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Abstract. In this study we address the linear classification of noisy high-dimen-
sional data in a two class scenario. We assume that the cardinality of the data is
much lower than its dimensionality. The problem of classification in this setting
is intensified in the presence of noise. Eleven linear classifiers were compared
on two-thousand-one-hundred-and-fifty artificial datasets from four different ex-
perimental setups, and five real world gene expression profile datasets, in terms
of classification accuracy and robustness. We specifically focus on linear clas-
sifiers as the use of more complex concept classes would make over-adaptation
even more likely. Classification accuracy is measured by mean error rate and
mean rank of error rate. These criteria place two large margin classifiers, SVM
and ALMA, and an online classification algorithm called PA at the top, with PA
being statistically different from SVM on the artificial data. Surprisingly, these
algorithms also outperformed statistically significant all classifiers investigated
with dimensionality reduction.

1 Introduction

Classification is one of the basic tasks in machine learning. Many different classification
methods were proposed (see e.g. [1, 2, 3]). In the standard inductive setting, a classifier
will be selected according to a set of training examples and its accuracy is tested on a
set of test examples. Problems arise if a collected dataset contains more features than
samples. In this case even simple classifiers have the complexity to adapt perfectly to a
given training set and loose their ability of generalization (overfitting) [4]. Dimension-
ality reduction methods, like for example PCA, ICA, can antagonize this problem but
complicate the interpretation of a classifier in terms of its original input space [5, 6].
The problem of overfitting is increased in real life applications. The single datapoint
can be affected by measurement errors and a classifier will adapt to a noisy dataset.

Aim of this investigation is the influence of different types of noise on the perfor-
mance of linear classifiers for high-dimensional data of low cardinality.

2 Classification

Classification is the task of predicting a categorial label y ∈ Y of a datapoint x ∈ X.
A classifier is a mapping c : X → Y. In the following we will concentrate on binary
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classification Y = {+1,−1} and real valued input spaces X ⊆R
n. A classifier is chosen

from a concept class C, a set describing all classifiers fulfilling some model assumptions.
The aim is to find the classifier c∗ ∈ C which minimizes the number of errors over the
distribution of all possible labeled pairs D(x,y)

c∗ = argmin
c

1
2

∫
|c(x)− y|dD(x,y). (1)

The distribution of D(x,y) is usually not known. In this case a classifier c is selected
(trained) by a learning algorithm t(C,S) → c according to a finite set S of m examples

S = S(P,N) = {(x,+1) |x ∈ P}∪{(x,−1) |x ∈ N}. (2)

Here P denotes the set of k (positive) examples of the first class and N denotes the set
of l (negative) examples of the second class. The error rate of a classifier is estimated
on an independent (test-) dataset S′ = S(P′,N′) with S∩S′ = /0. This estimator can be
formalized as

ferr =
1

2|S′| ∑
(x,y)∈S′

|c(x)−y|. (3)

2.1 Linear Classifiers

The concept class of linear classifiers is given by

Clin = {c(x) = sign(ωT x−θ ) |ω ∈ R
n,θ ∈ R}. (4)

The decision boundaries of these classifiers are linear equations of the form

ωT x = θ . (5)

ω and θ are normally substituted by ω := ω/||ω ||2 and θ := θ/||ω ||2 in order to gain
a unique representation of each classifier. Here || · ||2 denotes the Euclidian norm. In a
geometric interpretation ω can be seen as the norm vector of the line. The threshold θ
can be seen as the line’s distance to the origin.

In this analysis we focus on datasets with higher dimensionality than cardinality
(m 	 n), which is the basic scenario in many tasks, like image analysis [7], speech
recognition [8] and gene expression analysis [9]. Although linear classifiers are very
simple models, they tend to overfit on such datasets. This was shown, for example, by
Cover’s theorem [10] stating that a database of m-datapoints (in general position) within
a n-dimensional space can be separated in an arbitrary way with probability

P(m,n) =
(1

2

)m−1 n−1

∑
k=0

(
m−1

k

)
. (6)

If the ratio n/m is greater than 0.5, P(m,n) is rapidly increasing towards 1 and a classi-
fier without any training error can be found for an arbitrary dataset of these dimensions.
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3 Training Algorithms

This section contains a brief description of the eleven training algorithms that were used
in this study. The algorithms are divided into model-based algorithms (3.1), linear and
quadratic programming algorithms (3.2) and iterative algorithms (3.3).

