Skip to main content

Imaging in Cardiovascular Research

  • Chapter
Small Animal Imaging

Abstract

Despite enormous investment into cardiovascular research on all levels worldwide, cardiovascular events such as myocardial infarction, heart failure, tachyarrhythmia or stroke remain the major causes for death and inability in all developed countries. Conventional clinical cardiovascular imaging nowadays provides high-resolution visualization of the morphology of vessels and the myocardium. To translate the available patient imaging technologies into animals, especially mice where genetic technologies can be used to induce human-like pathophysiologies, is of great interest for cardiovascular research. Furthermore, new imaging biomarkers for targeting molecular processes such as inflammation in atherosclerosis are being developed which have to be tested and optimised in animal models (again mice are of greatest interest here) before translated into the clinics. Imaging of the heart and the vessels of a mouse poses significant challenges for small animal imaging systems with respect to the spatial and temporal resolution. This chapter elucidates the relevant cardiovascular pathologies and clinical challenges, reviews animal models of cardiovascular disease and shows examples of applications of small animal imaging by CT, ultrasound, MRI, SPECT, PET and optical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acton PD, Thomas D, Zhou R (2006) Quantitative imaging of myocardial infarct in rats with high resolution pinhole SPECT. Int J Cardiovasc Imaging 22(3–4):429–434

    Article  PubMed  Google Scholar 

  • Berr SS, Roy RJ, French BA, Yang Z, Gilson W, Kramer CM, Epstein FH (2005) Black blood gradient echo cine magnetic resonance imaging of the mouse heart. Magn Reson Med 53(5):1074–1079

    Article  PubMed  Google Scholar 

  • Bohl S, Lygate CA, Barnes H, Medway D, Stork LA, Schulz-Menger J, Neubauer S, Schneider JE (2009) Advanced methods for quantification of infarct size in mice using three-dimensional high-field late gadolinium enhancement MRI. Am J Physiol Heart Circ Physiol 296(4):H1200–H1208

    Article  PubMed  CAS  Google Scholar 

  • Brenner W, Aicher A, Eckey T, Massoudi S, Zuhayra M, Koehl U, Heeschen C, Kampen WU, Zeiher AM, Dimmeler S, Henze E (2004) 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 45(3):512–518

    PubMed  CAS  Google Scholar 

  • Bunck AC, Engelen MA, Schnackenburg B, Furkert J, Bremer C, Heindel W, Stypmann J, Maintz D (2009) Feasibility of functional cardiac MR imaging in mice using a clinical 3 tesla whole body scanner. Invest Radiol 44:749–756

    Article  PubMed  Google Scholar 

  • Cauchon N, Langlois R, Rousseau JA, Tessier G, Cadorette J, Lecomte R, Hunting DJ, Pavan RA, Zeisler SK, van Lier JE (2007) PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V. Eur J Nucl Med Mol Imaging 34(2):247–258

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Tempel D, van Haperen R, van der Baan A, Grosveld F, Daemen MJ, Krams R, de Crom R (2006) Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113(23):2744–2753

    Article  PubMed  Google Scholar 

  • Collins KA, Korcarz CE, Shroff SG, Bednarz JE, Fentzke RC, Lin H, Leiden JM, Lang RM (2001) Accuracy of echocardiographic estimates of left ventricular mass in mice. Am J Physiol Heart Circ Physiol 280(5):H1954–H1962

    PubMed  CAS  Google Scholar 

  • Collins KA, Korcarz CE, Lang RM (2003) Use of echocardiography for the phenotypic assessment of genetically altered mice. Physiol Genomics 13(3):227–239

    PubMed  Google Scholar 

  • Constantinesco A, Choquet P, Monassier L, Israel-Jost V, Mertz L (2005) Assessment of left ventricular perfusion, volumes, and motion in mice using pinhole gated SPECT. J Nucl Med 46(6):1005–1011

    PubMed  Google Scholar 

  • Croteau E, Benard F, Bentourkia M, Rousseau J, Paquette M, Lecomte R (2004) Quantitative myocardial perfusion and coronary reserve in rats with 13N-ammonia and small animal PET: impact of anesthesia and pharmacologic stress agents. J Nucl Med 45(11):1924–1930

    PubMed  CAS  Google Scholar 

  • Dawood M, Buther F, Jiang X, Schafers KP (2008) Respiratory motion correction in 3-D PET data with advanced optical flow algorithms. IEEE Trans Med Imaging 27(8):1164–1175

