Skip to main content

Extracellular Enzymes in Sensing Environmental Nutrients and Ecosystem Changes: Ligand Mediation in Organic Phosphorus Cycling

  • Chapter
  • First Online:
Soil Enzymology

Part of the book series: Soil Biology ((SOILBIOL,volume 22))

Abstract

Inorganic and organic phosphates react strongly with soil constituents, resulting in relatively low concentrations of soluble P in the soil solution. Multiple competing reactions are operating to regulate the solution-phase concentration of P-containing organic substrates and the released phosphate for assimilation by microbes, plants, or dispersal into the environment. In intensive agrosystems, external inputs of commercial fertilizers are often required to attain sufficiency levels of plant-available P. In this chapter, we focus on the ligand exchange process involved in the solubilization of organic P, a forerunner process crucial to the function of extracellular phosphohydrolases in accessing the recalcitrant soil organic P pool. Plants and microorganisms have evolved and developed multiple strategies to obtain the needed P. In these strategies, frequent interweaving of biophysical and biochemical processes are observed in the mineralization of organic P forms. A fundamental reassessment of the biogeochemistry of P in the soil-water systems is necessary to improve our understanding of the physical chemistry of charged surfaces and the role of organic ligands in the turnover of stabilized organic P. Practical solutions to constraints to phosphohydrolases’ activity are needed to attain improved use efficiency of this non-renewable resource.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ae N, Ariahara J, Okada K, Yoshihara T, Johansen C (1990) Phosphorus uptake by pigeon pea and its role cropping systems of the Indian subcontinent. Science 248:477–480

    Article  PubMed  CAS  Google Scholar 

  • Anderson G (1980) Assessing organic P in soils. In: Khasawneh FE, Sample EC, Kamprath EJ (eds) The role of phosphorus in agriculture. American Society Agronomy, Madison, WI, pp 411–431

    Google Scholar 

  • Anderson G, Williams EG, Moir JO (1974) A comparison of sorption of inorganic phosphate and inositol hexaphosphate by six acid soils. J Soil Sci 25:51–62

    Article  CAS  Google Scholar 

  • Arai Y, Sparks DL (2002) ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface. J Colloid Interface Sci 241:317–326

    Article  CAS  Google Scholar 

  • Asada K, Tanaka K, Kasai Z (1969) Formation of phytic acid in cereal grains. Ann NY Acad Sci 165:801–814

    PubMed  CAS  Google Scholar 

  • Baldwin DS, Howitt JA, Beattie JK (2005) Abiotic degradation of organic phosphorus compounds in the environment. In: Turner BL, Frossard E, Baldwin D (eds) Organic phosphorus in the environment. CABI Publishing, Oxfordshire, pp 75–88

    Chapter  Google Scholar 

  • Barrientos L, Scott JJ, Murthy PP (1994) Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiol 106:489–1495

    Article  Google Scholar 

  • Beek J, van Riemsdijk WH (1982) Interaction of orthophosphate ions with soil. In: Bolt GH (ed) Soil chemistry. B. Physico-chemical models, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Biederbeck VO, Bouman OT, Looman J, Slinkard AE, Bailey LD, Rice WA, Janzen HH (1993) Productivity of four annual legumes as green manure in dryland cropping systems. Agron J 85:1035–1043

    Article  Google Scholar 

  • Bonfante-Fasolo P (1984) Anatomy and morphology of VA mycorrhizae. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhizae. CRC, Boca Raton, FL, pp 5–33

    Google Scholar 

  • Bremer E, van Kessel C (1992) Plant-available nitrogen from lentil and wheat residues during a subsequent growing season. Soil Sci Soc Am J 56:1155–1160

    Article  Google Scholar 

  • Bullock JI, Duffin PA, Nolan KB (1993) In vitro hydrolysis of phytate at 95°C and the influence of metal ion on the rate. J Sci Food Agric 63:261–263

    Article  CAS  Google Scholar 

  • Bunemann EK (2008) Enzyme additions as a tool to assess the potential bioavailability of organically bound nutrients. Soil Biol Biochem 40:2116–2129

    Article  CAS  Google Scholar 

  • Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Bio Biochem 14:423–427

    Article  CAS  Google Scholar 

  • Burns RG, Dick RP (2002) Enzymes in the environment: activity, ecology, and applications. Marcel-Dekker, New York, NY

