Skip to main content

Evolutionary Ecology of Plant Signals and Toxins: A Conceptual Framework

  • Chapter
  • First Online:
Plant Communication from an Ecological Perspective

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Plants are capable of acquiring information from other plants, but are they able to send signals and communicate with them? Evolutionary biologists define biological communication as information transmission that is fashioned or maintained by natural selection and signals as traits whose value to the signaler is that they convey information to receivers. Plants, then, can be said to communicate if the signaling plant derives a fitness benefit from conveying information to other plants. Examples for interplant communication that fit these definitions potentially include territorial root communications, self/non-self recognition between roots and associated with self-incompatibility, volatile signals that induce defenses against herbivores, signals from ovules to mother plants, signals associated with root graft formation, and male to female signals during pollen competition. Natural selection would favor signals that are costly to the signaler and therefore are likely to convey reliable information because they cannot be easily faked. Toxins in low concentrations may commonly act as signals between plants rather than as inhibitory allelochemicals. This explains why toxic concentrations of plant allelochemicals are rarely found in natural coevolved systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizen MA, Harder LD (2007) Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology 88:271–281

    Article  PubMed  Google Scholar 

  • Arak A (1983) Sexual selection by male-male competition in natterjack toad choruses. Nature 306:261–262

    Article  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Schultz JC (1983) Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221:277–279

    Article  PubMed  CAS  Google Scholar 

  • BaluÅ¡ka F (ed) (2009) Plant-environment interactions: from sensory plant biology to active plant behavior. Springer, Berlin

    Google Scholar 

  • BaluÅ¡ka F, Mancuso S (2009a) Plant neurobiology: from stimulus perception to adaptive behavior of plants, via integrated chemical and electrical signaling. Plant Signal Behav 4:475–476

    Article  PubMed  Google Scholar 

  • BaluÅ¡ka F, Mancuso S (eds) (2009b) Signaling in plants. Springer, Berlin

    Google Scholar 

  • Bañuelos MJ, Obeso JR (2003) Maternal provisioning, sibling rivalry and seed mass variability in the dioecious shrub Rhamnus alpinus. Evol Ecol 17:19–31

    Article  Google Scholar 

  • Bateson G (2000) Steps to an ecology of mind. University of Chicago Press, Chicago

    Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Callaway RM (2007) Positive interactions and interdependence in plant communities. Springer, Berlin

    Google Scholar 

  • Callaway RM, Ridenour WM, Laboski T, Weir T, Vivanco JM (2005) Natural selection for resistance to the allelopathic effects of invasive plants. J Ecol 93:576–583

    Article  Google Scholar 

  • Chehab EW, Eich E, Braam J (2009) Thigmomorphogenesis: a complex plant response to mechano-stimulation. J Exp Bot 60:43–56

    Article  PubMed  CAS  Google Scholar 

  • Cheng HH (1995) Characterization of the mechanisms of allelopathy: modeling and experimental approaches. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and applications, vol 582. American Chemical Society, Washington, DC, pp 132–141

    Google Scholar 

  • Cruzan MB (1993) Analysis of pollen-style interactions in Petunia hybrida; the determination of variance in male reproductive success. Sex Plant Reprod 6:275–281

    Article  Google Scholar 

  • Davies E (2004) New functions for electrical signals in plants. New Phytol 161:607–610

    Article  Google Scholar 

  • Dawkins R, Krebs JR (1978) Animals signals: information or manipulation? In: Krebs JR, Davies NB (eds) Behavioural ecology – an evolutionary approach. Blackwell Scientific Publications, Oxford, pp 282–309

    Google Scholar 

  • del Río LA, Puppo A (2009) Reactive oxygen species in plant signaling. Springer, Berlin

    Book  Google Scholar 

  • Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct Ecol 2:131–139

    Article  Google Scholar 

  • Dolch R, Tscharntke T (2000) Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours. Oecologia 125:504–511

    Article  Google Scholar 

  • Dudley SA, File AL (2007) Kin recognition in an annual plant. Biol Lett 3:435–438

    Article  PubMed  Google Scholar 

  • Dusenbery DB (1992) Sensory ecology. W.H. Freeman and Company, New York

    Google Scholar 

  • Einhellig FA (1995) Allelopathy: current status and future goals. In: Inderjit, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and applications, vol 582. American Chemical Society, Washington, DC, pp 1–24

    Google Scholar 

  • Erbar C (2003) Pollen tube transmitting tissue: place of competition of male gametophytes. Int J Plant Sci 164:S265–S277

    Article  Google Scholar 

  • Espino S, Schenk HJ (2009) Hydraulically integrated or modular? Comparing whole-plant-level hydraulic systems between two desert shrub species with different growth forms. New Phytol 183:142–152

    Article  PubMed  Google Scholar 

  • Falik O, Reides P, Gersani M, Novoplansky A (2003) Self/non-self discrimination in roots. J Ecol 91:525–531

    Article  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    Article  PubMed  CAS  Google Scholar 

  • Fowler SV, Lawton JH (1985) Rapidly induced defenses and talking trees: the devil’s advocate position. Am Nat 126:181–195

    Article  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    Article  PubMed  CAS  Google Scholar 

  • Ganeshaiah KN, Shaanker RU (1988) Seed abortion in wind-dispersed pods of Dalbergia sissoo: maternal regulation or sibling rivalry. Oecologia 77:135–139

    Article  Google Scholar 

  • Goodnight CJ (1985) The influence of environmental variation on group and individual selection in a cress. Evolution 39:545–558

    Article  Google Scholar 

  • Gosling LM, Atkinson NW, Collins SA, Roberts RJ, Walters RL (1996) Avoidance of scent-marked areas depends on the intruder’s body size. Behaviour 133:491–502

    Article  Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B 205:581–598

    Article  PubMed  CAS  Google Scholar 

  • Grafen A (1990) Biological signals as handicaps. J Theor Biol 144:517–546

    Article  PubMed  CAS  Google Scholar 

  • Graham BF Jr, Bormann FH (1966) Natural root grafts. Bot Rev 32:255–292

    Article  Google Scholar 

  • Haring V, Gray JE, McClure BA, Anderson MA, Clarke AE (1990) Self-incompatibility: a self-recognition system in plants. Science 250:937–941

    Article  PubMed  CAS  Google Scholar 

  • Herrero M, Hormaza J (1996) Pistil strategies controlling pollen tube growth. Sex Plant Reprod 9:343–347

    Article  Google Scholar 

  • Holzapfel C, Alpert P (2003) Root cooperation in a clonal plant: connected strawberries segregate roots. Oecologia 134:72–77

    Article  PubMed  Google Scholar 

  • Holzapfel C, Mahall BE (1999) Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology 80:1747–1761

    Article  Google Scholar 

  • Inderjit, Weston LA (2003) Root exudates: an overview. In: de Kroon H, Visser EJW (eds) Root ecology, vol 168. Springer-Verlag, Berlin, pp 235–255

    Google Scholar 

  • Johnstone RA (1997) The evolution of animal signals. In: Krebs JR, Davies NB (eds) Behavioural ecology. Blackwell Publishing, Oxford, pp 155–178

    Google Scholar 

  • Jones CS, Lord EM (1982) The development of split axes in Ambrosia dumosa (Gray) Payne (Asteraceae). Bot Gaz 143:446–453

    Article  Google Scholar 

  • Karban R, Shiojiri K, Huntzinger M, McCall AC (2006) Damage-induced resistance in sagebrush: volatiles are key to intra- and interplant communication. Ecology 87:922–930

    Article  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Korbecka G, Klinkhamer PGL, Vrieling K (2002) Selective embryo abortion hypothesis revisited - A molecular approach. Plant Biol 4:298–310

    Article  CAS  Google Scholar 

  • Krebs JR, Davies NB (eds) (1997) Behavioural ecology: an evolutionary approach, 4th edn. Blackwell Science, London

    Google Scholar 

  • Lankinen A, Maad J, Armbruster WS (2009) Pollen-tube growth rates in Collinsia heterophylla (Plantaginaceae): one-donor crosses reveal heritability but no effect on sporophytic-offspring fitness. Ann Bot 103:941–950

    Article  PubMed  Google Scholar 

  • Littlejohn SW, Foss KA (2008) Theories of human communication. Thomson, Belmont, CA

    Google Scholar 

  • Loehle C, Jones RH (1990) Adaptive significance of root grafting in trees. Funct Ecol 4:268–271

    Google Scholar 

  • Lund EJ (1947) Bioelectric fields and growth. The University of Texas Press, Austin, TX

    Google Scholar 

  • Mahall BE, Callaway RM (1991) Root communication among desert shrubs. Proc Natl Acad Sci USA 88:874–876

    Article  PubMed  CAS  Google Scholar 

  • Mahall BE, Callaway RM (1992) Root communication mechanisms and intracommunity distributions of two Mojave Desert shrubs. Ecology 73:2145–2151

    Article  Google Scholar 

  • Mahall BE, Callaway RM (1996) Effects of regional origin and genotype on intraspecific root communication in the desert shrub Ambrosia dumosa (Asteraceae). Am J Bot 83:93–98

    Article  Google Scholar 

  • Marler P (1977) The evolution of communication. In: Sebeok TB (ed) How animals communicate. Indiana University Press, Bloomington, IN, pp 45–70

    Google Scholar 

  • Maynard Smith J, Harper D (2003) Animal signals. Oxford University Press, Oxford

    Google Scholar 

  • Mock DW, Parker GA (1998) Siblicide, family conflict and the evolutionary limits of selfishness. Anim Behav 56:1–10

    Article  PubMed  Google Scholar 

  • Molisch H (1937) Der Einfluss einer Pflanze auf die andere - Allelopathie. Gustav Fischer, Jena, Germany

    Google Scholar 

  • Nakamura RR, Wheeler NC (1992) Pollen competition and paternal success in Douglas-Fir. Evolution 46:846–851

    Article  Google Scholar 

  • Newman EI (1978) Allelopathy: adaptation or accident? In: Harborne JB (ed) Biochemical aspects of plant and animal coevolution. Academic Press, London, pp 327–342

    Google Scholar 

  • Otte D (1974) Effects and functions in the evolution of signaling systems. Ann Rev Ecol Syst 4:385–417

    Article  Google Scholar 

  • Pina A, Errea P (2005) A review of new advances in mechanism of graft compatibility-incompatibility. Sci Hortic 106:1–11

    Article  Google Scholar 

  • Rea AC, Nasrallah JB (2008) Self-incompatibility systems: barriers to self-fertilization in flowering plants. Int J Dev Biol 52:627–636

    Article  PubMed  CAS  Google Scholar 

  • Retallack DL (1973) The sound of music and plants. DeVorss, Santa Monica, CA

    Google Scholar 

  • Rhoades DF (1985) Pheromonal communication between plants. In: Cooper-Driver GA, Swain T, Conn EE (eds) Chemically mediated interactions between plants and other organisms, vol 19. Plenum Press, New York, pp 195–218

    Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic Press, Orlando

    Google Scholar 

  • Ritman KT, Milburn JA (1988) Acoustic emissions from plants: ultrasonic and audible compared. J Exp Bot 39:1237–1248

    Article  Google Scholar 

  • Ruane LG (2009) Post-pollination processes and non-random mating among compatible mates. Evol Ecol Res 11:1031–1051

    Google Scholar 

  • Schenk HJ (1999) Clonal splitting in desert shrubs. Plant Ecol 141:41–52

    Article  Google Scholar 

  • Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725–739

    Article  Google Scholar 

  • Schenk HJ, Callaway RM, Mahall BE (1999) Spatial root segregation: Are plants territorial? Adv Ecol Res 28:145–180

    Article  CAS  Google Scholar 

  • Searcy WA, Nowicki S (2005) The evolutionof animal communication: reliability and deception in signaling systems. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Shaanker RU, Ravishankar KV, Hegde SG, Ganeshaiah KN (1996) Does endosperm reduce intra-fruit competition among developing seeds? Plant Syst Evol 201:263–270

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. The Bell Syst Tech J 27:379–423

    Google Scholar 

  • Shiojiri K, Karban R (2006) Plant age, communication, and resistance to herbivores: young sagebrush plants are better emitters and receivers. Oecologia 149:214–220

    Article  PubMed  Google Scholar 

  • Shiojiri K, Karban R (2008) Vascular systemic induced resistance for Artemisia cana and volatile communication for Artemisia douglasiana. Am Midl Nat 159:468–477

    Article  Google Scholar 

  • Silvertown J, Gordon DM (1989) A framework for plant behavior. Annu Rev Ecol Syst 20:349–366

    Article  Google Scholar 

  • Skogsmyr I, Lankinen A (2002) Sexual selection: an evolutionary force in plants. Biol Rev 77:537–562

    Article  PubMed  Google Scholar 

  • Slater PJB (1983) The study of communication. In: Halliday TR, Slater PJB (eds) communication, vol 2. Blackwell Scientific Publications, Oxford, pp 9–42

    Google Scholar 

  • Snow AA, Spira TP (1991) Pollen vigour and the potential for sexual selection in plants. Nature 352:796–797

    Article  Google Scholar 

  • Tiffney BH, Niklas KJ (1985) Clonal growth in land plants: a paleobotanical perspective. In: Jackson JBC, Buss LW, Cook RE (eds) Population biology and evolution of clonal organisms. Yale University Press, New Haven, pp 35–66

    Google Scholar 

  • Tuomi J, Vuorisalo T (1989) Hierarchical selection in modular organisms. Trends Ecol Evol 4:209–213

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3:525–536

    Article  PubMed  Google Scholar 

  • Wagner WE (1989) Fighting, assessment, and frequency alteration in Blanchard’s cricket frog. Behav Ecol Sociobiol 25:429–436

    Article  Google Scholar 

  • Watzlawick P, Beavin JH, Jackson DD (1967) Pragmatics of human communication: a study of interactional patterns, pathologies, and paradoxes. W.W.Norton, New York

    Google Scholar 

  • Wiener N (1948) Cybernetics or control and communication in the animal and the machine. Wiley, New York

    Google Scholar 

  • Wiley RH (1994) Errors, exaggeration, and deception in animal communication. In: Real L (ed) Behavioral mechanisms in evolutionary ecology. University of Chicago Press, Chicago, pp 157–189

    Google Scholar 

  • Wilson EO (1975) Sociobiology: the new synthesis. The Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  • Wilson JB (1987) Group selection in plant populations. Theor Appl Genet 74:493–502

    Article  Google Scholar 

  • Wilson DS, Sober E (1994) Group selection: the theory replaces the bogey man. Behav Brain Sci 17:639–654

    Article  Google Scholar 

  • Yeoman MM (1984) Cellular recognition systems in grafting. In: Linskens HF, Heslop-Harrison J (eds) Cellular interactions, vol 17. Springer-Verlag, Berlin, pp 453–472

    Chapter  Google Scholar 

  • Zahavi A (1975) Mate selection - a selection for a handicap. J Theor Biol 53:205–214

    Article  PubMed  CAS  Google Scholar 

  • Zahavi A (1977) The cost of honesty (further remarks on the handicap principle). J Theor Biol 67:603–605

    Article  PubMed  CAS  Google Scholar 

  • Zahavi A, Zahavi A (1997) The handicap principle: a missing piece of Darwin’s puzzle. Oxford University Press, Oxford

    Google Scholar 

  • Zhang DY, Jiang XH (2000) Costly solicitation, timing of offspring conflict, and resource allocation in plants. Ann Bot 86:123–131

    Article  Google Scholar 

  • Zweifel R, Zeugin F (2008) Ultrasonic acoustic emissions in drought-stressed trees - more than signals from cavitation? New Phytol 179:1070–1079

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jochen Schenk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schenk, H.J., Seabloom, E.W. (2010). Evolutionary Ecology of Plant Signals and Toxins: A Conceptual Framework. In: Baluška, F., Ninkovic, V. (eds) Plant Communication from an Ecological Perspective. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12162-3_1

Download citation

Publish with us

Policies and ethics