Skip to main content

Bacillus and Paenibacillus spp.: Potential PGPR for Sustainable Agriculture

  • Chapter
  • First Online:
Plant Growth and Health Promoting Bacteria

Abstract

The Gram-positive aerobic endospore-forming bacteria (AEFB) belonging to the genus Bacillus and Paenibacillus are essentially ubiquitous and occur abundantly in most rhizospheric soils. In the rhizosphere, species of these two genera are involved in atmospheric nitrogen fixation, solubilization of soil phosphorus and uptake of micronutrients, and production of phytohormones and antimicrobial metabolites. Multiple species of Bacillus and Paenibacillus affect the crop growth and its health by three different ecological mechanisms viz, promotion of host plant nutrition and growth, antagonism against fungal, bacterial, nematode pathogens and insect pests, and stimulation of host defence mechanisms. Specific strains of both Bacillus and Paenibacillus spp. are known to elicit induced systemic resistance (ISR) similar to that of Pseudomonas spp. which leads to the stimulation of host defence mechanisms against multiple pathogens on diverse crop plants. Several species of Bacillus and Paenibacillus are the major source of broad spectrum peptide antibiotics that are active against various microbial and nematode pathogens. Endophytic colonization and biofilm formation by these two genera are also reported. These plant growth promoting abilities of Bacillus and Paenibacillus can make them suitable plant growth promoting rhizobacteria for their application in sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alström S (1991) Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterisation with rhizosphere pseudomonads. J Gen Appl Microbiol 37:495–501

    Article  Google Scholar 

  • Araujo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol 68:4906–4914

    Article  PubMed  CAS  Google Scholar 

  • Araujo FF, Henning AA, Hungria M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 21:1639–1645

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger WT Jr (1998) Plant growth regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62:46–151

    Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    PubMed  CAS  Google Scholar 

  • Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit – ribosomal RNA sequences. Lett Appl Microbiol 13:202–206

    Article  CAS  Google Scholar 

  • Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test: proposal for the creation of a new genus Paenibacillus. Antonie Leeuwenhoek 64:253–260

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of arbidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  PubMed  CAS  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JW, Jacobsen BJ (2002) Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol 61:289–298

    Article  CAS  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JW, Jacobsen BJ (2004) Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biol Control 30:342–350

    Article  Google Scholar 

  • Basha S, Ulaganathan K (2002) Antagonism of Bacillus species (strain BC121) towards Curvularia lunata. Curr Sci 82:1457–1463

    CAS  Google Scholar 

  • Beatty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48:159–169

    Article  PubMed  CAS  Google Scholar 

  • Berge OMH, Guinebretièr W, Achouak P, Normand T, Heulin P (2002) Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52:607–616

    PubMed  CAS  Google Scholar 

  • Bergey DH, Breed RS, Murray EGD, Hitchens AP (1939) Bergey’s manual of determinative bacteriology, 5th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Bizani D, Dominguez APM, Brandelli A (2005) Purification and partial chemical characterization of the antimicrobial peptide cerein 8A. Lett Appl Microbiol 41:269–273

    Article  PubMed  CAS  Google Scholar 

  • Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos FJ, Pena G, Nunez-Valdez ME, Soberon M, Quintero R (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64:4965–4972

    PubMed  CAS  Google Scholar 

  • Buchanan RE, Gibbons NE (1974) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Bünemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A (2004) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36:889–901

    Article  CAS  Google Scholar 

  • Cabello M, Irrazabal G, Bucsinszky AM, Saparrat M, Schalamuck S (2005) Effect of an arbuscular mycorrhizal fungus, G. mosseae and a rock-phosphate-solubilizing fungus, P. thomii in Mentha piperita growth in a soilless medium. J Basic Microbiol 45:182–189

    Article  PubMed  Google Scholar 

  • Cakmakci R, Erat M, Erdogan U, Domez MF (2007) The influence of plant growth–promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J Plant Nutr Soil Sci 170:288–295