    Book  Google Scholar 

  • Cade-Menun BJ, Liu CW, Nunlist R, McColl JG (2002) Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy: extractants, metals, and phosphorus relaxation times. J Environ Qual 31:457–465

    Article  PubMed  CAS  Google Scholar 

  • Cavigelli MA, Thien SJ (2003) Phosphorus bioavailability following incorporation of green manure crops. Soil Sci Soc Am J 67:1186–1194

    Article  CAS  Google Scholar 

  • Celi L, Barberis E (2007) Abiotic reactions of inositol phosphates in soil. In: Turner BL et al (eds) Inositol phosphates: linking agriculture and the environment. CABI, Oxfordshire, UK, pp 207–220

    Chapter  Google Scholar 

  • Celi L, Presta M, Ajmore-Marsan F, Barberis E (2001) Effects of pH and electrolytes on inositol hexaphosphate interaction with goethite. Soil Sci Soc Am J 65:753–760

    Article  CAS  Google Scholar 

  • Christensen BT (1986) Barley straw decomposition under field conditions: effect of placement and initial nitrogen content on weight loss and nitrogen dynamics. Soil Biol Biochem 18:523–529

    Article  Google Scholar 

  • Cooper WT, Heerboth M, Salters VJM (2007) High-performance chromatographic separations of inositol phosphates and their detection by mass spectrometry. In: Turner BL et al (eds) Inositol phosphates: linking agriculture and the environment. CABI, Oxfordshire, UK, pp 23–40

    Chapter  Google Scholar 

  • Cosgrove DJ (1980) Inositol phosphates: their chemistry, biochemistry, and physiology. Elsevier, New York, NY

    Google Scholar 

  • Council for Agricultural Science and Technology (2002) Animal diet modification to decrease the potential for N and P pollution Issue paper no 21. CAST, Ames, IA

    Google Scholar 

  • Council for Agricultural Science and Technology (CAST) (1996) Integrated animal waste management. CAST, Ames, IA

    Google Scholar 

  • Dao TH (1998) Tillage and crop residue effects on carbon dioxide evolution and carbon storage in a Paleustoll. Soil Sci Soc Am J 62:250–256

    Article  CAS  Google Scholar 

  • Dao TH (2003) Polyvalent cation effects on myo-inositol hexakis dihydrogenphosphate enzymatic dephosphorylation in dairy wastewater. J Environ Qual 32:694–701

    PubMed  CAS  Google Scholar 

  • Dao TH (2004) Ligands and phytase hydrolysis of organic phosphorus in soils amended with dairy manure. Agron J 96:1188–1195

    Article  Google Scholar 

  • Dao TH (2007) Ligand effects on inositol phosphate solubility and bioavailability in animal manures. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and environment. CABI, Oxfordshire, UK, pp 169–185

    Chapter  Google Scholar 

  • Dao TH, Cavigelli MA (2003) Mineralizable carbon, nitrogen, and water-extractable phosphorus release from stockpiled and composted manure, and manure-amended soils. Agron J 95:405–413

    Article  Google Scholar 

  • Dao TH, Hoang KQ (2008) Dephosphorylation and quantification of organic phosphorus in poultry litter by purified phytic-acid high affinity Aspergillus phosphohydrolases. Chemosphere 72:1782–1787

    Article  PubMed  CAS  Google Scholar 

  • Dao TH, Zhang H (2007) Rapid composition and source screening of heterogeneous poultry litter by energy dispersive X-ray fluorescence spectrometry. Ann Environ Sci 1:69–79

    CAS  Google Scholar 

  • Dao TH, Codling EE, Schwartz RC (2005) Time-dependent phosphorus extractability in calcium- and iron-treated high-phosphorus soils. Soil Sci 170:810–821

    Article  CAS  Google Scholar 

  • Dao TH, Lugo-Ospina A, Reeves JB, Zhang H (2006) Wastewater chemistry and fractionation of bioactive phosphorus in dairy manure. Comm Soil Sci Plant Anal 37:907–924

    Article  CAS  Google Scholar 

  • Dao TH, Guber AK, Sadeghi AM, Karns JS, van Kessel JS, Shelton DR, Pachepsky YA, McCarty G (2008) Loss of bioactive phosphorus and enteric bacteria in runoff from dairy manure applied to sod. Soil Sci 173:511–521

    Article  CAS  Google Scholar 

  • Devai I, Felfoldy L, Wittner I, Plosz S (1988) Detection of phosphine: new aspects of the phosphorus cycle in the hydrosphere. Nature 333:343–345

    Article  CAS  Google Scholar 

  • Dick RP (1992) A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric Ecosys Environ 40:25–36

    Article  CAS  Google Scholar 

  • Dick RP (1994) Influence of long-term tillage and crop rotation combinations on soil enzyme activities. Soil Sci Soc Am J 56:783–788

    Google Scholar 

  • Dick WA, Tabatabai MA (1987) Kinetics and activities of phosphatase–clay complexes. Soil Sci 143:5–15

    Article  CAS  Google Scholar 

  • Dighton J (1983) Phosphatase production by mycorrhizal fungi. Plant Soil 71:455–462

    Article  CAS  Google Scholar 

  • Dighton J (1991) Acquisition of nutrients from organic resources by mycorrhizal autotrophic plants. Experientia 47:362–369

    Article  Google Scholar 

  • Dinkelaker B, Römheld V, Marschner H (1989) Citric acid and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant Cell Environ 12:285–292

    Article  CAS  Google Scholar 

  • Douglas CL Jr, Almaras RR, Rasmussen PE, Ramig RE, Roager RE Jr (1980) Wheat straw decomposition and placement effects on decomposition in dryland agriculture of the Pacific Northwest. Soil Sci Soc Am J 44:833–837

    Article  CAS  Google Scholar 

  • Duff SMG, Sarath G, Plaxton WC (1994) The role of acid phosphatases in plant phosphorus metabolism. Physiol Planta 90:791–800

    Article  CAS  Google Scholar 

  • Ezawa T, Hayatsu M, Saito M (2005) A new hypothesis on the strategy for acquisition of phosphorus in arbuscular mycorrhiza: up-regulation of secreted acid phosphatase gene in the host plant. Mol Plant-Microbe Interact 18:1046–1053

    Article  PubMed  CAS  Google Scholar 

  • Freche M, Rouquet N, Koutsoukos P, Lacout JL (1992) Effects of humic compounds on the crystal growth of dicalcium phosphate dihydrate. Agrochimica 36:500–510

    CAS  Google Scholar 

  • Frossard E, Condron LM, Oberson A, Sinaj S, Fardeau JC (2000) Processes governing phosphorus availability in temperate soils. J Environ Qual 29:15–23

    Article  CAS  Google Scholar 

  • George TS, Richardson AE, Simpson RJ (2005) Behavior of plant-derived extracellular phytase upon addition to soil. Soil Biol Biochem 37:977–988

    Article  CAS  Google Scholar 

  • Gerritse RG, Eksteen R (1978) Dissolved organic and inorganic phosphorus compounds in pig slurry: effect of drying. J Agric Sci 90:39–45

    Article  CAS  Google Scholar 

  • Goldberg S, Sposito G (1984a) A chemical model of phosphate adsorption by soils: I. Reference oxide minerals. Soil Sci Soc Am J 48:772–778

    Article  CAS  Google Scholar 

  • Golberg S, Sposito G (1984b) A chemical model of phosphate adsorption by soils. II. Noncalcareous soils. Soil Sci Soc Am J 48:779–783

    Article  Google Scholar 

  • Golberg S, Sposito G (1985) On the mechanism of specific phosphate adsorption by hydroxylated mineral surfaces: a review. Comm Soil Sci Plant Anal 16:801–821

    Article  Google Scholar 

  • Green VS, Dao TH, Stone G, Cavigelli MA (2006) Phosphorus fractions and dynamics among soil aggregate size classes of organic and conventional cropping systems. Soil Sci 171:874–885

    Article  CAS  Google Scholar 

  • Green VS, Dao TH, Stone G, Cavigelli MA, Baumhardt RL, Devine TE (2007) Bioactive phosphorus loss in simulated runoff from a phosphorus-enriched soil under two forage management systems. Soil Sci 172:721–732

    Article  CAS  Google Scholar 

  • Greiner R (2007) Phytate-degrading enzymes: regulation of synthesis in microorganisms and plants. In: Turner BL et al (eds) Inositol phosphates: linking agriculture and the environment. CABI, Oxfordshire, UK, pp 78–96

