Skip to main content

Phage Biopesticides and Soil Bacteria: Multilayered and Complex Interactions

  • Chapter
  • First Online:
Biocommunication in Soil Microorganisms

Part of the book series: Soil Biology ((SOILBIOL,volume 23))

Abstract

Soil ecosystems are impacted by the application of biological control agents to aerial portions of plants. The use of bacteriophages, “phages,” as agriculture biopesticides has been adopted and utilized in a number of host–pathogen systems. Phages may be applied as aerial sprays, preplant treatments and soil drenches in concentrations up to 108–10PFU/ml. The short- and long-term ecology of local soil microbial communities may be impacted by the use of phages since the soil ecosystem provides a suitable template for phage–bacterial interactions. The soil rhizosphere is modulated by exudates from plant roots that allow the development of bacterial populations and interaction with phages. Phages likely regulate host populations by lysis but may compensate by having longer lysogenic stages that prevent further infection and lysis. Phages appear to be large reservoirs of genes that encode proteins that may be novel to any bacterial strain. Studies with both virulent and lysogenic phage gene sequences show that phage–bacterial interactions that occur in soil permit genetic exchange from one host to another. The exchanges may involve the exchange of genetic material via lysogeny, lytic action, abortive infections, transduction, and pseudolysogeny.

The chapter presents three specific case studies that highlight interaction between indigenous soil bacteria, plant pathogens or symbionts (Erwinia amylovora, Pectobacterium carotovorum, and Rhizobacteria), and bacteriophages applied as biological control agents. In addition, we address the special role of lysogeny in the soil–phage interactions and the current methods employed for the detection of phages in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe HM, Sadowsky MJ, Kinkle BK, Schmidt EL (1992) Lysogeny in Bradyrhizobium japonicum and its effect on soybean nodulation. Appl Environ Microbiol 58:3360–3366

    CAS  PubMed  Google Scholar 

  • Abedon ST (2008) Phage, ecology, and evolution. In: Abedon ST (ed) Bacteriophage ecology. Advances in molecular and cellular microbiology, vol 15. Cambridge University Press, Cambridge UK, pp 1–28

    Google Scholar 

  • Adams MH (1959) Bacteriophages. Interscience Publishers, New York

    Google Scholar 

  • Ahokas H, Erkkila MJ (1993) Interference of PCR amplification by the polyamines, spermine and spermidine. PCR Methods Appl 3:65–68

    CAS  PubMed  Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Ann Rev Phytopathol 38:145–180

    Google Scholar 

  • Ashelford KE, Day MJ, Bailey MJ, Lilley AK, Fry JC (1999) In situ population dynamics of bacterial viruses in a terrestrial environment. Appl Environ Microbiol 65:169–174

    CAS  PubMed  Google Scholar 

  • Ashelford KE, Day MJ, Fry JC (2003) Elavated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 69:285–289

    CAS  PubMed  Google Scholar 

  • Assadian NW, Giovanni GD, Enciso J, Iglesias J, Lindemann W (2005) The transport of waterborne solutes and bacteriophage in soil subirrigated with a wastewater blend. Agric Ecosyst Environ 111:279–291

    Google Scholar 

  • Bachoon DS, Otero E, Hodson RE (2001) Effects of humic substances on fluorometric DNA quantification and DNA hybridization. J Microbiol Methods 47:73–82

    CAS  PubMed  Google Scholar 

  • Balogh B, Canteros BI, Stall RE, Jones JB (2008) Control of citrus canker and citrus bacterial spot with bacteriophages. Plant Dis 92:1048–1052

    Google Scholar 

  • Balogh B, Jones JB, Momol MT, Olson SM (2005) Persistence of bacteriophages as biocontrol agents in the tomato canopy. Acta Hortic 695:299–302

    Google Scholar 

  • Balogh B, Jones JB, Momol MT, Olson SM, Obradovic A, King P, Jackson LE (2003) Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis 87:949–954

    Google Scholar 

  • Basit HA, Angle JS, Salem S, Gewaily EM (1992) Phage coating of soybean seed reduces nodulation by indigenous soil bradyrhizobia. Can J Microbiol 38:1264–1269

    Google Scholar 

  • Berg G, Sanjaghsaz H, Wangwongwatana S (1989) Potentiation of the virucidal effectiveness of free chlorine by substances in drinking water. Appl Environ Microbiol 55:390–393