    Article  CAS  Google Scholar 

  • Chak K, Chao D, Tseng M, Kao S, Tuan S, Feng T (1994) Determination and distribution of cry-type genes of Bacillus thuringiensis isolates from Taiwan. Appl Environ Microbiol 60:2415–2420

    PubMed  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arunshen AB, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Choi SK, Park SY, Kim R, Lee CH, Kim JF, Park SH (2007) Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochem Biophys Res Commun 365:89–95

    Article  PubMed  CAS  Google Scholar 

  • Claus D, Berkeley RCW (1986) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 1105–1139

    Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478

    Article  PubMed  CAS  Google Scholar 

  • Danielsson J, Reva O, Meijer J (2006) Protection of oilseed rape (Brassica napus) toward fungal pathogens by strains of plant-associated Bacillus amyloliquefaciens. Microb Ecol 54:134–140

    Article  PubMed  Google Scholar 

  • Davey ME, O’Toole AG (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  PubMed  CAS  Google Scholar 

  • Deubel A, Gransee A, Merbach W (2000) Transformation of organic rhizodeposits by rhizoplane bacteria and its influence on the availability of tertiary calcium phosphate. J Plant Nutr Soil Sci 163:387–392

    Article  CAS  Google Scholar 

  • Dijksterhuis J, Sanders M, Gorris LGM, Smid EJ (1999) Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J Appl Microbiol 86:13–21

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Wang J, Liu Y, Chen S (2005) Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 99:1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Dodor DE, Tabatabai AM (2003) Effect of cropping systems on phosphatases in soils. J Plant Nutr Soil Sci 166:7–13

    Article  CAS  Google Scholar 

  • Dong YH, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia caratovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960

    Article  PubMed  CAS  Google Scholar 

  • Ezawa T, Smith SE, Smith FA (2002) P metabolism and transport in AM fungi. Plant Soil 244:221–230

    Article  CAS  Google Scholar 

  • Emtiazi G, Pooyan M, Shamalnasab M (2007) Cellulase activities in Nitrogen Fixing Paenibacillus isolated from soil in N-free media. World J Agril Sci 3:602–608

    Google Scholar 

  • Felske A, Wolterink A, Van Lis R, de Vos WM, Akkermans ADL (1999) Searching for predominant soil bacteria: 16S rDNA cloning versus strain cultivation. FEMS Microbiol Ecol 30:137–145

    Article  PubMed  CAS  Google Scholar 

  • Fukuda H, Takahashi M, Fujii T, Ogawa T (1989) Ethylene production from L-methionine by Cryptococcus albidus. J Ferment Bioeng 67:173–175

    Article  CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2003) Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microbiol Ecol 45:302–316

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth promotion by free living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Goenadi DH, Siswanto A, Sugiarto Y (2000) Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Sci Soc Am J 64:927–932

    CAS  Google Scholar 

  • Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram-negative bacteria. Biol Agric Horttic 12:185–193

    Article  Google Scholar 

  • Govindasamy V, Senthilkumar M, UpendraKumar AK (2008) PGPR-biotechnology for management of abiotic and biotic stresses in crop plants. In: Maheshwari DK, Dubey RC (eds) Potential microorganisms for sustainable agriculture. IK International Publishing, New Delhi, pp 26–48

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: Commonalities and distinctions in the plant bacterium signaling process. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Guemouri-Athmani S, Berge O, Bourrain M, Mavingui P, Thiy JM, Bhatnagar T, Heulin T (2000) Diversity of Paenibacillus polymyxa in the rhizosphere of wheat (Triticum durum) in Algerian soils. Eur J Soil Biol 36:149–159

    Article  Google Scholar 

  • Gong XY, Luan ZK, Pei YS, Wang SG (2003) Culture conditions for floculant production by Paenibacillus polymyxa BY-28. J Environ Sci Health Part A 38:657–669