    Article  PubMed  Google Scholar 

  • Dawson D, Lygate CA, Saunders J, Schneider JE, Ye X, Hulbert K, Noble JA, Neubauer S (2004) Quantitative 3-dimensional echocardiography for accurate and rapid cardiac phenotype characterization in mice. Circulation 110(12):1632–1637

    Article  PubMed  Google Scholar 

  • Dijkgraaf I, Beer AJ, Wester HJ (2009) Application of RGD-containing peptides as imaging probes for alphavbeta3 expression. Front Biosci 14:887–899

    Article  CAS  Google Scholar 

  • Dinkel J, Bartling SH, Kuntz J, Grasruck M, Kopp-Schneider A, Iwasaki M, Dimmeler S, Gupta R, Semmler W, Kauczor HU, Kiessling F (2008) Intrinsic gating for small-animal computed tomography: a robust ECG-less paradigm for deriving cardiac phase information and functional imaging. Circ Cardiovasc Imaging 1(3):235–243

    Article  PubMed  Google Scholar 

  • Dobrucki LW, Dione DP, Kalinowski L, Dione D, Mendizabal M, Yu J, Papademetris X, Sessa WC, Sinusas AJ (2009) Serial noninvasive targeted imaging of peripheral angiogenesis: validation and application of a semiautomated quantitative approach. J Nucl Med 50(8):1356–1363

    Article  PubMed  Google Scholar 

  • Faust A, Hermann S, Wagner S, Haufe G, Schober O, Schafers M, Kopka K (2009) Molecular imaging of apoptosis in vivo with scintigraphic and optical biomarkers – a status report. Anticancer Agents Med Chem 9:968–985

    Article  PubMed  CAS  Google Scholar 

  • Fayad ZA, Fallon JT, Shinnar M, Wehrli S, Dansky HM, Poon M, Badimon JJ, Charlton SA, Fisher EA, Breslow JL, Fuster V (1998) Noninvasive In vivo high-resolution magnetic resonance imaging of atherosclerotic lesions in genetically engineered mice. Circulation 98(15):1541–1547

    Article  PubMed  CAS  Google Scholar 

  • Flogel U, Laussmann T, Godecke A, Abanador N, Schafers M, Fingas CD, Metzger S, Levkau B, Jacoby C, Schrader J (2005) Lack of myoglobin causes a switch in cardiac substrate selection. Circ Res 96(8):e68–e75

    Article  PubMed  Google Scholar 

  • Flogel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J (2008) In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118(2):140–148

    Article  PubMed  Google Scholar 

  • Franco F, Thomas GD, Giroir B, Bryant D, Bullock MC, Chwialkowski MC, Victor RG, Peshock RM (1999) Magnetic resonance imaging and invasive evaluation of development of heart failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 99(3):448–454

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto S, Hartung D, Ohshima S, Edwards DS, Zhou J, Yalamanchili P, Azure M, Fujimoto A, Isobe S, Matsumoto Y, Boersma H, Wong N, Yamazaki J, Narula N, Petrov A, Narula J (2008) Molecular imaging of matrix metalloproteinase in atherosclerotic lesions: resolution with dietary modification and statin therapy. J Am Coll Cardiol 52(23):1847–1857

    Article  PubMed  CAS  Google Scholar 

  • Gan LM, Gronros J, Hagg U, Wikstrom J, Theodoropoulos C, Friberg P, Fritsche-Danielson R (2007) Non-invasive real-time imaging of atherosclerosis in mice using ultrasound biomicroscopy. Atherosclerosis 190(2):313–320

    Article  PubMed  CAS  Google Scholar 

  • Gao XM, Dart AM, Dewar E, Jennings G, Du XJ (2000) Serial echocardiographic assessment of left ventricular dimensions and function after myocardial infarction in mice. Cardiovasc Res 45(2):330–338

    Article  PubMed  CAS  Google Scholar 

  • Ghanem A, Roll W, Hashemi T, Dewald O, Djoufack PC, Fink KB, Schrickel J, Lewalter T, Luderitz B, Tiemann K (2006) Echocardiographic assessment of left ventricular mass in neonatal and adult mice: accuracy of different echocardiographic methods. Echocardiography 23(10):900–907

