Skip to main content

Introduction to Mine Wastes

  • Chapter
  • First Online:

Abstract

This book focuses on problematic solid wastes and waste waters produced and disposed of at modern mine sites. They are problematic because they contain hazardous substances (e.g. heavy metal s , metalloids, radioactivity , acids, process chemicals ), and require monitoring, treatment, and secure disposal. However, not all mine wastes are problematic wastes and require monitoring or even treatment. Many mine wastes do not contain or release contaminants, are inert or benign, and pose no environmental threat. In fact, some waste rocks , soils or sediments can be used for landform reconstruction, others are valuable resources for road and dam construction, and a few are suitable substrates for vegetation covers and similar rehabilitation measures upon mine closure. Such materials cannot be referred to as wastes by definition as they represent valuable by-products of mining operations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agricola G (1556) De re metallica (trans: Hoover HC, Hoover LH (1950)). Dover Publications, New York

    Google Scholar 

  • Ambers RKR, Hygelund BN (2001) Contamination of two Oregon reservoirs by cinnabar mining and mercury amalgamation. Environ Geol 40:699–707

    Article  Google Scholar 

  • Ashley PM, Lottermoser BG (1999a) Geochemical, mineralogical and biogeochemical characterisation of abandoned metalliferous mine sites, southern New England Orogen. In: Proceedings of the NEO’99 Conference. Armidale, Division of Earth Sciences, University of New England, pp 409–418

    Google Scholar 

  • Ashley PM, Lottermoser BG (1999b) Arsenic contamination at the Mole River mine, northeastern New South Wales, Australia. Austral J Earth Sci 46:861–874

    Article  Google Scholar 

  • Banks D, Skarphagen H, Wiltshire R, Jessop C (2004) Heat pumps as a tool for energy recovery from mining wastes. In: Gieré R, Stille P (eds) Energy, waste, and the Environment: a geochemical perspective. Geological Society London, Special Publications, 236, pp 499–513

    Google Scholar 

  • Biringuccio V (1540) Pirotechnia (trans: Mudd HS (1942)). MIT Press, Cambridge

    Google Scholar 

  • Boger DV (1998) Environmental rheology and the mining industry. In: Proceedings of AusIMM ’98 The Mining Cycle. Australasian Institute of Mining and Metallurgy, Melbourne, pp 459–461

    Google Scholar 

  • Boger DV (2009) Rheology and the resource industries. Chem Eng Sci 64:4525–4536

    Article  Google Scholar 

  • Bycroft BM, Coller BAW, Deacon GB, Coleman DJ, Lake PS (1982) Mercury contamination of the Lerderderg River, Victoria, Australia, from an abandoned gold field. Environ Poll Series A 28:135–147

    Article  Google Scholar 

  • Castelo-Branco MA, Santos J, Moreira O, Oliveira A, Pereira Pires F, Magalhaes I, Dias S, Fernandes LM, Gama J, Vieira e Silva JM, Ramalho Ribeiro J (1999) Potential use of pyrite as an amendment for calcareous soil. J Geochem Explor 66:363–367

    Article  Google Scholar 

  • Chapman BM, Jones DR, Jung RF (1983) Processes controlling metal ion attenuation in acid mine drainage streams. Geochim Cosmochim Acta 47 1957–1973

    Article  Google Scholar 

  • Cheng S, Dempsey BA, Logan BE (2007) Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Environ Sci Technol 41:8149–8153

    Article  Google Scholar 

  • Churchill RC, Meathrel CE, Suter PJ (2004) A retrospective assessment of gold mining in the Reedy Creek sub-catchment, northeast Victoria, Australia: residual mercury contamination 100 years later. Environ Poll 132:355–363

    Article  Google Scholar 

  • Cleary D, Thornton I (1994) The environmental impact of gold mining in the Brazilian Amazon. In: Hester RE, Harrison RM (eds) Mining and its environmental impact. Issues in Environ Sci Technol 1. Royal Society of Chemistry, Cambridge, pp 17–29

    Chapter  Google Scholar 

  • Covelli S, Faganeli J, Horvat M, Brambati A (2001) Mercury contamination of coastal sediments as the result of long-term cinnabar mining activity (Gulf of Trieste, northern Adriatic sea). Appl Geochem 16:541–558

    Article  Google Scholar 

  • Craw D (2001) Tectonic controls on gold deposits and their environmental impact, New Zealand. J Geochem Explor 73:43–56

    Article  Google Scholar 

  • Craw D, Pacheco (2002) Mobilisation and bioavailability of arsenic around mesothermal gold deposits in a semiarid environment, Otago, New Zealand. Sci World J 2:308–319

