Ultrasound Diagnostics of Thyroid Diseases

Vladimir P. Kharchenko • Peter M. Kotlyarov Mikhail S. Mogutov • Yury K. Alexandrov Alexander N. Sencha • Yury N. Patrunov Denis V. Belyaev

Ultrasound Diagnostics of Thyroid Diseases

Vladimir P. Kharchenko, MD Russian Radiology Research Center 86, Profsoyuznaya st. 117997 Moscow Russia Kharchenko_vp@mail.ru

Peter M. Kotlyarov, MD Russian Center of Roentgenradiology 86, Profsoyuznaya st. 117997 Moscow Russia Kotlyarov_pm@mail.ru

Mikhail S. Mogutov, MD Yaroslavl Railway Clinic Suzdalskoye Shosse 21 150030 Yaroslavl Russia mogmikhail@mail.ru

Yury K. Alexandrov, MD State Medical Academy Revolucionnaya ulitsa 5 150000 Yaroslavl Russia yka2000@mail.ru Alexander N. Sencha, MD Yaroslavl Railway Clinic Suzdalskoye Shosse 21 150030 Yaroslavl Russia senchavyatka@mail.ru

Yury N. Patrunov, MD Yaroslavl Railway Clinic Suzdalskoye Shosse 21 150030 Yaroslavl Russia unipatr@mail.ru

Denis V. Belyaev, MD Yaroslavl Railway Clinic Suzdalskoye Shosse 21 150030 Yaroslavl Russia belyaevdv@mail.ru

ISBN: 978-3-642-12386-3 e-ISBN: 978-3-642-12387-0

DOI: 10.1007/978-3-642-12387-0

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010932938

© Springer-Verlag Berlin Heidelberg 2010

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Cover design: eStudio Calamar, Figueres/Berlin

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Thyroid disease is the second most common type of endocrine pathology, only surpassed in prevalence by diabetes mellitus. Thyroid abnormalities are found in 8–20% of adults worldwide. In the endemic regions, the prevalence of such abnormalities is thought to be higher and exceeds 50%. Thyroid malignancies constitute 1–3% of all cancers with an average incidence in the world of 1.1 in 100,000 men and 3.8 in 100,000 women in 2008. Among the population of radionuclide polluted regions, this figure reaches 14 in 100,000. Recent research reveals a trend toward an increased incidence of thyroid pathology, including thyroid cancer, practically in all regions of the globe.

The diagnosis of thyroid diseases has been constantly improving due to the scientific development and technological advances in diagnostic equipment. The diagnostic value of visualization of the thyroid gland is method-dependent. In this regard, proper selection of a diagnostic procedure permits precise diagnosis while minimizing the cost and reducing the time to diagnosis. Minimally invasive surgical intervention is a promising tool in the treatment of thyroid diseases. Its feature is selective manipulation of the thyroid lesions and concomitant avoidance of damage to the surrounding tissue. The use of US guidance during such procedure allows to assess the operation course, predict the efficacy, and provide patient follow-up.

In this book we presented and analyzed certain debatable and unresolved problems and prospects of early, specific, and differential diagnosis of thyroid disease with the use of complex US. Our findings are based on the literature data and our extensive experience. We conducted analysis of more than 100,000 US examinations with the pathology of the thyroid and parathyroid glands, performed during 1995–2008, as well as the results of over 5,000 diagnostic and 2,000 therapeutic US guided minimally invasive manipulations with correlation to surgical findings and morphological structure. This analysis allowed us to generate a weighted opinion regarding the current role and limitations of a sonographic study of the thyroid, which we present here.

Moscow

Yaroslavl

V.P. Kharchenko
P.M. Kotlyarov
M.S. Mogutov
Y.K. Alexandrov
A.N. Sencha
Y.N. Patrunov
D.V. Belyaev

Acknowledgements

We wish to acknowledge
Vladimir V. Mitkov, MD, PhD
Moscow, Russia
Alexey V. Pavlov, MD, PhD
Yaroslavl, Russia
Leonid A. Zharikov
Moscow, Russia
Alexey V. Danilov, MD, PhD
Dartmouth, Hanover, NH, USA
Olga I. Jdanovskaya
Yaroslavl, Russia
for the help in working on the book.