    Article  PubMed  Google Scholar 

  • Ghanem A, Troatz C, Elhafi N, Dewald O, Heeschen C, Nickenig G, Stypmann J, Tiemann K (2008) Quantitation of myocardial borderzone using reconstructive 3-D echocardiography after chronic infarction in rats: incremental value of low-dose dobutamine. Ultrasound Med Biol 34(4):559–566

    Article  PubMed  Google Scholar 

  • Goethals LR, Weytjens CD, De Geeter F, Droogmans S, Caveliers V, Keyaerts M, Vanhove C, Van Camp G, Bossuyt A, Lahoutte T (2009) Regional quantitative analysis of small animal myocardial sympathetic innervation and initial application in streptozotocin induced diabetes. Contrast Media Mol Imaging 4(4):174–182

    Article  PubMed  CAS  Google Scholar 

  • Gui YH, Linask KK, Khowsathit P, Huhta JC (1996) Doppler echocardiography of normal and abnormal embryonic mouse heart. Pediatr Res 40(4):633–642

    Article  PubMed  CAS  Google Scholar 

  • Heijman E, de Graaf W, Niessen P, Nauerth A, van Eys G, de Graaf L, Nicolay K, Strijkers GJ (2007) Comparison between prospective and retrospective triggering for mouse cardiac MRI. NMR Biomed 20(4):439–447

    Article  PubMed  CAS  Google Scholar 

  • Herrero P, Kim J, Sharp TL, Engelbach JA, Lewis JS, Gropler RJ, Welch MJ (2006) Assessment of myocardial blood flow using 15O-water and 1–11C-acetate in rats with small-animal PET. J Nucl Med 47(3):477–485

    PubMed  CAS  Google Scholar 

  • Higuchi T, Taki J, Nakajima K, Kinuya S, Namura M, Tonami N (2005) Time course of discordant BMIPP and thallium uptake after ischemia and reperfusion in a rat model. J Nucl Med 46(1):172–175

    PubMed  Google Scholar 

  • Higuchi T, Nekolla SG, Jankaukas A, Weber AW, Huisman MC, Reder S, Ziegler SI, Schwaiger M, Bengel FM (2007) Characterization of normal and infarcted rat myocardium using a combination of small-animal PET and clinical MRI. J Nucl Med 48(2):288–294

    PubMed  Google Scholar 

  • Hirai T, Nohara R, Hosokawa R, Tanaka M, Inada H, Fujibayashi Y, Fujita M, Konishi J, Sasayama S (2000) Evaluation of myocardial infarct size in rat heart by pinhole SPECT. J Nucl Cardiol 7(2):107–111

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim T, Makowski MR, Jankauskas A, Maintz D, Karch M, Schachoff S, Manning WJ, Schomig A, Schwaiger M, Botnar RM (2009) Serial contrast-enhanced cardiac magnetic resonance imaging demonstrates regression of hyperenhancement within the coronary artery wall in patients after acute myocardial infarction. JACC Cardiovasc imaging 2(5):580–588

    Article  PubMed  Google Scholar 

  • Inubushi M, Jordan MC, Roos KP, Ross RS, Chatziioannou AF, Stout DB, Dahlbom M, Schelbert HR (2004) Nitrogen-13 ammonia cardiac positron emission tomography in mice: effects of clonidine-induced changes in cardiac work on myocardial perfusion. Eur J Nucl Med Mol Imaging 31(1):110–116

    Article  PubMed  Google Scholar 

  • Ivan E, Khatri JJ, Johnson C, Magid R, Godin D, Nandi S, Lessner S, Galis ZS (2002) Expansive arterial remodeling is associated with increased neointimal macrophage foam cell content: the murine model of macrophage-rich carotid artery lesions. Circulation 105(22):2686–2691

    Article  PubMed  Google Scholar 

  • Kaufmann BA (2009) Ultrasound molecular imaging of atherosclerosis. Cardiovasc Res 83(4):617–625

    Article  PubMed  CAS  Google Scholar 

  • Keen HG, Dekker BA, Disley L, Hastings D, Lyons S, Reader AJ, Ottewell P, Watson A, Zweit J (2005) Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl Med Biol 32(4):395–402

    Article  PubMed  CAS  Google Scholar 

  • Kiessling F, Greschus S, Lichy MP, Bock M, Fink C, Vosseler S, Moll J, Mueller MM, Fusenig NE, Traupe H, Semmler W (2004) Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis. Nat Med 10(10):1133–1138