    Article  CAS  Google Scholar 

  • Gutierrez-Manero FG, Ramos-Solano B, Probanza A, Mehouachi J, Tadeo FR, Talon M (2001) The plant-growth-promoting rhizobacteria bacillus pumilus and bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Haggag WM, Timmusk S (2008) Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol 104:961–969

    Article  PubMed  CAS  Google Scholar 

  • Hallman J, Quadt-Hallman A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  Google Scholar 

  • Handelsman J, Raffel S, Mester E, Wunderlich L, Grau C (1990) Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Appl Environ Microbiol 56:713–718

    PubMed  CAS  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:245–249

    Article  Google Scholar 

  • Hashizume T, Nakamura K, Nakagawa S (1996) Affinities of BO- 2727 for bacterial penicillin-binding proteins and morphological change of gram negative rods. J Antibiot 50:139–142

    Article  Google Scholar 

  • He Z, Kisla D, Zhang L, Yuan C, Green-Church KB, Yousef AE (2007) Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl Environ Microbiol 73:168–178

    Article  PubMed  CAS  Google Scholar 

  • Heulin T, Berge O, Mavingui P, Gouzou L, Hebbar KP, Balandreau J (1994) Bacillus polymyxa and Rahnella aquatilis, the dominant N2-fixing bacteria associated with wheat rhizosphere in French soils. Eur J Soil Biol 30:35–42

    Google Scholar 

  • Hilda R, Fraga R (2000) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–359

    Google Scholar 

  • Hiltner L (1904) U¨ ber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unterbessonderer Berucksichtigung der Grundung und Brache. Arb Dtsch Landwirtsch Ges Berl 98:59–78

    Google Scholar 

  • Holl FB, Chanway CP (1992) Rhizosphere colonization and seedling growth promotion of lodgepole pine by Bacillus polymyxa. Can J Microbiol 38:303–308

    Article  Google Scholar 

  • Holl FB, Chanway CP, Turkington R, Radley RA (1988) Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol Biochem 20:19–24

    Article  CAS  Google Scholar 

  • Hu X, Boyer GL (1996) Siderophore-mediated aluminum uptake by Bacillus megaterium ATCC 19213. Appl Environ Microbiol 62:4044–4048

    PubMed  CAS  Google Scholar 

  • Hughes DF, Jolley VD, Brown JC (1992) Role of potassium in iron-stress response mechanisms of strategy I and strategy II plants. J Plant Nutr 15:1821–1839

    Article  CAS  Google Scholar 

  • Hung PQ, Senthilkumar M, Govindasamy V, Annapurna K (2007) Isolation and characterization of endophytic bacteria from wild and cultivated soybean varieties. Biol Fertil Soils 44:155–162

    Article  Google Scholar 

  • Hyun JW, Kim YH, Lee YS, Park WM (1999) Isolation and evaluation of protective effect against Fusarium wilt of sesame plants of antibiotic substance from Bacillus polymyxa KB-8. Plant Pathol J 15:152–157

    Google Scholar 

  • Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquifaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109

    PubMed  CAS  Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velázquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568

    Article  Google Scholar 

  • Jackson PJ, Hill KK, Laker MT, Ticknor LO, Keim P (1999) Genetic comparison of B. anthracis and its close relatives using RFLP and PCR analysis. J Appl Microbiol 87:263–269

    Article  PubMed  CAS  Google Scholar 

  • Jung HK, Hong JH, Park SC, Park BK, Nam DH, Kim SD (2007) Production and physicochemical characterization of β-glucan produced by Paenibacillus polymyxa JB115. Biotechnol Bioprocess Eng 12:713–719

    Article  CAS  Google Scholar 

  • Kajimura Y, Kaneda M (1996) Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8: taxonomy, fermentation, isolation, structure elucidation, and biological activity. J Antibiot 49:129–135

    Article  PubMed  CAS  Google Scholar 

  • Kajimura Y, Kaneda M (1997) Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J Antibiot 50:220–228

    Article  CAS  Google Scholar 

  • Kajimura Y, Sugiyama M, Kaneda M (1995) Bacillopeptins, new cyclic lipopeptide antibiotics from Bacillus subtilis FR-2. J Antibiot 48:1095–1103

    Article  PubMed  CAS  Google Scholar 

  • Karpunina LV, Mel’nikova UY, Konnova SA (2003) Biological role of lectins from the nitrogen-fixing Paenibacillus polymyxa strain 1460 during bacterial-plantroot interactions. Curr Microbiol 47:376–378

    Article  PubMed  CAS  Google Scholar 

  • Khan KS, Joergensen RG (2009) Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresour Technol 100:303–309

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Park J, Choi SW, Choi KH, Lee GP, Ban SJ, Lee CH, Kim CS (2003) Isolation and characterization of Bacillus strains for biological control. J Microbiol 41:196–201

    CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: Proceedings of VIth international conference on plant pathogenic bacteria, Angres, France, vol 2, pp 879–882

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Kucey RMN, Janzen HH, Legget ME (1989) Microbial mediated increases in plant available phosphorus. Adv Agron 42:199–228

    Article  CAS  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni GV, Azevedo M, Bertero G, Bessières P, Bolotin A, Borchert S (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  PubMed  CAS  Google Scholar 

  • Lacey LA, Frutos R, Kaya HK, Vail P (2001) Insect pathogens as biological control agents: Do they have a future? Biol Control 21:230–248

    Article  Google Scholar 

  • Lee H, Churey JJ, Worobo RW (2008) Purification and structural characterization of bacillomycin F produced by a bacterial honey isolate active against Byssochlamys fulva H25. J Appl Microbiol 105:663–673

    Article  PubMed  CAS  Google Scholar 

  • Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton HAS, Harbour A (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol 78:97–108

    Article  PubMed  CAS  Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry, and possible role in the biocontrol of plant pathogens. Ann Rev Phytopathol 24:187–209

    Article  CAS  Google Scholar 

  • Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol 22: 325–334

    Article  CAS  Google Scholar 

  • Lindberg T, Granhall U, Tomenius K (1985) Infectivity and acetylene reduction of diazotrophic rhizosphere bacteria in wheat (Triticum aestivum) seedlings under gnotobiotic conditions. Biol Fertil Soils 1:123–129

    Article  Google Scholar 

  • Liu ZL, Sinclair JB (1992) Population dynamics of Bacillus megaterium strain B153-2-2 in the rhizosphere of soybean. Phytopathology 82:1297–1301

    Article  Google Scholar 

  • Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516

    Article  PubMed  CAS  Google Scholar 

  • Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field grown cucumber (Cucumis sativus L.). Microbiol Ecol 34:210–223

    Article  Google Scholar 

  • Martin NL, Hu H, Moake M, Churey JJ, Whittal R, Worobo RW, Vederas JC (2003) Isolation, structural characterization, and properties of mattacin (Polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis. J Bio Chem 278:13124–13132

    Article  CAS  Google Scholar 

  • Mavingui P, Heulin T (1994) In vitro chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus polymyxa. Soil Biol Biochem 26:801–803

    Article  CAS  Google Scholar 

  • Mavingui P, Laguerre G, Berge O, Heulin T (1992) Genetic and phenotypic diversity of Bacillus polymyxa in soil and in the wheat rhizosphere. Appl Environ Microbiol 58:1894–1903

    PubMed  CAS  Google Scholar 

  • May R, Volksh B, Kampmann G (1996) Antagonistic activities of epiphytic bacteria from soybean leaves against Pseudomonas syringae pv. glycinea in vitro and in planta. Microbiol Ecol 34:118–124

    Article  Google Scholar 

  • McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    Article  CAS  Google Scholar 