3.1 Model Based Classifiers

The algorithms listed here were created with assumptions on the class densities.

Fisher Linear Discriminant Analysis (LDA). The LDA classifier is built with the as-
sumption, that both class densities are Gaussians with a common covariance Σ . The
hyperplane calculated by this algorithm minimizes the error for datapoints chosen ac-
cording to these class densities. For this the inverse of Σ is needed. On a real dataset
the estimate Σ̂ of Σ has to be used. Σ̂ will become singular for datasets with higher
dimensionality than cardinality. In this case the inverse of Σ̂ is usually replaced by
the Moore-Penrose Inverse. Besides the standard LDA (mean), we have used a variant
LDA (median), for which the estimation of the class centroid was done by applying the
median feature-wise.

Nearest Centroid (NC). The nearest centroid algorithm assumes, that both class den-
sities are Gaussians with a common covariance of form c · I, c ∈ R (I is the identity
matrix). In this way the NC can be seen as a special case of LDA. Under these assump-
tions only the class centroids have to be calculated for the final classification. For a
new example the Euclidian distances to all centroids are calculated. The datapoint will
receive the label of its nearest centroid.

Nearest Shrunken Centroid (NSC) [11]. The nearest shrunken centroid is a feature
reducing version of the NC. Here, additionally the class independent (overall) centroid
is calculated. The main idea of the NSC is, that feature dimensions in which a class
centroid is near to the overall centroid are not useful for characterizing the class. The
class-wise centroids are shrunken feature–wise towards the overall centroid. If a single
entry of a centroid gets negative, it is set to zero. The amount of shrinkage is determined
by a set of parameters Δ . In this study experiments for i ∈ {1, . . . ,30} different sets of
shrinking parameters Δi j = i/30∗max{|d0 j|, |d1 j|} were done. Here d0 j and d1 j denote
the distances of the class-wise centroids to the overall centroids in feature dimension j.

3.2 Linear and Quadratic Programming Training Algorithms

This section contains algorithms, which optimize an objective function by a linear or
quadratic program. In order to handle non-linear separable datasets a penalty term of
slack variables ξi is added to the objective function. The tradeoff between the penalty
term and the original objective function can now be regulated by a cost parameter C.

Support Vector Machine (SVM) [2]. The support vector machine searches for the
hyperplane, which maximizes the Euclidian distance between the hyperplane and the
datapoints next to it (maximal L2 margin). This can be formulated as a quadratic prob-
lem for minimizing the Euclidian norm ||ω ||2 of ω .
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min
ω,ξ

‖ω‖2
2 +C

N

∑
i=1

ξi

s.t. ∀i : yi(ωT xi)−θ ≥ 1− ξi

∀i : ξi ≥ 0

LIKNON [12]. The LIKNON algorithm can be seen as the L1 variant of the SVM.
Minimizing the L1 norm ||ω ||1 of ω forces many ωi to zero. The corresponding fea-
tures of the datapoints will not be used for the final classification. In this way a feature
reduction is achieved. The optimization problem of the LIKNON algorithm can be for-
malized as a linear program.

min
ω,b,ξ

‖ω‖1 +C
N

∑
i=1

ξi

s.t. ∀i : yi(ωT xi)−θ ≥ 1− ξi

∀i : ξi ≥ 0

LESS [13]. The LESS classifier belongs to the group of weighted centroid classifiers.
Linear programming is used here to find a weight vector w, which minimizes the trade-
off between its L1 norm and the penalization term. Here again a feature selection is
implicitly performed.

min
w,ξ

‖w‖1 +C
N

∑
i=1

ξi

s.t. ∀i : yi

M

∑
j=1

wj(2xi j(μ0, j − μ1 j)+ (μ2
0, j − μ2

1 j)) ≥ 1− ξi

∀i : ξi ≥ 0 ∀ j : wj ≥ 0

μ0 and μ1 denote the class-wise centroids.