    Article  PubMed  CAS  Google Scholar 

  • Kietselaer BL, Reutelingsperger CP, Heidendal GA, Daemen MJ, Mess WH, Hofstra L, Narula J (2004) Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 350(14):1472–1473

    Article  PubMed  CAS  Google Scholar 

  • Klohs J, Steinbrink J, Bourayou R, Mueller S, Cordell R, Licha K, Schirner M, Dirnagl U, Lindauer U, Wunder A (2009) Near-infrared fluorescence imaging with fluorescently labeled albumin: a novel method for non-invasive optical imaging of blood-brain barrier impairment after focal cerebral ischemia in mice. J Neurosci Meth 180(1):126–132

    Article  CAS  Google Scholar 

  • Kuhlmann MT, Kirchhof P, Klocke R, Hasib L, Stypmann J, Fabritz L, Stelljes M, Tian W, Zwiener M, Mueller M, Kienast J, Breithardt G, Nikol S (2006) G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med 203(1):87–97

    Article  PubMed  CAS  Google Scholar 

  • Kunichika H, Peters B, Cotter B, Masugata H, Kunichika N, Wolf PL, DeMaria AN (2003) Visualization of risk-area myocardium as a high-intensity, hyperenhanced “hot spot” by myocardial contrast echocardiography following coronary reperfusion: quantitative analysis. J Am Coll Cardiol 42(3):552–557

    Article  PubMed  Google Scholar 

  • Laitinen I, Saraste A, Weidl E, Poethko T, Weber AW, Nekolla SG, Leppanen P, Yla-Herttuala S, Holzlwimmer G, Walch A, Esposito I, Wester HJ, Knuuti J, Schwaiger M (2009) Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging 2(4):331–338

    Article  PubMed  Google Scholar 

  • Levkau B, Schafers M, Wohlschlaeger J, von Wnuck Lipinski K, Keul P, Hermann S, Kawaguchi N, Kirchhof P, Fabritz L, Stypmann J, Stegger L, Flogel U, Schrader J, Fischer JW, Hsieh P, Ou YL, Mehrhof F, Tiemann K, Ghanem A, Matus M, Neumann J, Heusch G, Schmid KW, Conway EM, Baba HA (2008) Survivin determines cardiac function by controlling total cardiomyocyte number. Circulation 117(12):1583–1593

    Article  PubMed  CAS  Google Scholar 

  • Lindner JR (2009) Molecular imaging of cardiovascular disease with contrast-enhanced ultrasonography. Nat Rev Cardiol 6(7):475–481

    Article  PubMed  CAS  Google Scholar 

  • Lu E, Wagner WR, Schellenberger U, Abraham JA, Klibanov AL, Woulfe SR, Csikari MM, Fischer D, Schreiner GF, Brandenburger GH, Villanueva FS (2003) Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation 108(1):97–103

    Article  PubMed  CAS  Google Scholar 

  • Ly HQ, Frangioni JV, Hajjar RJ (2008) Imaging in cardiac cell-based therapy: in vivo tracking of the biological fate of therapeutic cells. Nat Clin Pract Cardiovasc Med 5(2):S96–S102

    Article  PubMed  CAS  Google Scholar 

  • Manka DR, Gilson W, Sarembock I, Ley K, Berr SS (2000) Noninvasive in vivo magnetic resonance imaging of injury-induced neointima formation in the carotid artery of the apolipoprotein-E null mouse. J Magn Reson Imaging 12(5):790–794

    Article  PubMed  CAS  Google Scholar 

  • McAteer MA, Akhtar AM, von Zur Muhlen C, Choudhury RP (2010) An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide. Atherosclerosis 209:18–27

    Article  PubMed  CAS  Google Scholar 

  • Min JJ, Gambhir SS (2008) Molecular imaging of PET reporter gene expression. Handb Exp Pharmacol (185 Pt 2):277–303

    Google Scholar 

  • Mulder WJ, Douma K, Koning GA, van Zandvoort MA, Lutgens E, Daemen MJ, Nicolay K, Strijkers GJ (2006) Liposome-enhanced MRI of neointimal lesions in the ApoE-KO mouse. Magn Reson Med 55(5):1170–1174