    CAS  PubMed  Google Scholar 

  • Bickley J, Short SK, McDowell DG, Parkes HC (1996) Polymerase chain reaction (PCR) detection of Listeria monocytogenes in diluted milk and reversal of PCR inhibition caused by calcium ions. Lett Appl Microbiol 22:153–158

    CAS  PubMed  Google Scholar 

  • Blom TJ, Brown W (1999) Preplant copper-based compounds reduce Erwinia soft rot on calla lilies. HortTechnol 9:56–59

    CAS  Google Scholar 

  • Borsheim KY, Bratbak G, Heldal M (1990) Enumeration and biomass estimation of planktonic bacteria and viruses by transmission electron microscopy. Appl Environ Microbiol 56:352–356

    CAS  PubMed  Google Scholar 

  • Bouzari M, Emtiazi G, Mehdipour-Moghaddam MJ (2008) The effects of heavy metals and chelating agents on phage development and enumeration of Rhizobium by phage counting in different soils. Am Eurasian J Agric Environ Sci 3:420–424

    Google Scholar 

  • Brussaard CPD, Kempers RS, Kop A, Riegman R, Heldal M (1996) Virus-like particles in a summer bloom of Emiliana huleyi in the North Sea. Aquat Microb Ecol 10:105–113

    Google Scholar 

  • Brüssow H, Kutter E (2005a) Phage ecology. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Boca Raton, pp 129–163

    Google Scholar 

  • Brüssow H, Kutter E (2005b) Genomics and evolution of tailed phages. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Boca Raton, pp 91–128

    Google Scholar 

  • Burge WD, Enkiri NK (1978a) Virus adsorption by five soils. J Environ Qual 7:73–76

    Google Scholar 

  • Burge WD, Enkiri NK (1978b) Adsorption kinetics of bacteriophage P29103000X-174 on soil. J Environ Qual 7:536–541

    CAS  Google Scholar 

  • Campbell A (2006) General aspects of lysogeny. In: Calendar R (ed) The bacteriophages, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Campbell JIA, Albrechtsen M, Sorensen J (1995) Large Pseudomonas phages isolated from barley rhizosphere. FEMS Microbiol Ecol 18:63–74

    CAS  Google Scholar 

  • Canchaya C, Fournous G, Brüssow H (2004) The impact of prophages on bacterial chromosomes. Mol Microbiol 53:9–18

    CAS  PubMed  Google Scholar 

  • Carlson K (2005) Working with bacteriophages: common techniques and methodological approaches. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Boca Raton, pp 437–487

    Google Scholar 

  • Chattopadhyay D, Chattopadhyay S, Lyon WG, Wilson JT (2002) Effect of surfactants on the survival and sorption of viruses. Environ Sci Technol 36:4017–4024

    CAS  PubMed  Google Scholar 

  • Danovaro R, Dell’Anno A, Trucco A, Serresi M, Vanucci S (2001) Determination of virus abundance in marine sediments. Appl Environ Microbiol 67:1384–1387

    CAS  PubMed  Google Scholar 

  • Demeke T, Adams R (1992) The effects of plant polysaccharides and buffer additives on PCR. BioTechniques 12:333–334

    Google Scholar 

  • Desai C, Madamwar D (2006) Extraction of inhibitor-free metagenomic DNA from polluted sediments, compatible with molecular diversity analysis using adsorption and ion-exchange treatments. Bioresour Technol 98:761–768

    PubMed  Google Scholar 

  • Dowd SE, Pillai SD, SookYun W, Corapcioglu MY (1998) Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils. Appl Environ Microbiol 64:405–410

    CAS  PubMed  Google Scholar 

  • Erskine JM (1973) Characteristics of Erwinia amylovora bacteriophage and its possible role in the epidemiology of fire blight. Can J Microbiol 19:837–845

    CAS  PubMed  Google Scholar 

  • Flaherty JE, Harbaugh BK, Jones JB, Somodi GC, Jackson LE (2001) H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. HortSci 36:98–100

    Google Scholar 

  • Flaherty JE, Jones JB, Harbaugh BK, Somodi GC, Jackson LE (2000) Control of bacterial spot on tomato in the greenhouse and field with h-mutant bacteriophages. HortSci 35:882–884

    Google Scholar 

  • Foulds IV, Granacki A, Xiao C, Krull UJ, Castle AJ, Horton PJ (2002) Quantification of microcystin-producing cyanobacteria and E. coli in water by 5′-nuclease PCR. J Appl Microbiol 93:825–834