3.3 Iterative Training Algorithms

The algorithms in this section adapt the linear model in an iterative way. During each
iteration, i.e. presentation of a data point, the classifier will be modified. Many iterative
algorithms are designed for the online learning setting. In this scenario new labeled data
points will be available one by one. The classifier will be adapted after receiving a new
datapoint. In this study the online learning setting was simulated by iterating 10000
times through permuted versions of the original dataset.

Perceptron [14]. The perceptron algorithm is one of the classical iterative algorithms.
The hyperplane will be updated until it separates the data points correctly. No objective
function is considered for the choice of the hyperplane.

ALMA [15] and ROMMA [16]. The two algorithms ALMA (approximate maximal
margin algorithm) and ROMMA (relaxed online maximum margin algorithm), approx-
imate a maximum margin solution of the L2 margin in an iterative way.
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Passive Aggressive Algorithm (PA) [17]. The update rule of PA utilizes the hinge loss
l(ω∗;(x,y)) = max(0,1− y(ωx− θ )). Here ω∗ denotes the vector of all classifier pa-
rameters (ω1, . . . ,ωn,−θ )T . If a datapoint is classified correctly with a margin greater
or equal to one, the hinge loss is equal to zero. Otherwise, the loss is increasing ac-
cording to the distance between this margin and the datapoint. In the linear separable
case, an update step of PA has to fulfill the constraint l(ω∗;(xt ,yt)) = 0. By this con-
straint not only a correct classification of xt but also a minimal distance between the
classifier and xt is enforced. In each iteration t the classifier will be selected, which
has the minimal modification of ω∗

t . If the classification of xt fulfills the constraint, no
modifications have to be done and PA is passive. Otherwise, PA forces aggressively the
correct classification of xt . For the linear inseparable case, the optimization problem can
be formalized as

ω∗
t+1 = argmin

ω∗∈Rn+1

1
2
||ω∗ −ω∗

t ||22 +Cξ 2

s.t. l(ω∗;(xt ,yt)) ≤ ξ

This is equal to the PA-II variant proposed in [17].

4 Experimental Setup

The first part of this study is an empirical comparison of the classifiers in several artifi-
cial noise settings. For all experiments we use different datasets with a dimensionality
of n = 100 and 25 datapoints for each of the two classes. A graphical visualization of
the experimental setup can be found in Figure 1. For all algorithms various parameters
settings were tested prior to the results given here. The best found parameter values
were chosen and fixed for the results given in the following. We will first introduce
some notation used within this section. The vector 1 is the vector, which is equal to 1 at
each position. The vector 1x is equal to 1 in the first x positions and 0 on the other posi-
tions. The vector 1̄x is defined as 1−1x. The function d : R

n → R
n×n converts a vector

v ∈ R
n into a n×n - dimensional diagonal matrix. The main diagonal of this matrix is

filled with the elements of v. A Gaussian distribution with mean μ and covariance Σ
will be denoted byN (μ ,Σ). We will write s(k,Φ) to denote a function which creates a
set of k datapoints chosen according to distribution Φ .

4.1 Breakdown Experiments

Here the test error of a classifier trained on samples P = s(k,Ψ1) and N = s(l,Ψ0) is com-
pared to a classifier trained on contaminated samples P̃ and Ñ. A contaminated version
X̃ = s̃(X, i,Φ) of a sample X ∈ {P,N} is generated by replacing i ≤ |X| examples by
new ones, which were chosen according to distribution Φ . The number of contaminated
datapoints is increased from 0 to |X| (class breakdown). For all experiments the test sets
are chosen as P′ = s(k,Ψ1) and N′ = s(l,Ψ0). Each test was repeated on ten different
samples. A table of the concrete experiments can be found in Table 1. The meanx ex-
periment was done for x ∈ {5,10,25,50}. The sdx′ experiment for x′ ∈ {102,103,104}.
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Fig. 1. The four settings of the artificial data experiments: Upper left: mean breakdown ex-
periment. The distribution of the noisy datapoints differs from the distribution of the original
datapoints in the first x dimensions of their common mean vector. The mean vector of the noisy
datapoints is equal to 0 for the first x dimensions. Upper right: sd breakdown experiment. The
noisy datapoints are chosen according to a Gaussian distribution with higher standard deviation
than the standard deviation of the Gaussian of the original one. Lower left: class breakdown ex-
periment. In this setting the noisy datapoints are chosen according to the distribution of the other
class. Lower right: single outlier experiment. In this experiment a single noisy datapoint is moved
in a certain direction. The datapoint is moved either towards the other class ( f orward), or away
from the other class (backwards), or orthogonal to the other class (sideways).

Table 1. Breakdown experiments that were performed

experiment P/P′ N/N′ P̃ Ñ

meanx s(25,N (1,d(1))) s(25,N (−1,d(1))) s̃(P, i,N (1̄x,d(1))) s̃(N, i,N (−1̄x,d(1)))

sdx s(25,N (1,d(1))) s(25,N (−1,d(1))) s̃(P, i,N (1,xd(1)) s̃(N, i,N (−1,xd(1)))

class s(25,N (1,d(1))) s(25,N (−1,d(1))) s̃(P, i,N (−1,d(1))) s̃(N, i,N (1,d(1)))

4.2 Single Outlier Experiments

In this test a classifier trained on samples P = s(k,Ψ1) and N = s(l,Ψ0) is compared to
a classifier trained on samples Pτ

x = s̄(P,x,τ) = P∪{10τx} and N. Here x is a random
point from the corresponding unit sphere and τ ∈ { 1, . . . ,5}. For each x, ten different
datasets were resampled. Some characteristics of the used datasets are given in Table 2.
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Table 2. Single outlier experiments

experiment P/P′ N/N′ Pτ
x

forward s(25,N (1̄1,d(1̄1))) s(25,N (−1̄1,d(1̄1))) s̄(P,−1̄1/||−1̄1||,τ)

backwards s(25,N (1̄1,d(1̄1))) s(25,N (−1̄1,d(1̄1))) s̄(P, 1̄1/||1̄1||,τ)

sideways s(25,N (1̄1,d(1̄1))) s(25,N (−1̄1,d(1̄1))) s̄(P,11/||11||,τ)

Table 3. Real data sets

name #Fea #Pos #Neg

Bittner [18] 8067 19 19

Golub [19] 3571 47 25

Buchholz/Kestler [9] 169 37 25

Notterman [20] 7457 18 18

West [21] 7129 25 24

4.3 Experiments on Real Datasets

The classifiers were additionally compared on real data sets. For this setting a 10×10
cross-validation was chosen. A 10×10 cross-validation is a 10-fold repetition of a 10-
fold cross-validation test on permuted variants of the initial dataset. The result will be
the average error of the 10 single experiments. In a single 10-fold cross-validation test
a dataset is divided into ten equal part. Nine parts are used to train the classifier and
one part is used for testing. This procedure is repeated for all ten parts of the data. The
mean error of these tests is calculated. The used data sets are chosen from the field of
gene expression analysis. A list of the used data sets is given in Table 3.

5 Results

mean Breakdown results. The LDA-based algorithms are the only classifiers that are
influenced for mean5 and mean10 (data not shown). They show error rates between
30% and 50% in these experiments, all other classifiers have zero error. Performance
decreases for all other classifiers starting with mean10, but is still much better than
the LDA classifiers. For 25 and 50 noisy dimensions (mean25, mean50) performance
decreases uniformly to 2% to 50% starting with 15 noisy datapoints. All classifiers are
robust to this kind of noise, if the number of noisy datapoints is low. The NC-based
classifiers are more robust on an increasing number of noisy datapoints and are only
deteriorating for 24 or 25 noisy datapoints. Performance of SVM and LIKNON on
lower noise levels is inferior to the iterative algorithms.

sd Breakdown results. The results of the sd breakdown experiments can be seen in
Figure 2. The single rows contain the results of the sd100, the sd1000 and the sd10000

breakdown experiment. The classifiers ALMA, PA, LIKNON and SVM are not influ-
enced in any experiment until all datapoints were replaced by noisy datapoints. One
noisy datapoint is enough to increase the error rate of the NC-based classifiers. This
effect increases with a higher standard deviation. The LDA-based algorithms fluctuate
around their initial error rate of about 20%. For all sd experiments there is a number of
datapoints for which the error rate of LDA (median) is rapidly increasing towards 50%.
The LDA (mean) has an error rate of 50% only for the number of 25 noisy datapoints.
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Fig. 2. Error curves of the sd breakdown experiment. The mean error of ten repetitions is shown.
The number of noisy datapoints per class is given on the horizontal axis. The rows include the
results from sd100, sd1000, and sd10000 (top to bottom).

class Breakdown results. The results of the class breakdown experiment are given in
Figure 3. The classifiers show a linear increasing error rate according to the increasing
number of noisy datapoints. An exception to this are the model-based classifiers. The
classifiers NC, NSC and LESS show a flat error curve until a level of 13 noisy datapoints
per class is reached. The LDA-based classifiers fluctuate around the 50% error rate in
the range of 5 and 20 noisy datapoints.

Single outlier results. The error curves of the single outlier experiments are given in
Figure 4. Only the model based classifiers were influenced in the experiments back-
wards and sideways. A exception to this is the NSC in the sideways experiment. The
other classifiers are only affected in the forward experiment.

Average ranking on artificial datasets. The rank over all classifiers was calculated for
all single experiments and noise levels. The mean rank is shown in Table 4. The best



80 L. Lausser and H.A. Kestler

Fig. 3. Error curves of the class breakdown experiment over an increasing number of noisy data-
points per class. The mean error of ten repetitions is shown.
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Fig. 4. Error curves of the single outlier experiments. The mean error of ten repetitions is shown.
The distance from the outlier to the class centroid is given on the horizontal axis.
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Table 4. Average ranks over all experiments on artificial datasets

LDA (mean) LDA (median) NC NSC PER ROMMA ALMA PA SVM LIK LESS

8.62 9.02 6.48 6.91 5.49 4.41 4.62 4.41 4.60 5.06 6.37

Table 5. Results of the real data experiments. The results of the 10×10 cross-validation are given
by the mean errors in percent and standard deviations. The last two columns show the average
error and the average rank over all datasets.

Bittner Golub Notterman Buchholz West
Average

error
Average

rank
LDA (mean) 46.84±6.88 42.22±6.84 34.17±7.53 45.32±7.35 44.69±6.83 42.65 9.9

LDA (median) 46.84±7.00 44.31±6.56 35.28±7.30 45.48±6.44 47.35±9.47 43.85 10.7
NC 50.53±1.11 2.50±0.59 2.78±0.00 27.26±0.92 39.39±4.41 24.49 6.4

NSC 8.68±2.17 4.17±1.13 5.28±2.43 29.19±2.21 15.10±1.72 12.48 5.4
PER 28.42±3.88 11.39±2.60 5.83±2.05 26.77±3.58 16.33±2.89 17.75 6.9

ROMMA 20.53±7.21 5.83±2.68 6.39±2.64 26.77±3.15 17.96±3.94 15.50 6.8
ALMA 10.53±0.00 2.22±0.97 2.78±0.00 19.03±5.20 9.59±1.38 8.83 1.9

PA 9.74±2.50 2.64±0.44 2.78±0.00 19.52±3.68 10.41±1.79 9.02 2.8
SVM 14.74±2.83 2.64±0.44 2.78±0.00 16.13±3.88 10.61±2.32 9.38 3.2
LIK 13.95±2.79 7.64±1.35 3.06±0.88 24.52±4.08 17.96±4.49 13.43 5.5