    Article  PubMed  Google Scholar 

  • Mulder WJ, Griffioen AW, Strijkers GJ, Cormode DP, Nicolay K, Fayad ZA (2007a) Magnetic and fluorescent nanoparticles for multimodality imaging. Nanomedicine (Lond) 2(3):307–324

    Article  CAS  Google Scholar 

  • Mulder WJ, Strijkers GJ, Vucic E, Cormode DP, Nicolay K, Fayad ZA (2007b) Magnetic resonance molecular imaging contrast agents and their application in atherosclerosis. Top Magn Reson Imaging 18(5):409–417

    Article  PubMed  Google Scholar 

  • Nahrendorf M, Badea C, Hedlund LW, Figueiredo JL, Sosnovik DE, Johnson GA, Weissleder R (2007) High-resolution imaging of murine myocardial infarction with delayed-enhancement cine micro-CT. Am J Physiol Heart Circ Physiol 292(6):H3172–H3178

    Article  PubMed  CAS  Google Scholar 

  • Nahrendorf M, Sosnovik DE, French BA, Swirski FK, Bengel F, Sadeghi MM, Lindner JR, Wu JC, Kraitchman DL, Fayad ZA, Sinusas AJ (2009) Multimodality cardiovascular molecular imaging, part II. Circ Cardiovasc Imaging 2(1):56–70

    Article  PubMed  Google Scholar 

  • Pissarek M, Meyer-Kirchrath J, Hohlfeld T, Vollmar S, Oros-Peusquens AM, Flogel U, Jacoby C, Krugel U, Schramm N (2009) Targeting murine heart and brain: visualisation conditions for multi-pinhole SPECT with (99 m)Tc- and (123)I-labelled probes. Eur J Nucl Med Mol Imaging 36(9):1495–1509

    Article  PubMed  CAS  Google Scholar 

  • Ramirez MS, Bankson JA (2007) A practical method for 2D multiple-animal MRI. J Magn Reson Imag 26(4):1162–1166

    Article  Google Scholar 

  • Ramirez MS, Ragan DK, Kundra V, Bankson JA (2007) Feasibility of multiple-mouse dynamic contrast-enhanced MRI. Magn Reson Med 58(3):610–615

    Article  PubMed  Google Scholar 

  • Riemann B, Schafers KP, Schober O, Schafers M (2008) Small animal PET in preclinical studies: opportunities and challenges. Q J Nucl Med Mol Imaging 52(3):215–221

    PubMed  CAS  Google Scholar 

  • Ropinski T, Hermann S, Reich R, Schafers M, Hinrichs K (2009) Multimodal vessel visualization of mouse aorta PET/CT scans. IEEE Trans Vis Comput Graph 15(6):1515–1522

    Article  PubMed  Google Scholar 

  • Rowland DJ, Cherry SR (2008) Small-animal preclinical nuclear medicine instrumentation and methodology. Semin Nucl Med 38(3):209–222

    Article  PubMed  Google Scholar 

  • Schafers M, Riemann B, Kopka K, Breyholz HJ, Wagner S, Schafers KP, Law MP, Schober O, Levkau B (2004) Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 109(21):2554–2559

    Article  PubMed  Google Scholar 

  • Schafers KP, Reader AJ, Kriens M, Knoess C, Schober O, Schafers M (2005) Performance evaluation of the 32-module quadHIDAC small-animal PET scanner. J Nucl Med 46(6):996–1004

    PubMed  Google Scholar 

  • Schafers KP, Lang N, Stegger L, Schober O, Schafers M (2006) Gated listmode acquisition with the quadHIDAC animal PET to image mouse hearts. Z Med Phys 16(1):60–66

    PubMed  Google Scholar 

  • Schambach SJ, Bag S, Steil V, Isaza C, Schilling L, Groden C, Brockmann MA (2009) Ultrafast high-resolution in vivo volume-CTA of mice cerebral vessels. Stroke 40(4):1444–1450

    Article  PubMed  Google Scholar 

  • Scherrer-Crosbie M, Liel-Cohen N, Otsuji Y, Guerrero JL, Sullivan S, Levine RA, Picard MH (2000) Myocardial perfusion and wall motion in infarction border zone: assessment by myocardial contrast echocardiography. J Am Soc Echocardiogr 13(5):353–357