  • Mhammedai J, Peypoux F, Besson F, Michel G (1982) Bacillomycin F, a new antibiotic of iturin group: isolation and characterization. J Antibiot 35:306–311

    Article  Google Scholar 

  • Mok MC (1994) Cytokinins and plant development – an overview. In: Mok DWS, Mok MC (eds) Cytokinins: chemistry, activity and function. CRC, New York, pp 115–166

    Google Scholar 

  • Monteiro L, Mariano R, de Lima R, Souto-Maior AM (2005) Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris. Braz Arch Biol Technol 48:23–29

    Article  CAS  Google Scholar 

  • Nakao M, Kondo M, Tsuchiya K (1981) Light and Electron Microscopy of the morphological response of Eshcherichia coli and Serratia marescens to Cefmenoxime (SCE-1365): a new broad spectrum Cephalosprorin. J Antibiot 34:1046–1054

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB (1986) A saga of siderophores. In: Swinburne TR (ed) Siderophores and plant diseases. Plenum, New York, pp 289–298

    Chapter  Google Scholar 

  • Nicholson WL (2002) Roles of Bacillus endospores in the environment. Cell Mol Life Sci 59:410–416

    Article  PubMed  CAS  Google Scholar 

  • Nielsen P, Sorensen J (1997) Multi-target and medium independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol 22:183–192

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  PubMed  CAS  Google Scholar 

  • Paulitz TC, Belanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133

    Article  PubMed  CAS  Google Scholar 

  • Pichard B, Larue JP, Thouvenot D (1995) Gavesrin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol Lett 133:215–218

    Article  PubMed  CAS  Google Scholar 

  • Pinchuk IV, Bressollier P, Sorokulova IB, Verneuil B, Urdaci MC (2002) Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res Microbiol 153:269–276

    Article  PubMed  CAS  Google Scholar 

  • Piuri M, Sanchez-Rivas C, Ruzal SM (1998) A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Lett Appl Microbiol 27:9–13

    Article  PubMed  CAS  Google Scholar 

  • Pradhan N, Sukla LB (2005) Solubilization of inorganic phosphate by fungi isolated from agriculture soil. Afr J Biotechnol 5:850–854

    Google Scholar 

  • Priest F (1993) Systematics and ecology of Bacillus: Bacillus subtilis and other gram-positive bacteria, biochemistry, physiology, and molecular genetics. American Society for Microbiology, Washington DC, pp 3–16

    Google Scholar 

  • Pueyo MT, Bloch CJ, Carmona RAM, Masico P (2009) Lipopeptides produced by a soil Bacillus megaterium strain. Microbiol Ecol 57:367–378

    Article  CAS  Google Scholar 

  • Raffel SJ, Stabb EV, Milner JL, Handelsman J (1996) Genotypic and phenotypic analysis of zwittermicin A-producing strains of Bacillus cereus. Microbiol 142:3425–3436

    Article  CAS  Google Scholar 

  • Reiter B, Bürgmann H, Burg K, Sessitsch A (2003) Endophytic nifH gene diversity in African sweet potato. Can J Microbiol 49:549–555

    Article  PubMed  CAS  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wie HX (2003) Bacterial volatiles promote growth of Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Kima J, Choi O, Kima SH, Park CS (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control 39:282–289

    Article  Google Scholar 

  • Safdi N, Cherif M, Hajlaui MR, Boudabbous A, Belanger R (2002) Isolation and partial purification of antifungal metabolites produced by Bacillus cereus. Ann Microbiol 52:323–337

    Google Scholar 

  • Salerno CM, Sagardoy MA (2003) Antagonistic activity by Bacillus subtilis against Xanthomonas campestris pv. glycines under controlled conditions. Span J Agri Res 1:55–58

    Google Scholar 

  • Seldin L, Penido EGC (1986) Identification of Paenibacillus azotofixans using API tests. Antonie Leeuwenhoek 52:403–409