    Article  Google Scholar 

  • Davis RA Jr, Welty AT, Borrego J, Morales JA, Pendon JG, Ryan JG (2000) Rio Tinto estuary (Spain): 5000 years of pollution. Environ Geol 39:1107–1116

    Article  Google Scholar 

  • Domagalski JL (1998) Occurrence and transport of total mercury and methyl mercury in the Sacramento River Basin, California. J Geochem Explor 64:277–291

    Article  Google Scholar 

  • Eppinger RG, Briggs PH, Dusel-Bacon C, Giles SA, Gough LP, Hammarstrom JM, Hubbard BE (2007) Environmental geochemistry at Red Mountain, an unmined volcanogenic massive sulphide deposit in the Bonnifield district, Alaska Range, east-central Alaska. Geochem Explor Environ Anal 7:207–223

    Article  Google Scholar 

  • Ernst WHO (1998) The origin and ecology of contaminated, stabilized and non-pristine soils. In: Vangronsveld J, Cunningham S (eds) Metal contaminated soils; in situ inactivation and phytorestoration. Springer, Heidelberg, pp 17–29

    Google Scholar 

  • Fenton O, Healy MG, Rodgers M (2009) Use of ochre from an abandoned metal mine in the south east of Ireland for phosphorus sequestration from dairy dirty water. J Environ Qual 38:1120–1125

    Article  Google Scholar 

  • Ferrara R (1999) Mercury mines in Europe: assessment of emissions and environmental contamination. In: Ebinghaus R, Turner RR, Lacerda de LD, Vasiliev O, Salomons W (eds) Mercury contaminated sites. Springer, Heidelberg, pp 51–72

    Google Scholar 

  • Förstner U (1999) Introduction. In: Azcue JM (ed) Environmental impacts of mining activities: emphasis on mitigation and remedial measures. Springer, Heidelberg, pp 1–3

    Chapter  Google Scholar 

  • Furniss G, Hinman NW, Doyle GA, Runnells DD (1999) Radiocarbon-dated ferricrete provides a record of natural acid rock drainage and paleoclimatic changes. Environ Geol 37:102–106

    Article  Google Scholar 

  • Fyfe WS (1981) The environmental crisis: quantifying geosphere interactions. Science 213:105–110

    Article  Google Scholar 

  • Getaneh W, Alemayehu T (2006) Metal contamination of the environment by placer and primary gold mining in the Adola region of southern Ethiopia. Environ Geol 50:339–352

    Article  Google Scholar 

  • Gray JE, Crock JG, Fey DL (2002a) Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA. Appl Geochem 17:1069–1079

    Article  Google Scholar 

  • Gunn JM, Beckett PJ, Lautenbach WE, Monet S (2008) Sudbury, Canada: from pollution record holder to award winning restoration site. In: France RL (ed) Handbook of regenerative landscape design. CRC Press, Boca Raton, pp 381–405

    Google Scholar 

  • Hartikainen SH, Hartikainen HH (2008) Phosphorus retention by phlogopite-rich mine tailings. Appl Geochem 23:2716–2723

    Article  Google Scholar 

  • Hassinger BW (1997) Erosion. In: Marcus JJ (ed) Mining environmental handbook: effects of mining on the environment and American environmental controls on mining. Imperial College Press, London, pp 136–140

    Google Scholar 

  • Higueras P, Oyarzun R, Oyarzun J, Maturana H, Lillo J, Morata D (2004) Environmental assessmemt of copper-gold-mercury mining in the Andacollo and Punitaqui districts, northern Chile. Appl Geochem 19:1855–1864

    Article  Google Scholar 

  • Hodson ME (2004) Heavy metals; geochemical bogey men? Environ Poll 129:341–343

    Article  Google Scholar 

  • Hong S, Candelone JP, Patterson CC, Boutron CF (1996) History of ancient copper smelting pollution during Roman and Medieval times recorded in Greenland ice. Science 272:246–249

    Article  Google Scholar 

  • Hossner LR, Hons FM (1992) Reclamation of mine tailings. Adv Soil Sci 17:311–350

    Article  Google Scholar 

  • Hürkamp K, Raab T, Völkel J (2009) Lead pollution of floodplain soils in a historic mining area – age, distribution and binding forms. Water Air Soil Poll 201:331–345

    Article  Google Scholar 

  • Idowu OA, Lorentz SA, Annandale JG, McCartney MP, Jovanovic NZ (2008) Assessment of the impact of irrigation with low-quality mine water on virgin and rehabilitated soils in the upper Olifants basin. Mine Water Environ 27:2–11

    Article  Google Scholar 

  • James LP (1994) The mercury “tromol” mill: an innovative gold recovery technique, and a possible environmental concern. J Geochem Explor 50:493–500

    Article  Google Scholar 

  • Jaxel R, Gelaude P (1986) New mineral occurrences from the Laurion slags. Mineral Rec 17:183–190

    Google Scholar 

  • Kafwembe BS, Veasey TJ (2001) The problems of artisan mining and mineral processing. Mining Environ Manage, November 2001:17–21

    Google Scholar 

  • Kambey JL, Farrell AP, Bendell-Young LI (2001) Influence of illegal gold mining on mercury levels in fish of North Sulawesi’s Minahasa Peninsula, (Indonesia). Environ Poll 114:299–302

    Article  Google Scholar 

  • Kelley KD, Hudson T (2007) Natural versus anthropogenic dispersion of metals to the environment in the Wulik River area, western Brooks Range, northern Alaska. Geochem: Explor Environ Anal 7:87–96

    Article  Google Scholar 

  • Kirby CS, Decker SM, Macander NK (1999) Comparison of color, chemical and mineralogical compositions of mine drainage sediments to pigment. Environ Geol 37:243–254

    Article  Google Scholar 

  • Koehnken L (1997) Final report Mount Lyell remediation research and demonstration program. Supervising Scientist report 126. Supervising Scientist, Canberra

    Google Scholar 

  • Kwong YTJ, Whitley G, Roach P (2009) Natural acid rock drainage associated with black shale in the Yukon Territory, Canada. Appl Geochem 24:221–231

    Article  Google Scholar 

  • Lambert JB (1997) Traces of the past. Unraveling the secrets of archaeology through chemistry. Addison Wesley, Reading

    Google Scholar 

  • Laperdina TG (2002) Estimation of mercury and other heavy metal contamination in traditional gold-mining areas of Transbaikalia. Geochem Explor Environ Anal 2:219–223

    Article  Google Scholar 

  • Leblanc M, Morales JA, Borrego J, Elbaz-Poulichet F (2000) 4500-year-old mining pollution in southwestern Spain; long-term implications for modern mining pollution. Econ Geol 95:655–662

    Google Scholar 

  • Lee CSL, Qi SH, Zhang G, Luo CL, Zhao LYL, Li XD (2008) Seven thousand years of records on the mining and utilization of metals from lake sediments in central China. Environ Sci Technol 42:4732–4738

    Article  Google Scholar 

  • Leigh DS (1997) Mercury-tainted overbank sediment from past gold mining in north Georgia, USA. Environ Geol 30:244–251

    Article  Google Scholar 

  • Liao B, Huang LN, Ye ZH, Lan CY, Shu WS (2007) Cut-off net acid generation pH in predicting acid-forming potential in mine spoils. J Environ Qual 36:887–891

    Article  Google Scholar 

  • Limbong D, Kumampung J, Rimper J, Arai T, Miyazaki N (2003) Emissions and environmental implications of mercury from artisanal gold mining in north Sulawesi, Indonesia. Sci Total Environ 302:227–236

    Article  Google Scholar 

  • Lottermoser BG (2002) Mobilization of heavy metals from historical smelting slag dumps, north Queensland, Australia. Mineral Mag 66:475–490

    Article  Google Scholar 

  • Lottermoser BG, Schütz U, Boenecke J, Oberhänsli R, Zolitschka B, Negendank JFW (1997a) Natural and anthropogenic influences on the geochemistry of Quaternary lake sediments from Holzmaar, Germany. Environ Geol 31:236–247

    Article  Google Scholar 

  • Lottermoser BG, Ashley PM, Muller M, Whistler BD (1997b) Metal contamination at the abandoned Halls Peak massive sulphide deposits, New South Wales. In: Ashley PM, Flood PG (eds) Tectonics and metallogenesis of the New England Orogen. Special Publication no 19. Geological Society of Australia, Sydney, pp 290–299

    Google Scholar 

  • Maboeta MS, van Rensburg L (2003) Bioconversion of sewage sludge and industrially produced woodchips. Water Air Soil Poll 150:219–233

    Article  Google Scholar 

  • Mastrine JA, Bonzongo JC, Lyons WB (1999) Mercury concentrations in surface waters from fluvial systems draining historical precious metals mining areas in southeastern USA. Appl Geochem 14:147–158

    Article  Google Scholar 

  • Maxwell P, Govindarajalu S (1999) Do Australian mining companies pay too much? Reflections on the burden of meeting environmental standards in the late twentieth century. In: Azcue JM (ed) Environmental impacts of mining activities. Springer, Heidelberg, pp 7–17

    Chapter  Google Scholar 

  • Meseguer S, Jordán MM, Sanfeliu T (2009a) Use of mine spoils from Teruel coal mining district (NE, Spain). Environ Geol 56:845–853

    Article  Google Scholar 

  • Miller D (2008) Using aquaculture as a post-mining land use in West Virginia. Mine Water Environ 27:122–126

    Article  Google Scholar 

  • Miller JR, Lechler PJ, Desilets M (1998) The role of geomorphic processes in the transport and fate of mercury in the Carson River basin, west-central Nevada. Environ Geol 33:249–262

    Article  Google Scholar 

  • Monna F, Hamer K, Léveque J, Sauer M (2000) Pb isotopes as a reliable marker of early mining and smelting in the Northern Harz province (Lower Saxony, Germany). J Geochem Explor 68:201–210

    Article  Google Scholar 

  • Morin KA, Hutt NM (1997) Environmental geochemistry of minesite drainage. MDAG Publication, Vancouver

    Google Scholar 

  • Munk LA, Faure G, Pride DE, Bigham JM (2002) Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage; Snake River, Summit County, Colorado. Appl Geochem 17:421–430

    Article  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of world-wide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  Google Scholar 

  • Ogura T, Ramirez-Ortiz J, Arroyo-Villasenor ZM, Martinez SH, Palafox-Hernandez JP, Garcia de Alba LH, Fernando Q (2003) Zacatecas (Mexico) companies extract Hg from surface soil contaminated by ancient mining industries. Water Air Soil Poll 148:167–177

    Article  Google Scholar 

  • Petruk W (ed) (1998) Waste characterization and treatment. Society for Mining, Metallurgy, and Exploration, Littleton

    Google Scholar 

  • Pfeiffer WC, Lacerda LD, Salomons W, Malm O (1993) Environmental fate of mercury from gold mining in the Brazilian Amazon. Environ Rev 1:26–37

    Article  Google Scholar 

  • Plumlee GS (1999) The environmental geology of mineral deposits. In: Plumlee GS, Logsdon MS (eds) The environmental geochemistry of mineral deposits. Part A: processes, techniques and health issues, vol 6A. Society of Economic Geologists, Littleton, pp 71–116 (Reviews in economic geology)

    Google Scholar 

  • Posey HH, Renkin ML, Woodling J (2000) Natural acid drainage in the upper Alamosa River of Colorado. In: Proceedings from the 5th international conference on acid rock drainage, vol 1. Society for Mining, Metallurgy, and Exploration, Littleton, pp 485–498

    Google Scholar 

  • Renson V, Fagel N, Mattielli N, Nekrassoff S, Streel M, De Vleeschouwer F (2008) Roman road pollution assessed by elemental and lead isotope geochemistry in East Belgium. Appl Geochem 23:3253–3266

    Article  Google Scholar 

  • Renz A, Rühaak W, Schätzl P, Diersch HJG (2009) Numerical modeling of geothermal use of mine water: challenges and examples. Mine Water Environ 28:2–14

    Article  Google Scholar 

  • Ripley EA, Redmann RE, Crowder AA (1996) Environmental effects of mining. St Lucie Press, Delray Beach

    Google Scholar 

  • Rosman KJR, Boutron CF, Chisholm W, Hong S, Candelone J-P (1997) Lead from Carthaginian and Roman Spanish mines isotopically identified in Greenland ice dated from 600 b.c. to 300 a.d. Environ Sci Technol 31:3413–3416

    Article  Google Scholar 

  • Ruiz F, Borrego J, González-Regalado ML, López-González N, Carro B, Abad M (2009) Interaction between sedimentary processes, historical pollution and microfauna in the Tinto Estuary (SW Spain). Environ Geol 58:779–783

    Article  Google Scholar 

  • Salomons W (1995) Environmental impact of metals derived from mining activities; processes, predictions, prevention. J Geochem Explor 52:5–23

    Article  Google Scholar 

  • Schettler G, Romer RL (2006) Atmospheric Pb-pollution by pre-medieval mining detected in the sediments of the brackish karst lake An Loch Mór, western Ireland. Appl Geochem 21:58–82

    Article  Google Scholar 

  • Schwartz MO, Ploethner D (2000) Removal of heavy metals from mine water by carbonate precipitation in the Grootfontein-Omatako Canal, Namibia. Environ Geol 39:1117–1126

    Article  Google Scholar 

  • Sensogut C, Ozdeniz AH (2006) Bricks manufactured from colliery wastes: a case study. Int J Surf Min Reclam Environ 20:267–271

    Article  Google Scholar 

  • Shotyk W, Cheburkin AK, Appleby PG, Fankhauser A, Kramers JD (1996) Two thousand years of atmospheric arsenic, antimony, and lead deposition recorded in an ombrotrophic peat bog profile, Jura Mountains, Switzerland. Earth Planet Sci Lett 145:E1–E7

    Article  Google Scholar 

  • Sibrell PL, Montgomery GA, Ritenour KL, Tucker TW (2009) Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge. Water Res 43:2240–2250

    Article  Google Scholar 

  • Smit JP (2000) Potable water from sulphate polluted mine sources. Min Environ Manage 8:7–9

    Google Scholar 

  • Smith KS, Huyck HLO (1999) An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. In: Plumlee GS, Logsdon MS (eds) The environmental geochemistry of mineral deposits. Part A: processes, techniques and health issues, vol 6A. Society of Economic Geologists, Littleton, pp 29–70 (Reviews in economic geology)

    Google Scholar 

  • Sultan K, Dowling K (2006) Seasonal changes in arsenic concentrations and hydrogeochemistry of Canadian Creek, Ballarat (Victoria, Australia). Water Air Soil Pollut 169:355–374

    Article  Google Scholar 

  • Thomas MA, Conaway CH, Steding DJ, Marwin-DiPasquale M, Abu-Saba KE, Flegal AR (2002) Mercury contamination from historic mining in water and sediment, Guadalupe River and San Francisco Bay, California. Geochem Explor Environ Anal 2:211–217

    Article  Google Scholar 

  • Thornton I, Ramsey M, Atkinson N (1995) Metals in the global environment; facts and misconceptions. International Council on Metals and the Environment, Ottawa

    Google Scholar 

  • Toyer GS (1981) The Woodsreef asbestos mine. Its effect on water quality. Mineral 24:5–12

    Google Scholar 

  • Varnell CJ, Brahana van J, Steele K (2004) The influence of coal quality variation on utilization of water from abandoned coal mines as a municipal water source. Mine Water Environ 23:204–208

    Article  Google Scholar 

  • Verlaan PA, Wiltshire JC (2000) Manganese tailings; a potential resource? Min Environ Manage 8:21–22

    Google Scholar 

  • Verplanck PL, Nordstrom DK, Bove DJ, Plumlee GS, Runkel RL (2009) Naturally acidic surface and ground waters draining porphyry-related mineralized areas of the Southern Rocky Mountains, Colorado and New Mexico. Appl Geochem 24:255–267

    Article  Google Scholar 

  • Warhurst A (2000) Mining, mineral processing, and extractive metallurgy; an overview of the technologies and their impact on the physical environment. In: Warhurst A, Noronha L (eds) Environmental policy in mining; corporate strategy and planning for closure. Lewis Publishers, Boca Raton, pp 33–56

    Google Scholar 

  • Watzlaf GR, Ackman TE (2006) Underground mine water for heating and cooling using geothermal heat pump systems. Mine Water Environ 25:1–14

    Article  Google Scholar 

  • Wendel W (1999) Laurion: Der antike Bergbau von Lavrion in Griechenland. Lapis 24:11–13

    Google Scholar 

  • Williams AGB, Scheckel KG, Tolaymat T, Impellitteri CA (2006) Mineralogy and characterization of arsenic, iron, and lead in a mine waste-derived fertilizer. Environ Sci Technol 40:4874–4879

    Article  Google Scholar 

  • Williams TM, Weeks JM, Apostol AN Jr, Miranda CR (1999) Assessment of mercury contamination and human exposure associated with coastal disposal of waste from a cinnabar mining operation, Palawan, Philippines. Environ Geol 39:51–60

    Article  Google Scholar 

  • Winterhalder K (2002) The effects of the mining and smelting industry on Sudbury’s landscape. In: The physical environment of the city of Greater Sudbury. Ontario Geological Survey, spec vol 6, pp 145–173

    Google Scholar 

  • Zhou T, Fan Y, Yuan F, Cooke D, Zhang X, Li L (2008) A preliminary investigation and evaluation of the thallium environmental impacts of the unmined Xiangquan thallium-only deposit in Hexian, China. Environ Geol 54:131–145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd G. Lottermoser PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lottermoser, B.G. (2010). Introduction to Mine Wastes. In: Mine Wastes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12419-8_1

Download citation

Publish with us

Policies and ethics