    CAS  PubMed  Google Scholar 

  • Fu W, Forster T, Meyer O, Curtin JJ, Lehman SM, Donlan RM (2009) Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother. doi:10.1128/AAC.00669-09

    Google Scholar 

  • Germida JJ (1986) Population dynamics of Azospirillum brasilense and its bacteriophage in soil. Plant Soil 90:117–128

    Google Scholar 

  • Gill J, Abedon ST (2003) Bacteriophage ecology and plants. APSnet http://www.apsnet.org/online/feature/phages/ Cited: July 2009

  • Gill JJ, Svircev AM, Smith R, Castle AJ (2003) Bacteriophages of Erwinia amylovora. Appl Environ Microbiol 69:2133–2138

    CAS  PubMed  Google Scholar 

  • Goyer C (2005) Isolation and characterization of phages Stsc1 and Stsc3 infecting Streptomyces scabiei and their potential as biocontrol agents. Can J Plant Pathol 27:210–216

    CAS  Google Scholar 

  • Gracia-Garza JA, Blom TJ, Brown W, Roberts DP, Schneider K, Freisen M, Gombert D (2004) Increased incidence of Erwinia soft-rot on calla lilies in the presence of phosphorous. Eur J Plant Pathol 110:293–298

    CAS  Google Scholar 

  • Guenther S, Huwyler D, Richard S, Loessner MJ (2009) Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl Environ Microbiol 75:93–100

    CAS  PubMed  Google Scholar 

  • Guzmán C, Jofre J, Blanch AR, Luana F (2007) Development of a feasible method to extract somatic coliphages from sludge, soil and treated biowaste virol Meth 144:41–48

    Google Scholar 

  • Guttman B, Raya R, Kutter E (2005) Basic phage biology. CRC Press, Boca Raton, FL

    Google Scholar 

  • Hagens S, Offerhaus ML (2008) Bacteriophages – new weapons for food safety. Food Technol Chicago 62:46

    Google Scholar 

  • Hao Y, Dick WA, Tuovinen OH (2002) PCR amplification of 16S rDNA sequences in Fe-rich sediment of coal refuse drainage. Biotechnol Lett 24:1049–1053

    CAS  Google Scholar 

  • Harrison MD, Franc DG, Maddox DA, Michaud JE, McCater-Zorner NJ (1987) Presence of Erwinia carotovora in surface water in North America. J Appl Bacteriol 62:565–570

    Google Scholar 

  • Hennes JE, Suttle CA (1995) Direct counts of viruses in natural waters and laboratory cultures by epifluorescence microscopy. Limnol Oceanogr 40:1050–1055

    CAS  Google Scholar 

  • Herron, PR (2004) Phage ecology and genetic exchange in soil. In: Kowalchuk GA, Bruijn, FJD, Head IM, Akkermans ADL and Elsas JDV (eds) Vol. II, Molecular microbial ecology manual, pp 1173–1183

    Google Scholar 

  • Hildebrand M, Tebbe CC, Geider K (2001) Survival studies with the fire blight pathogen Erwinia amylovora in soil and in a soil-inhabiting insect. J Phytopath 149:635–639

    Google Scholar 

  • Hu TL (1998) A comparison of two methods to recover phages from soil samples. Bioresour Technol 65:167–169

    CAS  Google Scholar 

  • Ibekwe AM, Watt PM, Grieve CM, Sharma VK, Lyons SR (2002) Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157:H7 in dairy wastewater wetlands. Appl Environ Microbiol 68:4853–4862

    CAS  PubMed  Google Scholar 

  • Iriarte FB, Balogh B, Momol MT, Smith LM, Wilson M, Jones JB (2007) Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl Environ Microbiol 73:1704–1711

    CAS  PubMed  Google Scholar 

  • Jensen EC, Schrader HS, Rieland B, Thompson TL, Lee KW, Nickerson KW, Kokjohn TA (1998) Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl Environ Microbiol 64:575–580

    CAS  PubMed  Google Scholar 

  • Johnson KB, Stockwell VO (2000) Biological control of fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CaB International, Wallingford, Oxon, pp 319–337

    Google Scholar 

  • Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB, Momol MT (2007) Bacteriophages for plant disease control. Ann Rev Phytopathol 45:245–262