    Article  PubMed  CAS  Google Scholar 

  • Seldin L, van Elsas JD, Penido EGC (1984) Buciffusazotofixans sp. nov., a nitrogen-fixing species from Brazilian soils and grass roots. Int J Syst Bacteriol 34:451–456

    Article  CAS  Google Scholar 

  • Seldin L, Soares Rosado A, da Cruz DW, Nobrega A, van Elsas JD, Paiva E (1998) Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, and non-root-associated soil from maize planted in two different Brazilian soils. Appl Environ Microbiol 64:3860–3868

    PubMed  CAS  Google Scholar 

  • Seldin L, de Azevedo FS, Alviano DS, Alviano CS, de Freire Bastos MC (1999) Inhibitory activity of Paenibacillus polymyxa SCE2 against human pathogenic micro-organisms. Lett Appl Microbiol 28:423–427

    Article  PubMed  CAS  Google Scholar 

  • Selim S, Negrel J, Govaerts C, Gianinazzi S, Tuinen DV (2005) Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. Strain B2 isolated from the sorghum mycorhizosphere. Appl Environ Microbiol 71:6501–6507

    Article  PubMed  CAS  Google Scholar 

  • Senthilkumar M, Govindasamy V, Annapurna K (2007a) Role of antibiosis in suppression of charcoal rot disease by soybean endophyte Paenibacillus sp. HKA-15. Curr Microbiol 55:25–29

    Article  PubMed  CAS  Google Scholar 

  • Senthilkumar M, Govindasamy V, Dureja P, Annapurna K (2007b) Purification and partial characterization of antifungal peptides from soybean endophyte-Paenibacillus sp strain HKA-15. J Plant Biochem Biotechnol 16:131–134

    CAS  Google Scholar 

  • Senthilkumar M, Swarnalakshmi K, Govindasamy V, Lee YK, Annapurna K (2009) Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus, Rhizoctonia bataticola. Curr Microbiol 58:288–293

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50:239–249

    Article  PubMed  CAS  Google Scholar 

  • Sharma K, Dak G, Agrawal A, Bhatnagar M, Sharma R (2007) Effect of phosphate solubilizing bacteria on the germination of Cicer arietinum seeds and seedling growth. J Herb Med Toxicol 1:61–63

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69:167–179

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Baghel G, Akhtar MS (2007) Biocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentil. World J Microbiol Biotechnol 23:435–441

    Article  CAS  Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. American Society for Microbiology, Washington DC

    Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  PubMed  CAS  Google Scholar 

  • Son TTN, Diep CN, Giang TTM (2006) Effect of bradyrhizobia and phosphate solubilizing bacteria application on Soybean in rotational system in the Mekong delta. Omonrice 14:48–57

    Google Scholar 

  • Stabb EV, Jacobson LM, Handelsman J (1994) Zwittermicin A producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol 60:4404–4412

    PubMed  CAS  Google Scholar 

  • Subbarao NS (1988) Phosphate solubilizing micro-organism. In: Biofertilizer in agriculture and forestry. Regional Biofertilizer Development Centre, Hissar, India, pp 133–142

    Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane yields. Field Crops Res 77:43–49

    Article  Google Scholar 

  • Surette MA, Sturz AV, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253:381–390

    Article  CAS  Google Scholar 

  • Tamehiro N, Okamoto-Hosoya Y, Okamoto S, Ubukata M, Hamada M, Naganawa H, Ochi K (2002) Bacilysocin, a Novel Phospholipid antibiotic produced by Bacillus subtilis 168. J Antibiot 46:315–320

    CAS  Google Scholar 

  • Tendulkar SR, Saikumar YK, Patel V, Raghotama Munshi TK, Balaram P, Chatoo BB (2007) Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnoporthe grisea. J Appl Microbiol 103:2331–2339

    Article  PubMed  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1995) Current concepts in the use of introduced bacteria for biological control: mechanisms and antifungal metabolites. In: Stacey G, Keen N (eds) Plant-Microbe Interactions, vol 1. Chapman and Hall, New York, pp 187–235

    Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Timmusk S, van West P, Gow NAR, Wagner EGH (2003) Antagonistic effects of Paenibacillus polymyxa towards the oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. In: Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa. Uppsala University, Uppsala Sweden, pp 1–28

    Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    Article  PubMed  CAS  Google Scholar 

  • Toro M, Azcón R, Barea JM (1997) Improvement of arbuscular mycorrhizal development by inoculation with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    PubMed  CAS  Google Scholar 

  • Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656

    PubMed  CAS  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting bacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • van Wees S, Pieterse C, Trijssenaar A, Van’t Westende Y, Hartog F, van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact 10:716–724

    Article  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • von der Weid IA, Paiva E, Norega A, van Elsas JD, Seldin L (2000) Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Res Microbiol 151:369–381

    Article  PubMed  Google Scholar 

  • von der Weid IA, Duarte GF, van Elsas JD (2002) Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52:2147–2153

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore ferrioxaminae B in axenically grown cucumber. Plant Cell Environ 16:579–585

    Article  CAS  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by selected strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Nat Acad Sci USA 100:2760–2765

    Article  PubMed  CAS  Google Scholar 

  • Weid VD, Alviano DS, Santos ALS, Soares RMA, Alviano CX, Seldin L (2003) Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J Appl Microbiol 95:1143–1151

    Article  PubMed  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. VCH Weinheim, Germany, pp 1–18

    Chapter  Google Scholar 

  • Wilson Melissa K, Abergel Rebecca J, Raymond Kenneth N, Arceneaux Jean EL, Byers BR (2006) Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem Biophys Res Commun 348:320–325

    Article  PubMed  CAS  Google Scholar 

  • Wipat A, Harwood CR (1999) The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium. FEMS Microbiol Ecol 28:1–9

    Article  CAS  Google Scholar 

  • Xie GH, Su BL, Cui ZJ (1998) Isolation and identification of N2-fixing strains of Bacillus in rice rhizosphere of the Yangtze River valley. Acta Microbiol Sin 38:480–483

    CAS  Google Scholar 

  • Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA (2009) Effect of Phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of Corn (Zea mays L.). Proc World Acad Science. Eng Technol 37:90–92

    Google Scholar 

  • Yoshida S, Hiradate S, Tsukamot T, Hatakeda K, Shirata A (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Biol Control 91:181–187

    CAS  Google Scholar 

  • Zehnder G, Kloepper J, Tuzun S, Yao C, Wei G, Chambliss O, Shelby R (1997) Insect feeding on cucumber mediated by rhizobacteria induced plant resistance. Entomol Exp Appl 83:81–85

    Article  Google Scholar 

  • Zehnder GW, Yao C, Murphy JF, Sikora EJ, Kloepper JW (2000) Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth-promoting rhizobacteria. Biol Control 45:127–137

    Google Scholar 

  • Zhang LH, Dong YH (2004) Quorum sensing and signal interference: diverse implications. Mol Microbiol 53:1563–1571

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Moyne AL, Reddy MS, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296

    Article  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273

    Article  PubMed  CAS  Google Scholar 

  • Zhou WW, Huang JX, Niu TG (2008) Isolation of an antifungal Paenibacillus strain HT 16 from locusts and purification of its medium-dependent antagonistic compound. J Appl Microbiol 105:912–919

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannepalli Annapurna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Govindasamy, V. et al. (2010). Bacillus and Paenibacillus spp.: Potential PGPR for Sustainable Agriculture. In: Maheshwari, D. (eds) Plant Growth and Health Promoting Bacteria. Microbiology Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13612-2_15

Download citation

Publish with us

Policies and ethics