LESS 41.58±4.77 2.50±0.59 4.72±1.87 28.23±2.97 30.00±6.24 21.41 6.5

average ranks were achieved by PA (4.41), ROMMA (4.41), SVM (4.60), and ALMA
(4.62). We found significant differences between PA and SVM (Wilcoxon rank sum
test: p = 0.0028) and ROMMA and SVM (Wilcoxon rank sum test: p = 0.0006). We
also found a significant difference between SVM, PA, ROMMA and all classifiers with
dimensionality reduction NSC, LESS, and LIKNON (9 Wilkoxon rank tests, all p <
0.000014 after Holm correction for multiple testing).

Cross-validation results on real datasets. The results of the cross–validation experi-
ments can be seen in Table 5. The LDA variants show high error rates for all datasets.
Compared to the other centroid based classifiers the NSC has better error rates on
the datasets Bittner and West. On these datasets the improvement is better than 10%.
Among the classifiers, which try to maximize the margin, ALMA has best error rates
on the datasets Bittner, Golub and West. The SVM achieves equal or better result on the
other datasets. The results of PA are comparable to the results of SVM and ALMA.

6 Conclusion

In this study a set of eleven linear classifiers were compared in terms of noise robustness
and classification rates. The classifiers were tested on real and artificial high dimen-
sional datasets. The artificial datasets fulfilled the model assumptions of the classifiers
LDA and NC. Within these tests, a small number of undirected noisy datapoints lead to
rapid increasing error rates. NC-like algorithms are more influenced by this effect than
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the LDA-like ones. This can be seen in the sd breakdown experiments and the single
outlier experiments. If the noise is directed, the NC-like algorithms perform different
to the LDA-like algorithms. In the class breakdown experiment, 50% of all datapoints
could be replaced by noisy ones. The LDA-based classifiers show a mean error rate of
about 50% in this experiment. The centroid based classifiers are superior to the others
in the early stages of the forward single outlier test. Effects of the noise variant chosen
in the mean breakdown experiment could only be seen for high values of x. In this case,
all NC-based classifiers were more robust for higher noise rates. Only the LDA-based
algorithms were highly affected of this kind of noise. This is not too surprising and
supports the findings of Raudys & Duin [22], that when the total number of learning
samples approaches the dimensionality some of the eigenvalues of the sample covari-
ance matrix become extremely large while the others become extremely small. This
negatively affects classifier performance. The other classifiers are more robust in the sd
breakdown experiments. Especially the large margin classifiers are unaffected by this
scenario. These classifiers are more sensitive to direct noise. This can be seen by their
linear increasing error rates in the class breakdown.

The effects of feature selection were different for single algorithms. The NSC ob-
tained equal or better results than NC in the sd breakdown experiments and in the class
breakdown experiments for higher noise rates. LESS is more comparable to NC, but be-
comes more instable in the sd breakdown experiments. LIKNON has lower error rates
than the SVM in the mean breakdown experiments. The top mean rank over all artifi-
cial experiments was gained by PA, ROMMA, ALMA and SVM. Surprisingly, these
algorithms also outperformed statistically significant all classifiers with dimensionality
reduction (NSC, LESS, LIKNON). This might be due to the problem of finding a mean-
ingful subset of features in these very high-dimensional spaces of low cardinality [23].
Also as volume of the feature space increases exponentially with dimensionality, noise
on each of the coordinates does not affect the location of the datapoint too much and
thus margin classifiers seem to be superior in this setting. This is also supported by the
good performance of the single outlier experiments in which the pure feature selection
algorithm NSC scored worse than margin algorithms.

On the real datasets the large margin classifiers were slightly better than the centroid
based classifiers. There were two examples among the used datasets (Bittner and West),
which could hardly be classified by NC and LESS. The error curves of the NSC has
comparable results to the other classifiers on this datasets. Concerning the error rates
over all real datasets, the top three classifiers are ALMA, PA and SVM. The overall best
performance for these types of high-dimensional data of low cardinality is given be PA,
as it scores top on the artificial data and second on the expression profiles.
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