    PubMed  CAS  Google Scholar 

  • Scherrer-Crosbie M, Rodrigues AC, Hataishi R, Picard MH (2007) Infarct size assessment in mice. Echocardiography 24(1):90–96

    Article  PubMed  Google Scholar 

  • Shoghi KI, Gropler RJ, Sharp T, Herrero P, Fettig N, Su Y, Mitra MS, Kovacs A, Finck BN, Welch MJ (2008) Time course of alterations in myocardial glucose utilization in the Zucker diabetic fatty rat with correlation to gene expression of glucose transporters: a small-animal PET investigation. J Nucl Med 49(8):1320–1327

    Article  PubMed  CAS  Google Scholar 

  • Sinusas AJ, Bengel F, Nahrendorf M, Epstein FH, Wu JC, Villanueva FS, Fayad ZA, Gropler RJ (2008) Multimodality cardiovascular molecular imaging, part I. Circ Cardiovasc Imaging 1(3):244–256

    Article  PubMed  Google Scholar 

  • Sosnovik DE, Schellenberger EA, Nahrendorf M, Novikov MS, Matsui T, Dai G, Reynolds F, Grazette L, Rosenzweig A, Weissleder R, Josephson L (2005) Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med 54(3):718–724

    Article  PubMed  Google Scholar 

  • Sosnovik DE, Nahrendorf M, Weissleder R (2007) Molecular magnetic resonance imaging in cardiovascular medicine. Circulation 115(15):2076–2086

    Article  PubMed  Google Scholar 

  • Stegger L, Hoffmeier AN, Schafers KP, Hermann S, Schober O, Schafers MA, Theilmeier G (2006) Accurate noninvasive measurement of infarct size in mice with high-resolution PET. J Nucl Med 47(11):1837–1844

    PubMed  Google Scholar 

  • Stegger L, Heijman E, Schafers KP, Nicolay K, Schafers MA, Strijkers GJ (2009) Quantification of left ventricular volumes and ejection fraction in mice using PET, compared with MRI. J Nucl Med 50(1):132–138

    Article  PubMed  Google Scholar 

  • Streif JU, Nahrendorf M, Hiller KH, Waller C, Wiesmann F, Rommel E, Haase A, Bauer WR (2005) In vivo assessment of absolute perfusion and intracapillary blood volume in the murine myocardium by spin labeling magnetic resonance imaging. Magn Reson Med 53(3):584–592

    Article  PubMed  Google Scholar 

  • Tang TY, Muller KH, Graves MJ, Li ZY, Walsh SR, Young V, Sadat U, Howarth SP, Gillard JH (2009) Iron oxide particles for atheroma imaging. Arterioscler Thromb Vasc Biol 29(7):1001–1008

    Article  PubMed  CAS  Google Scholar 

  • Thibault H, Lafitte S, Timperley J, Tariosse L, Becher H, Roudaut R, Dos Santos P (2005) Quantitative analysis of myocardial perfusion in rats by contrast echocardiography. J Am Soc Echocardiogr 18(12):1321–1328

    Article  PubMed  Google Scholar 

  • Tiemann K, Weyer D, Djoufack PC, Ghanem A, Lewalter T, Dreiner U, Meyer R, Grohe C, Fink KB (2003) Increasing myocardial contraction and blood pressure in C57BL/6 mice during early postnatal development. Am J Physiol Heart Circ Physiol 284(2):H464–H474

    PubMed  CAS  Google Scholar 

  • Tipre DN, Fox JJ, Holt DP, Green G, Yu J, Pomper M, Dannals RF, Bengel FM (2008) In vivo PET imaging of cardiac presynaptic sympathoneuronal mechanisms in the rat. J Nucl Med 49(7):1189–1195

    Article  PubMed  Google Scholar 

  • Tsui BM, Kraitchman DL (2009) Recent advances in small-animal cardiovascular imaging. J Nucl Med 50(5):667–670

    Article  PubMed  Google Scholar 

  • Tsujita Y, Kato T, Sussman MA (2005) Evaluation of left ventricular function in cardiomyopathic mice by tissue Doppler and color M-mode Doppler echocardiography. Echocardiography 22(3):245–253

    Article  PubMed  Google Scholar 

  • van der Have F, Vastenhouw B, Ramakers RM, Branderhorst W, Krah JO, Ji C, Staelens SG, Beekman FJ (2009) U-SPECT-II: an ultra-high-resolution device for molecular small-animal imaging. J Nucl Med 50(4):599–605