Contents

1	Diagnosing Thyroid Pathology with Radiological Methods]
2	Complex Ultrasound Diagnosis of Thyroid Diseases	19 19
	2.2 Technology Used in Ultrasound Examinations of the Thyroid Gland .	28
	2.3 Basic Mistakes in Thyroid Ultrasound	32
3	Ultrasound Examination of the Thyroid Gland in Children	35
	3.1 Congenital Anomalies of the Thyroid	39
	3.2 Diffuse Thyroid Diseases in Children	42
4	Normal Thyroid	47
5	Diffuse Changes of the Thyroid Gland	57
	5.1 Diffuse Hyperplasia	57
	5.2 Thyroiditis	61
	5.2.1 Acute Thyroiditis	61
	5.2.2 Subacute Thyroiditis	64
	5.2.3 Autoimmune Thyroiditis	67
	5.2.4 Graves' Disease	71
6	Thyroid Lesions	85
	6.1 Colloid Goiter	86
	6.2 Cysts	92 102
	6.3 Adenomas	112
	0.4 Thyroid Cancer	112
7	Ultrasound Examination After Thyroid Surgery	127
8	Recurrent Thyroid Lesions	133
9	Ultrasound Examination of Regional Lymph Nodes	139
10	Substernal Goiter	155
11	Ultrasound of the Parathyroid Glands	161
	11.1 Normal Parathyroid	163
	11.2 Parathyroid Adenoma	166
	11.3 Parathyroid Cancer	170
	11.4 Parathyroid Hyperplasia	171
	11.5 Parathyroid Cyst	171

x Contents

12	Ultrasound Diagnostics of Neck Masses	175
13	Fine-Needle Aspiration Biopsy	185
14	Diagnostic Algorithms in Thyroid Pathology	193
15	Ultrasound Aspects of Minimally Invasive Procedures	
	on the Thyroid Gland	195
	15.1 US-Guided Percutaneous Glucocorticoid Administration	196
	15.2 Percutaneous Ethanol Injections	198
	15.3 Percutaneous Laser Ablation	211
	15.4 Radiofrequency Ablation	225
	15.5 Conclusion	229
Re	ferences	231
Inc	lex	241

Abbreviations

AIT	Autainamuna thumaiditia
	Autoimmune thyroiditis
AITD AT	Autoimmune thyroid disease
	Acute thyroiditis
ATC	Anaplastic thyroid carcinoma
BSA	Body surface area
CCA	Common carotid artery
CDI	Color Doppler imaging (Color flow imaging, CFI;
~~~~	Color flow mapping, CFM)
CEUS	Contrast-enhanced ultrasound
CPD	Color pixel density
CT	Computed tomography
EDV	End-diastolic velocity
FNAB	Fine needle aspiration biopsy
FTC	Follicular thyroid carcinoma
HPT	Hyperparathyroidism
HU	Hounsfield unit
ICD	International Classification of Diseases
IJV	Internal jugular vein
ITA	The inferior thyroid artery
MIM	Minimally invasive modality
MRI	Magnetic resonance imaging
MTC	Medullary thyroid carcinoma
PDI	Power Doppler imaging (mapping)
PEI	Percutaneous ethanol injection
PET	Positron emission tomography
PGA	Percutaneous glucocorticoid administration
PI	Pulsatility index
PI	Pulsatory index
PLA	Percutaneous laser ablation
PSV	Peak systolic velocity
PTC	Papillary thyroid carcinoma
PTH	Parathyroid hormone
PW	Pulse wave Doppler
RI	Resistance index
4D	Real time three-dimensional image reconstruction
RSI	Relative signal intensity
	,

xii Abbreviations

SAT Subacute thyroiditis SI Solbiati index

SPECT Single photon emission computed tomography 3D Three-dimensional reconstruction of the image

3DPD Three-dimensional reconstruction of the image in vascular regimen

(3D power Doppler imaging)

THI Tissue harmonic imaging
TSH Thyroid stimulating hormone

US Ultrasound

UTA The upper thyroid artery