    Chapter  Google Scholar 

  • Greiner R, Carlsson NG, Alminger ML (2000) Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of Escherichia coli. J Biotechnol 84:53–62

    Article  CAS  Google Scholar 

  • Greiner R, Alminger ML, Carlsson NG, Muzquiz M, Burbano C, Cuadrado C, Pedrosa MM, Goyoaga C (2002) Pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases of legume seeds. J Agric Food Chem 50:6865–6870

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  PubMed  CAS  Google Scholar 

  • Haukka K, Kolmonen E, Hyder R, Hietala J, Vakkilainen K, Kairesalo T, Haario H, Sivonen K (2006) Effect of nutrient loading on bacterioplankton community composition in lake mesocosms. Microb Ecol 51:137–146

    Article  PubMed  Google Scholar 

  • Hayes JE, Richardson AE, Simpson RJ (2000) Components of organic phosphorus in soil extracts that are hydrolyzed by phytase and acid phosphatase. Biol Fertil Soils 32:279–286

    Article  CAS  Google Scholar 

  • Haynes RJ, Mokolobate MS (2001) Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutr Cycl Agroecosyst 59:47–63

    Article  CAS  Google Scholar 

  • He Z, Honeycutt CW (2001) Enzymatic characterization of organic phosphorus in animal manure. J Environ Qual 30:1685–1692

    Article  PubMed  CAS  Google Scholar 

  • He Z, Dao TH, Honeycutt CW (2006) Insoluble iron-related inorganic and organic phosphates in animal manure and soil. Soil Sci 171:117–126

    Article  CAS  Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil P fraction induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    Article  CAS  Google Scholar 

  • Helal HM (1990) Varietal differences in root phosphatase activity as related to the utilization of organic phosphates. Plant Soil 123:161–163

    Article  CAS  Google Scholar 

  • Henmi T, Huang PM (1985) Removal of phosphorus by poorly ordered clays as influenced by heating and grinding. Appl Clay Sci 1:133–144

    Article  CAS  Google Scholar 

  • Hilton J, O’Hare M, Bowes MJ, Jones JI (2006) How green is my river? A new paradigm of eutrophication in rivers. Sci Total Environ 365:66–83

    Article  PubMed  CAS  Google Scholar 

  • Hingston FJ, Posner AM, Quirk JP (1974) Anion adsorption by goethite and gibbsite. II. Desorption of anions from hydrous oxide surfaces. J Soil Sci 25:16–26

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic phosphorus in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P starvation. Plant Soil 113:161–165

    Article  CAS  Google Scholar 

  • Hoffland E, Boogaard RVD, Nelemans J, Findenegg G (1992) Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. New Phytol 122:675–680

    Article  CAS  Google Scholar 

  • Horst WJ, Kahm M (2004) Agronomic-based technologies toward more ecological use of phosphorus in agriculture. In: Valsami-Jones E (ed) Phosphorus in environmental technology: principles and applications. IWA, London, UK, pp 610–628

    Google Scholar 

  • Hull SR, Gray JSS, Montgomery R (1999) Autohydrolysis of phytic acid. Anal Biochem 273:252–260

    Article  PubMed  CAS  Google Scholar 

  • Hunter DA, McManus MT (1999) Comparison of acid phosphohydrolases in two genotypes of white clover with different responses to applied phosphate. J Plant Nutr 22:679–692

    Article  CAS  Google Scholar 

  • Jarvie HP, Neal C, Williams RJ, Neal M, Wickham HD, Hill LK, Wade AJ, Warwick A, White J (2002) Phosphorus sources, speciation and dynamics in the lowland eutrophic River Kennet, UK. Sci Total Environ 282–283:175–203

    Article  Google Scholar 

  • Jayachandran K, Schwab AP, Hetrick BD (1992) Mineralization of organic phosphorus by vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 24:897–903

    Article  CAS  Google Scholar 

  • Jayasundera S, Schmidt W, Reeves JB, Dao TH (2005) Direct 31P NMR spectroscopic measurement of phosphorous forms in dairy manures. J Food Agric Environ 3:328–333

    Google Scholar 

  • Johnson JF, Allan DL, Vance CP (1996) Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol 112:31–41

    Article  PubMed  CAS  Google Scholar 

  • Joner EJ, Johansen A (2000) Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol Res 104:81–86

    Article  CAS  Google Scholar 

  • Jones DL, Dennis PG, Owens AG, van Hees PAW (2003) Organic acids behavior in soils – misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Juo ASR, Fox RL (1977) Phosphate sorption characteristics of some benchmark soils of West Africa. Soil Sci 124:370–376

    Article  CAS  Google Scholar 

  • Koopmans GF, Chardon WJ, Dolfing J, Oenema O, van der Meer P, van Riemsdijk WH (2003) Wet chemical and phosphorus-31 nuclear magnetic resonance analysis of phosphorus speciation in a sandy soil receiving long-term fertilizer or animal manure applications. J Environ Qual 32:287–295

    PubMed  CAS  Google Scholar 

  • Kouno K, Wu J, Brookes PC (2002) Turnover of biomass C and P in soil following incorporation of glucose or ryegrass. Soil Biol Biochem 34:617–622

    Article  CAS  Google Scholar 

  • Kulaev I, Kulakovskaya T (2000) Polyphosphate and phosphate pump. Annu Rev Microbiol 54:709–734

    Article  PubMed  CAS  Google Scholar 

  • Lal D, Chung Y, Platt T, Lee T (1988) Twin cosmogonic radiotracer studies of phosphorus recycling and chemical fluxes in the upper ocean. Limnol Oceanogr 33:1559–1567

    Article  CAS  Google Scholar 

  • Lapeyrie F, Ranger J, Vairelles D (1991) Phosphate solubilizing activity of ectomycorrhizal fungi in vitro. Can J Bot 69:342–346

    Article  CAS  Google Scholar 

  • Lehrfeld J (1989) High-performance liquid chromatography analysis of phytic acid on a pH-stable, macroporous polymer column. Cereal Chem 66:510–515

    CAS  Google Scholar 

  • Lehrfeld J (1994) HPLC Separation and quantitation of phytic acid and some inositol phosphates in foods: problems and solutions. J Agric Food Chem 42:2726–2731

    Article  CAS  Google Scholar 

  • Lemtiri-Chlieh F, MacRobbie EA, Webb AA, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD, Brearley CA (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci 100:10091–10095

    Article  PubMed  CAS  Google Scholar 

  • Leyval C, Reid CPP (1991) Utilization of microbial siderophores by mycorrhizal and non-mycorrhizal pine roots. New Phytol 119:93–98

    Article  CAS  Google Scholar 

  • Li XL, George E, Marschner H (1991) Extension of the phosphorus depletion zone in vesicular arbuscular mycorrhizal white clover in a calcareous soil. Plant Soil 36:41–48

    Article  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York, NY

    Google Scholar 

  • Lindsay WL, Stephenson HF (1959) Nature of the reactions of monocalcium phosphate monohydrate in soils. II. Dissolution and precipitation reactions involving iron, aluminum, manganese, and calcium. Soil Sci Soc Am J 23:18–22

    Article  CAS  Google Scholar 

  • Lindsay WL, Frazier AW, Stephenson HF (1962) Identification of reaction products from phosphate fertilizers in soils. Soil Sci Soc Am J 26:446–452

    Article  CAS  Google Scholar 

  • Lopez-Gutierrez JC, Toro M, Lopez-Hernandez D (2004) Seasonality of organic phosphorus mineralization in the rhizosphere of the native savanna grass, Trachypogon plumosus. Soil Biol Biochem 36:1675–1684

    Article  CAS  Google Scholar 

  • Lott J, Ockenden I, Raboy V, Batten GD (2000) Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Sci Res 10:11–33

    CAS  Google Scholar 

  • Lupwayi NZ, Clayton GW, O’Donovan JT, Harker KN, Turkington TK, Soon YK (2007) Phosphorus release during decomposition of crop residues under conventional and zero tillage. Soil Tillage Res 95:231–239

    Article  Google Scholar 

  • Lutzenkirchen J, Behra Ph (1996) On the surface precipitation model for cation sorption at the (Hydr)oxide water interface. Aquat Geochem 1:375–397

    Article  Google Scholar 

  • Ma H, Allen HE, Yin Y (2001) Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent. Water Res 35:985–996

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Wright E, Ge Y, Bell J, Xi Y, Bouton JH, Wang Z (2009) Improving phosphorus acquisition of white clover (Trifolium repens L.) by transgenic expression of plant-derived phytase and acid phosphatase genes. Plant Sci 176:479–488

    Article  CAS  Google Scholar 

  • Mainstone CP, Parr W (2002) Phosphorus in rivers: ecology and management. Sci Total Environ 282–283:25–47

    Article  Google Scholar 

  • Martin RR, Smart RStC (1987) X-ray photoelectron studies of anion adsorption on goethite. Soil Sci Soc Am J 51:54–56

    Article  CAS  Google Scholar 

  • McKercher RB, Anderson G (1989) Organic phosphate sorption by neutral and basic soils. Commun Soil Sci Plant Anal 20:723–732

    Article  CAS  Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burn RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York, pp 1–33

    Google Scholar 

  • Neumann G, Martinoia E (2002) Cluster roots – an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167

    Article  PubMed  CAS  Google Scholar 

  • Ognalaga M, Frossard E, Thomas F (1994) Glucose-1-phosphate and myo-inositol hexaphosphate adsorption mechanisms on goethite. Soil Sci Soc Am J 58:332–337

    Article  CAS  Google Scholar 

  • Otani T, Ae N (1999) Extraction of organic phosphorus in andosols by various methods. Soil Sci Plant Nutr 45:151–161

    Article  CAS  Google Scholar 

  • Pankhurst CE, Doube BM, Gupta VVSR (1997) Biological indicators of soil health: synthesis. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CABI, Oxfordshire, UK, pp 419–435

    Google Scholar 

  • Pant HK, Edwards AC, Vaughan D (1994) Extraction, molecular fractionation and enzyme degradation of organically associated phosphorus in soil solutions. Biol Fertil Soils 17:196–200

    Article  CAS  Google Scholar 

  • Parfitt RL (1977) Phosphate adsorption on an Oxisol. Soil Sci Soc Am J 41:1064–1067

    Article  CAS  Google Scholar 

  • Parfitt RL (1979) The nature of the phosphate-geothite complex formed with Ca(H2PO4)2 at different surface coverage. Soil Sci Soc Am J 43:623–625

    Article  CAS  Google Scholar 

  • Parfitt RL (1989) Phosphate reactions with natural allophane, ferrihydrite, and goethite. J Soil Sci 40:359–369

    Article  CAS  Google Scholar 

  • Parfitt RL, Atkinson RJ, Smart RStC (1975) The mechanism of phosphate fixation by iron oxides. Soil Sci Soc Am J 39:837–841

    Article  CAS  Google Scholar 

  • Peperzak P, Caldwell AG, Hunziker RR, Black CA (1959) Phosphorus fractions in manures. Soil Sci 87:293–302

    Article  CAS  Google Scholar 

  • Plessner O, Klapatch T, Guerinot ML (1993) Siderophore utilization by Bradyrhizobium japonicum. Appl Environ Microbiol 59:1688–1690

    PubMed  CAS  Google Scholar 

  • Quan C, Fan S, Ohta Y (2003) Pathway of dephosphorylation of myo-inositol hexakisphosphate by a novel phytase from Candida krusei WZ-001. J Biosci Bioeng 95:530–533

    PubMed  CAS  Google Scholar 

  • Quinn JP, Kulakova AN, Cooley NA, McGrath JW (2007) New ways to break an old bond: the bacterial carbon–phosphorus hydrolases and their role in biogeochemical phosphorus cycling. Environ Microbiol 9:2392–2400

    Article  PubMed  CAS  Google Scholar 

  • Quiquampoix H (1987) A stepwise approach to the understanding of extracellular enzyme activity in soil II. Competitive effects on the adsorption of a beta-d-glucosidase in mixed mineral or organo-mineral systems. Biochimie 69:765–771

    Article  PubMed  CAS  Google Scholar 

  • Quiquampoix H, Servagent-Noinville S, Baron M-H (2002) Enzyme adsorption on soil mineral surfaces and consequences for the catalytic activity. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity ecology and applications. Marcel-Dekker, New York, NY, pp 285–306

    Google Scholar 

  • Ragothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    Article  Google Scholar 

  • Rao SC, Dao TH (2008) Relationships between phosphorus uptake in two grain legumes and soil bioactive P pools in fertilized and manure-amended soil. Agron J 100:1–6

    Article  CAS  Google Scholar 

  • Reid CPP, Crowley DE, Kim HJ, Powell PE, Szaniszlo PJ (1984) Utilization of iron by oat when supplied as ferrated synthetic chelate or as ferrated hydroxamate siderophore. J Plant Nutr 7:437–447

    Article  CAS  Google Scholar 

  • Roels J, Verstraete W (2001) Biological formation of volatile phosphorus compounds. Bioresour Technol 79:243–250

    Article  PubMed  CAS  Google Scholar 

  • Sandberg AS, Ahderinne R (1986) High-performance liquid chromatographic method for determination of inositol tri-, tetra-, penta-, and hexaphosphates in foods and intestinal contents. J Food Sci 51:547–550

    Article  CAS  Google Scholar 

  • Sandberg A-S, Brune M, Carlsson NG, Hallberg L, Skoglund E, Rossander-HulthĂ©n L (1999) Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans. Am J Clin Nutr 70:240–246

    PubMed  CAS  Google Scholar 

  • Sanyal SK, De Datta SK, Chan PY (1993) Phosphate sorption-desorption behavior of some acidic soils of South and Southeast Asia. Soil Sci Soc Am J 57:937–945

    Article  CAS  Google Scholar 

  • Schindler PW, Furst B, Dick R, Wolf PU (1976) Ligand properties of surface silanol groups. I. Surface complex formation with Fe3+, Cu2+, Cd2+, and Pb2+. J Colloid Interface Sci 55: 469–475

    Article  CAS  Google Scholar 

  • Scott JJ, Loewus FA (1986) Phytate metabolism in plants. In: Graf E (ed) Phytic acid: chemistry and applications. Pilatus, Minneapolis, MN, pp 23–42

    Google Scholar 

  • Shi J, Wang H, Hazebroek J, Ertl DS, Harp T (2005) The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J 42:708–719

    Article  PubMed  CAS  Google Scholar 

  • Shin E, Han JS, Min J, Min S-H, Park JK, Rowell RM (2004) Phosphate adsorption on aluminum-impregnated mesoporous silicates: surface structure and behavior of adsorbents. Environ Sci Technol 38:912–917

    Article  PubMed  CAS  Google Scholar 

  • Sigel H, Hofstetter F, Martin RB, Milburn RM, Scheller-Krattiger V, Scheller KH (1984) General considerations on transphosphorylations: mechanism of the metal ion facilitated dephosphorylation of nucleoside 5′-triphosphates, including promotion of atp dephosphorylation by addition of adenosine 5′-monophosphate. J Am Chem Soc 106:7935–7946

    Article  CAS  Google Scholar 

  • Singh S, Kapoor KK (1998) Effects of inoculations of phosphate-solubilizing microorganisms and an arbuscular mycorrhizal fungus on mungbean grown under natural soil conditions. Mycorrhiza 7:249–253

    Article  CAS  Google Scholar 

  • Smith VH (1982) The nitrogen and phosphorus dependence of algal biomass in lakes: an empirical and theoretical analysis. Limnol Oceanogr 27:1101–1112

    Article  CAS  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39:221–244

    Article  CAS  Google Scholar 

  • Soon YK, Arshad MA (2002) Comparison of the decomposition and N and P mineralization of canola, pea, and wheat residues. Biol Fertil Soils 36:10–17

    Article  CAS  Google Scholar 

  • Sposito G (1986) Distinguishing adsorption from surface precipitation. In: Davis JA, Hayes KF (eds) Geochemical processes at mineral surfaces, vol 323, American chemical society symposium series. Washington, DC, pp 217–228

    Chapter  Google Scholar 

  • Stewart JWB, Tiessen H (1987) Dynamics of soil organic phosphorus. Biogeochem 4:41–60

    Article  CAS  Google Scholar 

  • Stumm WH, Hohl H, Dalang F (1976) Interaction of metal ions with hydrous oxide surfaces. Croat Chem Acta 48:491–504

    CAS  Google Scholar 

  • Tadano T, Sakai H (1991) Secretion of acid phosphatases by roots of several crop species under phosphorus deficient conditions. Soil Sci Plant Nutr 37:129–140

    Article  CAS  Google Scholar 

  • Tanaka K, Yoshida T, Kasai Z (1974) Radioautographic demonstration of the accumulation site of phytic acid in rice and wheat grains. Plant Cell Physiol 15:147–151

    CAS  Google Scholar 

  • Tarafdar JC, Claassen N (2003) Organic phosphorus utilization by wheat plants under sterile conditions. Biol Fertil Soils 39:25–29

    Article  CAS  Google Scholar 

  • Tarafdar JC, Marschner H (1994) Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:381–395

    Article  Google Scholar 

  • Ternan NG, Mc Grath JW, Mc Mullan G, Quinn JP (1998) Review: organo-phosphonates: occurrence, synthesis and biodegradation by microorganisms. World J Microbiol Biotechnol 14:635–647

    Article  CAS  Google Scholar 

  • Torrent J, Barren V, Schwertmann U (1990) Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci Soc Am J 54:1007–1012

    Article  Google Scholar 

  • Turner BL, McKelvie ID, Haygarth PM (2002) Characterization of water-extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biol Biochem 34:27–35

    Article  CAS  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003) Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH–EDTA extracts. Soil Sci Soc Am J 67:497–510

    Article  CAS  Google Scholar 

  • Turner BL, Frossard E, Baldwin DS (2005) Organic phosphorus in the environment. CABI, Oxfordshire, UK

    Book  Google Scholar 

  • Turner BL, Richardson AE, Mullaney EJ (2007) Inositol phosphates: linking agriculture and environment. CABI, Oxfordshire, UK

    Book  Google Scholar 

  • Ullman WJ, Kirchman DL, Welch SA, Vandevivere P (1996) Laboratory evidence for microbially mediated silicate mineral dissolution in nature. Chem Geol 132:11–17

    Article  CAS  Google Scholar 

  • Vats P, Bhattacharyya MS, Banerjee UC (2005) Use of phytases (myo-inositol hexakisphosphate phosphohydrolases) for combating environmental pollution: a biological approach. Crit Rev Environ Sci Technol 35:469–486

    Article  CAS  Google Scholar 

  • Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chick pea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197

    Article  CAS  Google Scholar 

  • Voglmaier SM, Bembenek ME, Kaplin AI, Dorman G, Olszewski JD, Prestwich GD, Snyder SH (1996) Purified inositol hexakisphosphate kinase is an ATP synthase: diphosphoinositol pentakisphosphate as a high-energy phosphate donor. Proc Natl Acad Sci 93:4305–4310

    Article  PubMed  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, purification, and potential biotechnological applications. Crit Rev Biotechnol 23:29–60

    Article  PubMed  CAS  Google Scholar 

  • Wasaki J, Yamamura T, Shinano T, Osaki M (2003) Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant Soil 248:129–136

    Article  CAS  Google Scholar 

  • Weaver JD, Mullaney EJ, Lei XG (2007) Altering the substrate specificity site of Aspergillus niger PhyB shifts the pH optimum to pH 3.2. Appl Microbiol Biotechnol 76:117–122

    Article  PubMed  CAS  Google Scholar 

  • White AK, Metcalfe WW (2007) Reduced phosphorus compounds. Annu Rev Microbiol 61:379–400

    Article  PubMed  CAS  Google Scholar 

  • Wieland E, Wehrli B, Stumm W (1988) The coordination chemistry of weathering. III. A generalization on the dissolution rates of minerals. Geochim Cosmochim Acta 52:1969–1981

    Article  CAS  Google Scholar 

  • Wild A, Oake OL (1966) Organic phosphate compounds in calcium chloride extracts of soils: identification and availability to plants. J Soil Sci 17:356–371

    Article  CAS  Google Scholar 

  • Yamagata H, Tanaka K, Kasai Z (1980) Purification and characterization of acid phosphatase in aleurone particles of rice grains. Plant Cell 21:1449–1460

    CAS  Google Scholar 

  • Zhang H, Dao TH, Basta NT, Dayton EA, Daniel TC (2006) Remediation techniques for manure nutrient loaded soils. In: Rice JM, Cadwell DF, Humenik FJ (eds) National Center for Manure and Animal Waste Management White Papers. American Society Agriculture Biological Engineers. Pub. 913C0306. St. Joseph, MI, pp 483–503

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh H. Dao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dao, T.H. (2010). Extracellular Enzymes in Sensing Environmental Nutrients and Ecosystem Changes: Ligand Mediation in Organic Phosphorus Cycling. In: Shukla, G., Varma, A. (eds) Soil Enzymology. Soil Biology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14225-3_5

Download citation

Publish with us

Policies and ethics