    CAS  Google Scholar 

  • Jones JB, Momol MT, Obradovic A, Balogh B, Olson SM (2005) Bacterial spot management on tomatoes. Vol. 695 Acta Hortic 119–124

    Google Scholar 

  • Katcher HL, Schwartz I (1994) A distinctive property of Tth DNA polymerase: enzymatic amplification in the presence of phenol. BioTechniques 16:84–92

    CAS  PubMed  Google Scholar 

  • Katznelson H, Lochhead AG, Timonin MI (1948) Soil microorganisms and the rhizosphere. Bot Rev 14:543–587

    Google Scholar 

  • KIeczkowska J (1957) A study of the distribution and the effects of bacteriophage of root nodule bacteria in soil. Can J Microbiol 3:171–180

    Google Scholar 

  • Kimura M, Jia Z-J, Nakayama N, Asakawa S (2008) Ecology of viruses in soils: past, present and future perspectives. Soil Sci Plant Nut 54:1–32

    Google Scholar 

  • Kumar MKP, Khan ANA, Reddy CNL, Basavarajappa MP, Venkataravanappa V, Basha Z (2006) Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum, race-1, biovar-III. J Plant Dis Sci 1:176–181

    Google Scholar 

  • Lang JM, Gent DH, Schwartz HF (2007) Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Dis 91:871–878

    CAS  Google Scholar 

  • Lanning S, Williams ST (1982) Methods for the direct isolation and enumeration of actinophages in soil. J Gen Microbiol 128:2063–2071

    Google Scholar 

  • Lehman SM (2007) Development of a bacteriophage-based biopesticide for fire blight. PhD thesis, Brock University

    Google Scholar 

  • Leroy M, Prigent MDM, Confalonieri F, Dubow M (2008) Bacteriophage morphotype and genome diversity in Seine River sediment. Freshw Biol 53:1176–1185

    CAS  Google Scholar 

  • Manninen A, Hall GEM, Vaive JE, MacLaurin AI (1996) Analytical aspects of the application of sodium pyrophosphate reagent in the specific extraction of the labile organic component of humus and soils. J Geochem Explor 56:23–36

    Google Scholar 

  • Markoishvili K, Tsitlanadze G, Katsarava R, Morris JGJ, Sulakvelidze A (2002) A novel sustained-release matrix based on biodegradable polyester amides impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol 41:453–458

    CAS  PubMed  Google Scholar 

  • Marsh P, Wellington EMH (1994) Phage–host interactions in soil. FEMS Microbiol Ecol 15:99–107

    CAS  Google Scholar 

  • McKeague JA, Brydon JE, Miles NM (1971) Soil Sci. Soc Am Proc 35:33–38

    CAS  Google Scholar 

  • Mendum TA, Clark IM, Hirsch PR (2001) Characterization of two novel Rhizobium leguminosarum bacteriophages from a field release site of genetically-modified rhizobia. Antonie Van Leeuwenhoek 79:189–197

    CAS  PubMed  Google Scholar 

  • Miller DN, Bryant JE, Madsen EL, Ghiorse WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715–4724

    CAS  PubMed  Google Scholar 

  • Novikova NI, Pavlova EA, Limeshchenko EV (1993) Phage sensitivity and host range of Rhizobium strains isolated from root nodules of temperate legumes. Plant Soil 151:45–53

    Google Scholar 

  • O’Brien RD, Lindow SE (1989) Effet of plant species and environmental conditions on epiphytic population sizes of Pseudomonas syringae and other bacteria. Phytopathology 79:619–627

    Google Scholar 

  • Obradovic A, Jones JB, Momol MT, Balogh B, Olson SM (2004) Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis 88:736–740

    Google Scholar 

  • Obradovic A, Jones JB, Momol MT, Olson SM, Jackson LE, Balogh B, Guven K, Iriarte FB (2005) Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Dis 89:712–716

    CAS  Google Scholar 

  • Ogram A (1998) Isolation of nucleic acids from environmental samples. In: Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, Oxford UK, pp 273–288

    Google Scholar 

  • Pantastico-Caldas M, Duncan KE, Istock CA, Bell JA (1992) Population dynamics of bacteriophage and Bacillus subtilis in soil. Ecology 73:1888–1902

    Google Scholar 

  • Pérombelon MCM, Kelmon A (1980) Ecology of the soft rot Erwinias. Ann Rev Phytopathol 18:361–387

    Google Scholar 

  • Ravensdale M, Blom TJ, Gracia Garza JA, Svircev AM, Smith RJ (2007) Bacteriophages and the control of Erwinia carotovora subsp. carotovora. Can J Plant Pathol 29:121–130

    Google Scholar 

  • Ritchie DF (1978) Bacteriophages of Erwinia amyovora: Their isolation, distribution, characterization, and possible involvement in the etiology and epidemiology of fire blight. PhD thesis, Michigan State University

    Google Scholar 

  • Ritchie DF, Klos EJ (1977) Isolation of Erwinia amyolovora bacteriophage from aerial parts of apple trees. Phytopathology 67:101–104

    Google Scholar 

  • Ritchie DF, Klos EJ (1979) Some properties of Erwinia amylovora bacteriophages. Phytopathology 69:1078–1083

    Google Scholar 

  • Romeo AM, Christen L, Niles EG, Kosman DJ (2001) Intracellular chelation of iron by bipyridyl inhibits DNA virus replication. J Biol Chem 24:301–308

    Google Scholar 

  • Saccardi A, Gambin E, Zaccardelli M, Barone G, Mazzucchi U (1993) Xanthomonas campestris pv. pruni control trials with phage treatments on peach in the orchard. Phytopathol Mediterr 32:206–210

    Google Scholar 

  • Sagripanti J-L (1992) Metal-based formulations with high microbiocidal activity. Appl Environ Microbiol 58:3157–3162

    CAS  PubMed  Google Scholar 

  • Sander M, Schmieger H (2001) Method for host-independent detection of generalized transducing bacteriophages in natural habitats. Appl Environ Microbiol 67:1490–1493

    CAS  PubMed  Google Scholar 

  • Satsangi J, Jewell DP, Welsh K, Bunce M, Bell JI (1994) Effect of heparin on polymerase chain reaction. Lancet 343:1509–1510

    CAS  PubMed  Google Scholar 

  • Schnabel EL, Fernando WGD, Meyer MP, Jones AL, Jackson LE (1999) Bacteriophage of Erwinia amylovora and their potential for biocontrol. Acta Hortic 489:649–653

    Google Scholar 

  • Schnabel EL, Jones AL (2001) Isolation and characterization of five Erwinia amylovora bacteriophages and assessment of phage resistance in strains of Erwinia amylovora. Appl Environ Microbiol 67:59–64

    CAS  PubMed  Google Scholar 

  • Sillankorva S, Oliveira R, Viera MJ, Sutherland I, Azeredo J (2006) Pseudomonas fluorescens infection by bacteriophage øS1: the influence of temperature, host growth phase and media. FEMS Microbiol Lett 241:13–20

    Google Scholar 

  • Sjöstedt A, Eriksson U, Ramisse V, Garrigue H (1997) Detection of Bacillus anthracis spores in soil by PCR. FEMS Microbiol Ecol 23:159–168

    Google Scholar 

  • Smit E, Wolters AC, Lee H, Trevors JT, van Elsas JD (1996) Interactions between a genetically marked Pseudomonas fluorescens strain and bacteriophage FR2f in soil: effects of nutrients, alginate encapsulation, and the wheat rhizosphere. Microb Ecol 31:125–140

    Google Scholar 

  • Srinivasiah S, Bhavsar J, Thapar K, Liles M, Schoenfeld T, Wommack KE (2008) Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol 159:349–357

    CAS  PubMed  Google Scholar 

  • Stephens PM, O’Sullivan M, Gara F (1987) Effect of bacteriophages on colonization of sugar beet roots by Pseudomonas spp. Appl Environ Microbiol 53:1164–1167

    Google Scholar 

  • Stewart A (2001) Commercial biocontrol – reality or fantasy? Australas. Plant Pathol 30:127–131

    Google Scholar 

  • Suslow TV (1986) Bacteriophage-resistant plant growth promoting rhizobactria. USA Patent 4584274

    Google Scholar 

  • Svircev AM, Gill JJ, Sholberg P (2002a) Erwinia amylovora (Burrill) Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith, fire blight (Enterobacteriaceae). In: Mason PG, Huber JT (eds) Biological control programmes in Canada. CaBI Publishing, Wallingford UK, pp 448–451

    Google Scholar 

  • Svircev AM, Lehman SM, Kim W-S, Barszcz E, Schneider KE, Castle AJ (2006) Control of the fire blight pathogen with bacteriophages. In: Proceedings of the 1st International Symposium on Biological control of Bacterial Plant Diseases. Zeller W and Ullrich C (eds) Arno Brynda, Berlin Germany, pp 259–261

    Google Scholar 

  • Svircev AM, Smith R, Gracia-Garza JA, Gill JJ, Schneider K (2002b) Biocontrol of Erwinia with bacteriophages. Bull OILB/SROP 25:10, p. 139–142

    Google Scholar 

  • Swanson MM, Fraser G, Daniell TJ, Torrance L, Gregory PJ, Taliansky M (2009) Viruses in soils: morphological diversity and abundance in the rhizosphere. Ann Appl Biol 155:51–60

    Google Scholar 

  • Sykes IK, Lanning S, St W (1981) The effect of pH on soil actinophage. Microbiol 122:271–280

    Google Scholar 

  • Tan JSH, Reanney DC (1976) Interactions between bacteriophages and bacteria in soil. Soil Biol Biochem 8:145–150

    Google Scholar 

  • Taylor DH, Moore RS, Sturman LS (1981) Influence of pH and electrolyte composition on adsorption of poliovirus by soils and minerals. Appl Environ Microbiol 42:976–984

    CAS  PubMed  Google Scholar 

  • Torsvik V, Goksřyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  PubMed  Google Scholar 

  • Tsai YL, Olsen B (1992) Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol 58:2292–2295

    CAS  PubMed  Google Scholar 

  • Vanneste JL (ed) (2000) Fire blight: the disease and its causative agent, Erwinia amylovora. CaB International, Wallingford, UK

    Google Scholar 

  • Van Twest R, Kropinski AM (2009) Bacteriophage enrichment from water and soil. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages, methods and protocols, Vol. 1: Isolation, characterization and interactions. Methods in molecular biology, Walker JM (series ed). Humana Press part of Springer Science + Business Media, Totowa, NJ

    Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    CAS  PubMed  Google Scholar 

  • Weinbauer MG, Suttle CA (1997) Comparison of epifluorescence and transmission electron microscopy for counting viruses in natural marine waters. Aquat Microb Ecol 13:225–232

    Google Scholar 

  • Wiedbrauk DL, Werner JC, Drevon AM (1995) Inhibition of PCR by aqueous and vitreous fluids. J Clin Microbiol 33:2643–2646

    CAS  PubMed  Google Scholar 

  • Wiggins BA, Alexander M (1985) Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl Environ Microbiol 49:19–23

    CAS  PubMed  Google Scholar 

  • Williamson KE, Radosevich M, Wommack KE (2005) Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 71:3119–3125

    CAS  PubMed  Google Scholar 

  • Williamson KE, Wommack KE, Radosevich M (2003) Sampling natural viral communities from soil for culture-independent analyses. Appl Environ Microbiol 69:6628–6633

    CAS  PubMed  Google Scholar 

  • Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63:3741–3751

    CAS  PubMed  Google Scholar 

  • Yamada T, Kawasaki T, Nagata S, Fujiwara A, Usami S, Fujie M (2007) New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology 153:2630–2639

    CAS  PubMed  Google Scholar 

  • Young CC, Burghoff RL, Keim LG, Minak-Bernero V, Lute JR, Hinton SM (1993) Polyvinylpyrrolidone-agarose gel electrophoresis purification of polymerase chain reaction-amplifiable DNA from soils. Appl Environ Microbiol 59:1971–1974

    Google Scholar 

  • Zaccardelli M, Saccardi A, Gambin E, Mazzucchi U (1992) Xanthomonas campestris pv. pruni bacteriophages on peach trees and their potential use for biological control. Phytopathol mediterr 31:133–140

    Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    CAS  PubMed  Google Scholar 

  • Zipper H, Buta C, Lämmle K, Brunner H, Bernhagen J, Vitzthum F (2003) Mechanisms underlying the impact of humic acids on DNA quantification by SYBR Green I and consequences for the analysis of soils and aquatic sediments. Nucleic Acids Res 31:e39

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonet M. Svircev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Svircev, A.M., Lehman, S.M., Sholberg, P., Roach, D., Castle, A.J. (2011). Phage Biopesticides and Soil Bacteria: Multilayered and Complex Interactions. In: Witzany, G. (eds) Biocommunication in Soil Microorganisms. Soil Biology, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14512-4_8

Download citation

Publish with us

Policies and ethics