    Article  PubMed  Google Scholar 

  • Vanhove C, Lahoutte T, Defrise M, Bossuyt A, Franken PR (2005) Reproducibility of left ventricular volume and ejection fraction measurements in rat using pinhole gated SPECT. Eur J Nucl Med Mol Imaging 32(2):211–220

    Article  PubMed  Google Scholar 

  • Vogel R, Indermuhle A, Reinhardt J, Meier P, Siegrist PT, Namdar M, Kaufmann PA, Seiler C (2005) The quantification of absolute myocardial perfusion in humans by contrast echocardiography: algorithm and validation. J Am Coll Cardiol 45(5):754–762

    Article  PubMed  Google Scholar 

  • Wagner S, Breyholz HJ, Faust A, Holtke C, Levkau B, Schober O, Schafers M, Kopka K (2006) Molecular imaging of matrix metalloproteinases in vivo using small molecule inhibitors for SPECT and PET. Curr Med Chem 13(23):2819–2838

    Article  PubMed  CAS  Google Scholar 

  • Waldeck J, Hager F, Holtke C, Lanckohr C, von Wallbrunn A, Torsello G, Heindel W, Theilmeier G, Schafers M, Bremer C (2008) Fluorescence reflectance imaging of macrophage-rich atherosclerotic plaques using an alphavbeta3 integrin-targeted fluorochrome. J Nucl Med 49(11):1845–1851

    Article  PubMed  Google Scholar 

  • Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ (2009) Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imaging 36(Suppl 1):S56–S68

    Article  PubMed  Google Scholar 

  • Weissleder R, Lee AS, Khaw BA, Shen T, Brady TJ (1992) Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 182(2):381–385

    PubMed  CAS  Google Scholar 

  • Welch MJ, Lewis JS, Kim J, Sharp TL, Dence CS, Gropler RJ, Herrero P (2006) Assessment of myocardial metabolism in diabetic rats using small-animal PET: a feasibility study. J Nucl Med 47(4):689–697

    PubMed  CAS  Google Scholar 

  • Wiesmann F, Ruff J, Hiller KH, Rommel E, Haase A, Neubauer S (2000) Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and adult mice. Am J Physiol Heart Circ Physiol 278(2):H652–H657

    PubMed  CAS  Google Scholar 

  • Wiesmann F, Frydrychowicz A, Rautenberg J, Illinger R, Rommel E, Haase A, Neubauer S (2002) Analysis of right ventricular function in healthy mice and a murine model of heart failure by in vivo MRI. Am J Physiol Heart Circ Physiol 283(3):H1065–H1071

    PubMed  CAS  Google Scholar 

  • Wu JC, Inubushi M, Sundaresan G, Schelbert HR, Gambhir SS (2002) Positron emission tomography imaging of cardiac reporter gene expression in living rats. Circulation 106(2):180–183

    Article  PubMed  Google Scholar 

  • Yagle KJ, Eary JF, Tait JF, Grierson JR, Link JM, Lewellen B, Gibson DF, Krohn KA (2005) Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis. J Nucl Med 46(4):658–666

    PubMed  CAS  Google Scholar 

  • Yu Q, Leatherbury L, Tian X, Lo CW (2008) Cardiovascular assessment of fetal mice by in utero echocardiography. Ultrasound Med Biol 34(5):741–752

    Article  PubMed  Google Scholar 

  • Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258(5081):468–471

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Picard MH, Vasile E, Zhu Y, Raffai RL, Weisgraber KH, Krieger M (2005) Diet-induced occlusive coronary atherosclerosis, myocardial infarction, cardiac dysfunction, and premature death in scavenger receptor class B type I-deficient, hypomorphic apolipoprotein ER61 mice. Circulation 111(25):3457–3464

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Ruel M, Beanlands RS, deKemp RA, Suuronen EJ, DaSilva JN (2008) Tracking stem cell therapy in the myocardium: applications of positron emission tomography. Curr Pharm Des 14(36):3835–3853

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schäfers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schäfers, M., Tiemann, K., Kuhlmann, M., Stegger, L., Schäfers, K., Hermann, S. (2011). Imaging in Cardiovascular Research. In: Kiessling, F., Pichler, B. (eds) Small Animal Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12945-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12945-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12944-5

  • Online ISBN: 978-3-642-12945-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics