435–441 (2006)

    Article  Google Scholar 

  17. Wickline, S.A., Neubauer, A.M., Winter, P.M., Caruthers, S.D., Lanza, G.M.: Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J. Magn. Reson. Imaging 25, 667–680 (2007)

    Article  Google Scholar 

  18. Conversano, F., Casciaro, S.: Last advances in ultrasound molecular imaging. In: Casciaro, S., Gersak, B. (eds.) New technology frontiers in minimally invasive therapies, Ch. 18, pp. 161–171. Lupiensis Biomedical Publications, Lecce (2007)

    Google Scholar 

  19. Fahmy, T.M., Samstein, R.M., Harness, C.C., Saltzman, W.M.: Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials 26, 5727–5736 (2005)

    Article  Google Scholar 

  20. Couvreur, P., Barratt, G., Fattal, E., Legrand, P., Vauthier, C.: Nanocapsule technology: a review. Crit. Rev. Ther Drug Carrier Syst. 19, 99–134 (2002)

    Article  Google Scholar 

  21. Herschman, H.R.: Molecular imaging: looking at problems, seeing solutions. Science 302, 605–608 (2003)

    Article  Google Scholar 

  22. Tsien, R.Y.: Imagining imaging’s future. Nat. Rev. Mol. Cell Biol., SS16–SS21 (2003)

    Google Scholar 

  23. Lanza, G.M., Wickline, S.A.: Targeted ultrasonic contrast agents for molecular imaging and therapy. Curr. Prob. Cardiol. 28, 625–653 (2003)

    Article  Google Scholar 

  24. Wickline, S.A., Lanza, G.M.: Nanotechnology for molecular imaging and therapy. Circulation 107, 1092–1095 (2003)

    Article  Google Scholar 

  25. Hawker, C.J., Wooley, K.L.: The convergence of synthetic organic and polymer chemistries. Science 309, 1200–1205 (2005)

    Article  Google Scholar 

  26. Pasqualini, R., Arap, W., McDonald, D.M.: Probing the structural and molecular diversity of tumor vasculature. Trends Molec. Med. 8, 563–571 (2002)

    Article  Google Scholar 

  27. Hobbs, S.K., Monsky, W.L., Yuan, F., Roberts, W.G., Griffith, L., Torchilin, V.P., Jain, R.K.: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 95, 4607–4612 (1998)

    Article  Google Scholar 

  28. Iyer, A.K., Khaled, G., Fang, J., Maeda, H.: Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 11, 812–818 (2006)

    Article  Google Scholar 

  29. Demos, S.M., Alkan-Onyuksel, H., Kane, B.J., Ramani, K., Nagaraj, A., Greene, R., Klegerman, M., McPherson, D.D.: In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J. Am. Coll. Cardiol. 33, 867–875 (1999)

    Article  Google Scholar 

  30. Sipkins, D.A., Cheresh, D.A., Kazemi, M.R., Nevin, L.M., Bednarski, M.D., Li, K.C.: Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat. Med. 4, 623–626 (1998)

    Article  Google Scholar 

  31. Marsh, J.N., Partlow, K.C., Abendschein, D.R., Scott, M.J., Lanza, G.M., Wickline, S.A.: Molecular imaging with targeted perfluorocarbon nanoparticles: quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes. Ultrasound Med. Biol. 33, 950–958 (2007)

    Article  Google Scholar 

  32. Lanza, G.M., Winter, P., Caruthers, S., Schmeider, A., Crowder, K., Morawski, A., Zhang, H., Scott, M.J., Wickline, S.A.: Novel paramagnetic contrast agents for molecular imaging and targeted drug delivery. Curr. Pharm. Biotechnol. 5, 495–507 (2004)

    Article  Google Scholar 

  33. Flacke, S., Fischer, S., Scott, M.J., Fuhrhop, R.J., Allen, J.S., McLean, M., Winter, P., Sicard, G.A., Gaffney, P.J., Wickline, S.A., Lanza, G.M.: Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104, 1280–1285 (2001)

    Article  Google Scholar 

  34. Kobayashi, H., Kawamoto, S., Jo, S.K., Bryant Jr., H.L., Brechbiel, M.W., Star, R.A., Macromolecular, M.R.I.: Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug Chem. 14, 388–394 (2003)

    Article  Google Scholar 

  35. Sato, N., Kobayashi, H., Hiraga, A., Saga, T., Togashi, K., Konishi, J., Brechbiel, M.W.: Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores. Magn. Reson. Med. 46, 1169–1173 (2001)

    Article  Google Scholar 

  36. Schmitz, S.A., Coupland, S.E., Gust, R., Winterhalter, S., Wagner, S., Kresse, M., Semmler, W., Wolf, K.J.: Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol. 35, 460–471 (2000)

    Article  Google Scholar 

  37. Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., Hazle, J.D., Halas, N.J., West, J.L.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003)

    Article  Google Scholar 

  38. Loo, C., Lin, A., Hirsch, L., Lee, M.H., Barton, J., Halas, N., West, J., Drezek, R.: Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3, 33–40 (2004)

    Google Scholar 

  39. O’Neal, D.P., Hirsch, L.R., Halas, N.J., Payne, J.D., West, J.L.: Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171–176 (2004)

    Article  Google Scholar 

  40. Cherukuri, P., Bachilo, S.M., Litovsky, S.H., Weisman, R.B.: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126, 15638–15639 (2004)

    Article  Google Scholar 

  41. Tsyboulski, D.A., Bachilo, S.M., Weisman, R.B.: Versatile visualization of individual single-walled carbon nanotubes with near-infrared fluorescence microscopy. Nano Lett. 5, 975–979 (2005)

    Article  Google Scholar 

  42. Barone, P.W., Baik, S., Heller, D.A., Strano, M.S.: Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 4, 86–92 (2005)

    Article  Google Scholar 

  43. Hertel, T., Hagen, A., Talalaev, V., Arnold, K., Hennrich, F., Kappes, M., Rosenthal, S., McBride, J., Ulbricht, H., Flahaut, E.: Spectroscopy of single and double-wall carbon nanotubes in different environments. Nano Lett. 5, 511–514 (2005)

    Article  Google Scholar 

  44. Akerman, M.E., Chan, W.C., Laakkonen, P., Bhatia, S.N., Ruoslahti, E.: Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA 99, 12617–12621 (2002)

    Article  Google Scholar 

  45. Chen, L., Zurita, A.J., Ardelt, P.U., Giordano, R.J., Arap, W., Pasqualini, R.: Design and validation of a bifunctional ligand display system for receptor targeting. Chem. Biol. 11, 1081–1091 (2004)

    Article  Google Scholar 

  46. Gao, X., Nie, S.: Quantum dot-encoded beads. Methods Mol. Biol. 303, 61–71 (2005)

    Google Scholar 

  47. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S.: Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005)

    Article  Google Scholar 

  48. Kelly, K.A., Allport, J.R., Tsourkas, A., Shinde-Patil, V.R., Josephson, L., Weissleder, R.: Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ. Res. 96, 327–336 (2005)

    Article  Google Scholar 

  49. Chen, J., Tung, C.H., Mahmood, U., Ntziachristos, V., Gyurko, R., Fishman, M.C., Huang, P.L., Weissleder, R.: In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105, 2766–2771 (2002)

    Article  Google Scholar 

  50. Jaffer, F.A., Tung, C.H., Wykrzykowska, J.J., Ho, N.H., Houng, A.K., Reed, G.L., Weissleder, R.: Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi. Circulation 110, 170–176 (2004)

    Article  Google Scholar 

  51. Eghtedari, M., Oraevsky, A., Copland, J.A., et al.: High sensitivity of in vivo detection of gold nanorods using a laser optoacustic imaging system. Nano Letters 7, 1914–1918 (2007)

    Article  Google Scholar 

  52. Hamilton, A.J., Huang, S.L., Warnick, D., Rabbat, M., Kane, B., Nagaraj, A., Klegerman, M., McPherson, D.D.: Intravascular ultrasound molecular imaging of atheroma components in vivo. J. Am. Coll. Cardiol. 43, 453–460 (2004)

    Article  Google Scholar 

  53. Morawski, A.M., Lanza, G.A., Wickline, S.A.: Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr. Opin. Biotechnol. 16, 89–92 (2005)

    Article  Google Scholar 

  54. Crowder, K.C., Hughes, M.S., Marsh, J.N., Barbieri, A.M., Fuhrhop, R.W., Lanza, G.M., Wickline, S.A.: Sonic activation of molecularly-targeted nanoparticles accelerates transmembrane lipid delivery to cancer cells through contact-mediated mechanisms: implications for enhanced local drug delivery. Ultrasound Med. Biol. 31, 1693–1700 (2005)

    Article  Google Scholar 

  55. Zhao, S., Borden, M., Bloch, S.H., Kruse, D., Ferrara, K.W., Dayton, P.A.: Radiation-force assisted targeting facilitates ultrasonic molecular imaging. Mol. Imaging 3, 135–148 (2004)

    Article  Google Scholar 

  56. Lanza, G.M., Trousil, R.L., Wallace, K.D., Rose, J.H., Hall, C.S., Scott, M.J., Miller, J.G., Eisenberg, P.R., Gaffney, P.J., Wickline, S.: In vitro characterization of a novel, tissue-targeted ultrasonic contrast system with acoustic microscopy. J. Acoust. Soc. Am. 104, 3665–3672 (1998)

    Article  Google Scholar 

  57. Marsh, J.N., Hall, C.S., Scott, M.J., Fuhrhop, R.W., Gaffney, P.J., Wickline, S.A., Lanza, G.M.: Improvements in the ultrasonic contrast of targeted perfluorocarbon nanoparticles using an acoustic transmission line model. IEEE Trans. Ultrason Ferroelectr. Freq. Control. 49, 29–38 (2002)

    Article  Google Scholar 

  58. Morawski, A.M., Winter, P.M., Crowder, K.C., Caruthers, S.D., Fuhrhop, R.W., Scott, M.J., Robertson, J.D., Abendschein, D.R., Lanza, G.M., Wickline, S.A.: Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn. Reson. Med. 51, 480–486 (2004)

    Article  Google Scholar 

  59. Cunningham, C.H., Arai, T., Yang, P.C., McConnell, M.V., Pauly, J.M., Conolly, S.M.: Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn. Reson. Med. 53, 999–1005 (2005)

    Article  Google Scholar 

  60. Stuber, M., Gilson, W.D., Schaer, M., Bulte, J.W., Kraitchman, D.L.: Shedding light on the dark spot with IRON: a method that generates positive contrast in the presence of superparamagnetic nanoparticles. In: Proceedings of the 13th Annual Meeting of ISMRM, Miami Beach, FL, USA (2005)

    Google Scholar 

  61. Morawski, A.M., Winter, P.M., Yu, X., Fuhrhop, R.W., Scott, M.J., Hockett, F., Robertson, J.D., Gaffney, P.J., Lanza, G.M., Wickline, S.A.: Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted 19F nanoparticles. Magn. Reson. Med. 52, 1255–1262 (2004)

    Article  Google Scholar 

  62. Ahrens, E.T., Flores, R., Xu, H., Morel, P.A.: In vivo imaging platform for tracking immunotherapeutic cells. Nat. Biotechnol. 23, 983–987 (2005)

    Article  Google Scholar 

  63. Liu, J., et al.: Nanoparticles as image enhancing agents for ultrasonography. Phys. Med. Biol. 51, 2179–2189 (2006)

    Article  Google Scholar 

  64. Liu, J., Li, J., Rosol, T.J., Pan, X., Voorhees, J.: Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro. Phys. Med. Biol. 52, 4739–4747 (2007)

    Article  Google Scholar 

  65. Cyrus, T., Winter, P.M., Caruthers, S.D., Wickline, S.A., Lanza, G.M.: Magnetic resonance nanoparticles for cardiovascular molecular imaging and therapy. Expert Rev. Cardiovasc Ther. 3, 705–715 (2005)

    Article  Google Scholar 

  66. Farokhzad, O.C., Langer, R.: Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev. 58, 1456–1459 (2006)

    Article  Google Scholar 

  67. Lanza, G., Winter, P., Cyrus, T., Caruthers, S., Marsh, J., Hughes, M., Wickline, S.: Nanomedicine opportunities in cardiology. Ann. NY Acad. Sci. 1080, 451–465 (2006)

    Article  Google Scholar 

  68. Leary, S.P., Liu, C.Y., Apuzzo, M.L.: Toward the emergence of nanoneurosurgery: part III–nanomedicine: targeted nanotherapy, nanosurgery, and progress toward the realization of nanoneurosurgery. Neurosurgery 58, 1009–1026 (2006)

    Article  Google Scholar 

  69. Pison, U., Welte, T., Giersig, M., Groneberg, D.: Nanomedicine for respiratory diseases. Eur. J Pharmacol. 533, 341–350 (2006)

    Article  Google Scholar 

  70. Wagner, V., Dullaart, A., Bock, A.K., Zweck, A.: The emerging nanomedicine landscape. Nat. Biotechnol. 24, 1211–1217 (2006)

    Article  Google Scholar 

  71. Vasir, J.K., Reddy, M.K., Labhasetwar, V.: Nanosystems in drug targeting: opportunities and challenges. Curr. Nanosci. 1, 47–64 (2005)

    Article  Google Scholar 

  72. Dreher, M.R., Liu, W., Michelich, C.R., Dewhirst, M.W., Yuan, F., Chilkoti, A.: Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst. 98, 335–344 (2006)

    Article  Google Scholar 

  73. Moses, M.A., Brem, H., Langer, R.: Advancing the field of drug delivery: taking aim at cancer. Cancer Cell 4, 337–341 (2003)

    Article  Google Scholar 

  74. Alexiou, C., Schmid, R.J., Jurgons, R., Kremer, M., Wanner, G., Bergemann, C., Huenges, E., Nawroth, T., Arnold, W., Parak, F.G.: Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur. Biophys J 35, 446–450 (2006)

    Article  Google Scholar 

  75. Alexiou, C., Jurgons, R., Schmid, R., Erhardt, W., Parak, F., Bergemann, C., Iro, H.: Magnetic Drug Targeting–a new approach in locoregional tumor therapy with chemotherapeutic agents. Experimental animal studies. HNO 2005 53, 618–622 (2005)

    Google Scholar 

  76. Alexiou, C., Jurgons, R., Seliger, C., Brunke, O., Iro, H., Odenbach, S.: Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting. Anticancer Res. 27, 2019–2022 (2007)

    Google Scholar 

  77. Sapra, P., Tyagi, P., Allen, T.M.: Ligand-targeted liposomes for cancer treatment. Curr. Drug Deliv. 2, 369–381 (2005)

    Article  Google Scholar 

  78. Nobs, L., Buchegger, F., Gurny, R., Allémann, E.: Current methods for attaching targeting ligands to liposomes and nanoparticles. J. Pharm. Sci. 93, 1980–1992 (2004)

    Article  Google Scholar 

  79. Marty, C., Schwendener, R.A.: Cytotoxic tumor targeting with scFv antibody-modified liposomes. Methods Mol. Med. 109, 389–402 (2005)

    Google Scholar 

  80. Cegnar, M., Premzl, A., Zavasnik-Bergant, V., Kristl, J., Kos, J.: Poly(lactide-co-glycolide) nanoparticles as a carrier system for delivering cysteine protease inhibitor cystatin into tumor cells. Exp. Cell Res. 301, 223–231 (2004)

    Article  Google Scholar 

  81. McCarthy, J.R., Perez, J.M., Brückner, C., Weissleder, R.: Polymeric nanoparticle preparation that eradicates tumors. Nano Lett. 5, 2552–2556 (2005)

    Article  Google Scholar 

  82. Quintana, A., Raczka, E., Piehler, L., Lee, I., Myc, A., Majoros, I., Patri, A.K., Thomas, T., Mulé, J., Baker Jr., J.R.: Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res. 19, 1310–1316 (2002)

    Article  Google Scholar 

  83. Shukla, R., Thomas, T.P., Peters, J.L., Desai, A.M., Kukowska-Latallo, J., Patri, A.K., Kotlyar, A., Baker Jr., J.R.: HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjug Chem. 17, 1109–1115 (2006)

    Article  Google Scholar 

  84. Majoros, I.J., Myc, A., Thomas, T., Mehta, C.B., Baker Jr., J.R.: PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7, 572–579 (2006)

    Article  Google Scholar 

  85. Roy, I., Ohulchanskyy, T.Y., Bharali, D.J., Pudavar, H.E., Mistretta, R.A., Kaur, N., Prasad, P.N.: Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc. Natl. Acad. Sci USA 102, 279–284 (2005)

    Article  Google Scholar 

  86. Roy, I., Ohulchanskyy, T.Y., Pudavar, H.E., Bergey, E.J., Oseroff, A.R., Morgan, J., Dougherty, T.J., Prasad, P.N.: Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am. Chem. Soc. 125, 7860–7865 (2003)

    Article  Google Scholar 

  87. Reddy, G.R., Bhojani, M.S., McConville, P., Moody, J., Moffat, B.A., Hall, D.E., Kim, G., Koo, Y.E., Woolliscroft, M.J., Sugai, J.V., Johnson, T.D., Philbert, M.A., Kopelman, R., Rehemtulla, A., Ross, B.D.: Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer Res. 12, 6677–6686 (2006)

    Article  Google Scholar 

  88. Jain, P.K., El-Sayed, I.H., El-Sayed, M.A.: Au nanoparticles target cancer. Nanotoday 2, 18–29 (2007)

    Google Scholar 

  89. Link, S., El-Sayed, M.A.: Optical properties and ultrafast dynamics of metallic nanocrystals. Ann. Rev. Phys. Chem. 54, 331–366 (2003)

    Article  Google Scholar 

  90. Lee, K.S., El-Sayed, M.A.: Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys. Chem. B 110, 19220–19225 (2006)

    Article  Google Scholar 

  91. Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–7248 (2006)

    Article  Google Scholar 

  92. Jensen, T.R., Duval, M.L., Kelly, K.L., Lazarides, A.A., Schatz, G.C., Van Duyne, R.P.: Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 103, 9846–9853 (1999)

    Article  Google Scholar 

  93. Jain, P.K., Qian, W., El-Sayed, M.A.: Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates. J. Phys. Chem. B 110, 136–142 (2006)

    Article  Google Scholar 

  94. Sönnichsen, C., Reinhard, B.M., Liphardt, J., Alivisatos, A.P.: A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 23, 741–745 (2005)

    Article  Google Scholar 

  95. Jain, P.K., Eustis, S., El-Sayed, M.A.: Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B 110, 18243–18253 (2006)

    Article  Google Scholar 

  96. Connor, E.E., Mwamuka, J., Gole, A., Murphy, C.J., Wyatt, M.D.: Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325–327 (2005)

    Article  Google Scholar 

  97. Katz, E., Willner, I.: Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. Engl. 43, 6042–6108 (2004)

    Article  Google Scholar 

  98. Sokolov, K., Follen, M., Aaron, J., Pavlova, I., Malpica, A., Lotan, R., Richards-Kortum, R.: Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63, 1999–2004 (2003)

    Google Scholar 

  99. El-Sayed, I.H., Huang, X., El-Sayed, M.A.: Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5, 829–834 (2005)

    Article  Google Scholar 

  100. El-Sayed, M.A.: Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–264 (2001)

    Article  Google Scholar 

  101. El-Sayed, I.H., Huang, X., El-Sayed, M.A.: Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006)

    Article  Google Scholar 

  102. Loo, C., Lowery, A., Halas, N., West, J., Drezek, R.: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–711 (2005)

    Article  Google Scholar 

  103. Zharov, V.P., Galitovskaya, E.N., Johnson, C., Kelly, T.: Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Lasers Surg. Med. 37, 219–226 (2005)

    Article  Google Scholar 

  104. Pitsillides, C.M., Joe, E.K., Wei, X., Anderson, R.R., Lin, C.P.: Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J. 84, 4023–4032 (2003)

    Article  Google Scholar 

  105. Huang, X., Jain, P.K., El-Sayed, I.H., El-Sayed, M.A.: Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem. Photobiol. 82, 412–417 (2006)

    Article  Google Scholar 

  106. Urbanska, K., Romanowska-Dixon, B., Matuszak, Z., Oszajca, J., Nowak-Sliwinsk, P., Stochel, G.: Indocyanine green as a prospective sensitizer for photodynamic therapy of melanomas. Acta. Biochim Pol. 49, 387–391 (2002)

    Google Scholar 

  107. Weissleder, R.: A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316–317 (2001)

    Article  Google Scholar 

  108. Lee, K.S., El-Sayed, M.A.: Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J. Phys. Chem. B 109, 20331–20338 (2005)

    Article  Google Scholar 

  109. Brioude, A., Jiang, X.C., Pileni, M.P.: Optical properties of gold nanorods: DDA simulations supported by experiments. J. Phys. Chem. B 109, 13138–13142 (2005)

    Article  Google Scholar 

  110. Huang, X., El-Sayed, I.H., Qian, W., El-Sayed, M.A.: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am Chem. Soc. 128, 2115–2120 (2006)

    Article  Google Scholar 

  111. Chen, J., Wiley, B., Li, Z.-Y., Campbell, D., Saeki, F., Cang, H., Au, L., Lee, J., Li, X., Xia, Y.: Gold nanocages: engineering their structure for biomedical applications. Adv. Mater 17, 2255–2261 (2005)

    Article  Google Scholar 

  112. Lee, J., Yang, J., Ko, H., Oh, S.J., Kang, J., Son, J.-H., Lee, K., Lee, S.-W., Yoon, H.-G., Suh, J.-S., Huh, Y.-M., Haam, S.: Multifuctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Adv. Funct. Mater. 18, 258–264 (2008)

    Article  Google Scholar 

  113. Krasovitski, B., Kislev, H., Kimmel, E.: Modeling photothermal and acoustical induced microbubble generation and growth. Ultrasonics 47, 90–101 (2007)

    Article  Google Scholar 

  114. Kimmel, E.: Cavitation bioeffects. Crit. Rev. Biomed Eng. 34, 105–161 (2006)

    Google Scholar 

  115. Stride, E., Saffari, N.: On the destruction of microbubble ultrasound contrast agents. Ultrasound Med. Biol. 29, 563–573 (2003)

    Article  Google Scholar 

  116. Miller, D.L., Quddus, J.: Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice. Proc. Natl. Acad. Sci. USA 97, 10179–10184 (2000)

    Article  Google Scholar 

  117. Holt, R.G., Roy, R.A.: Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material. Ultrasound Med. Biol. 27, 1399–13412 (2001)

    Article  Google Scholar 

  118. Ashush, H., Rozenszajn, L.A., Blass, M., Barda-Saad, M., Azimov, D., Radnay, J., Zipori, D., Rosenschein, U.: Apoptosis induction of human myeloid leukemic cells by ultrasound exposure. Cancer Res 60, 1014–1020 (2000)

    Google Scholar 

  119. Price, R.J., Kaul, S.: Contrast ultrasound targeted drug and gene delivery: an update on a new therapeutic modality. J. Cardiovasc Pharmacol. Ther. 7, 171–180 (2002)

    Article  Google Scholar 

  120. Farny, C.H., Wu, T., Holt, G., Murray, T.W., Roy, R.A.: Nucleating cavitation from laser-illuminated nano-particles. Acoust Res. Lett. Online 6, 138–143 (2005)

    Article  Google Scholar 

  121. Fujishiro, S., Mitsumori, M., Nishimura, Y., Okuno, Y., Nagata, Y., Hiraoka, M., Sano, T., Marume, T., Takayama, N.: Increased heating efficiency of hyperthermia using an ultrasound contrast agent: a phantom study. Int. J. Hyperthermia 14, 495–502 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Francesco, C., Antonio, G., Sergio, C. (2010). Smart Nano-systems for Tumour Cellular Diagnoses and Therapies. In: Lay-Ekuakille, A., Mukhopadhyay, S.C. (eds) Wearable and Autonomous Biomedical Devices and Systems for Smart Environment. Lecture Notes in Electrical Engineering, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15687-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15687-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15686-1

  • Online ISBN: 978-3-642-15687-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics