Skip to main content

Computed Tomography and Magnetic Resonance Imaging

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Abstract

Imaging in Oncology is rapidly moving from the detection and size measurement of a lesion to the quantitative assessment of metabolic processes and cellular and molecular interactions. Increasing insights into cancer as a complex disease with involvement of the tumor stroma in tumor pathobiological processes have made it clear that for successful control of cancer, treatment strategies should not only be directed at the tumor cells but also targeted at the tumor microenvironment. This requires understanding of the complex molecular and cellular interactions in cancer tissue. Recent developments in imaging technology have increased the possibility to image various pathobiological processes in cancer development and response to treatment. For computed tomography (CT) and magnetic resonance imaging (MRI) various improvements in hardware, software, and imaging probes have lifted these modalities from classical anatomical imaging techniques to techniques suitable to image and quantify various physiological processes and molecular and cellular interactions. Next to a more general overview of possible imaging targets in oncology this chapter provides an overview of the various developments in CT and MRI technology and some specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Razek AA, Gaballa G, Denewer A et al (2010) Diffusion weighted MR imaging of the breast. Acad Radiol 17:382–386

    PubMed  Google Scholar 

  • Aime S, Botta M, Gianolio E et al (2000) A p(O(2))-responsive MRI contrast agent based on the redox switch of manganese(II/III)—porphyrin complexes. Angewandte Chemie (International ed) 39:747–750

    Google Scholar 

  • Aime S, Delli Castelli D, Terreno E (2005) Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. Angew Chem Int Ed Engl 44:5513–5515

    PubMed  CAS  Google Scholar 

  • Aime S, Delli Castelli D, Lawson D et al (2007) Gd-loaded liposomes as T1, susceptibility, and CEST agents, all in one. J Am Chem Soc 129:2430–2431

    PubMed  CAS  Google Scholar 

  • Alfke H, Stoppler H, Nocken F et al (2003) In vitro MR imaging of regulated gene expression. Radiology 228:488–492

    PubMed  Google Scholar 

  • Allen MJ, Meade TJ (2003) Synthesis and visualization of a membrane-permeable MRI contrast agent. J Biol Inorg Chem 8:746–750

    PubMed  CAS  Google Scholar 

  • Allen-Auerbach M, Weber WA (2009) Measuring response with FDG-PET: methodological aspects. Oncologist 14:369–377

    PubMed  Google Scholar 

  • Ambrose J, Hounsfield G (1973) Computerized transverse axial tomography. Br J Radiol 46:148–149

    PubMed  CAS  Google Scholar 

  • Amsalem Y, Mardor Y, Feinberg MS et al (2007) Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116:I38–45

    PubMed  CAS  Google Scholar 

  • Anderson SA, Glod J, Arbab AS et al (2005) Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 105:420–425

    PubMed  CAS  Google Scholar 

  • Anderson NG, Butler AP, Scott NJ et al (2010) Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE. Eur Radiol 20:2126–2134

    PubMed  CAS  Google Scholar 

  • Artemov D, Solaiyappan M, Bhujwalla ZM (2001) Magnetic resonance pharmacoangiography to detect and predict chemotherapy delivery to solid tumors. Cancer Res 61:3039–3044

    PubMed  CAS  Google Scholar 

  • Auricchio A, Zhou R, Wilson JM et al (2001) In vivo detection of gene expression in liver by 31P nuclear magnetic resonance spectroscopy employing creatine kinase as a marker gene. Proc Natl Acad Sci U S A 98:5205–5210

    PubMed  CAS  Google Scholar 

  • Barrett T, Kobayashi H, Brechbiel M et al (2006) Macromolecular MRI contrast agents for imaging tumor angiogenesis. Eur J Radiol 60:353–366

    PubMed  Google Scholar 

  • Baudrexel S, Nurnberger L, Rub U et al (2010) Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson’s disease. NeuroImage 51:512–520

    PubMed  Google Scholar 

  • Bellin MF (2006) MR contrast agents, the old and the new. Eur J Radiol 60:314–323

    PubMed  Google Scholar 

  • Beloueche-Babari M, Chung YL, Al-Saffar NM et al (2010) Metabolic assessment of the action of targeted cancer therapeutics using magnetic resonance spectroscopy. Br J Cancer 102:1–7

    Google Scholar 

  • Bernsen MR, Moelker AD, Wielopolski PA et al (2010) Labelling of mammalian cells for visualisation by MRI. Eur Radiol 20:255–274

    PubMed  Google Scholar 

  • Bertini I, Bianchini F, Calorini L et al (2004) Persistent contrast enhancement by sterically stabilized paramagnetic liposomes in murine melanoma. Magn Reson Med 52:669–672

    PubMed  CAS  Google Scholar 

  • Blaimer M, Breuer F, Mueller M et al (2004) SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top Magn Reson Imaging 15:223–236

    PubMed  Google Scholar 

  • Blankenberg FG, Levashova Z, Sarkar SK et al (2010) Noninvasive assessment of tumor VEGF receptors in response to treatment with pazopanib: a molecular imaging study. Transl oncol 3:56–64

    PubMed  Google Scholar 

  • Bloch FHWPEM (1946) Nuclear induction. Phys Rev 69:460–474

    Google Scholar 

  • Boada FE, Tanase C, Davis D et al (2004) Non-invasive assessment of tumor proliferation using triple quantum filtered 23/Na MRI: technical challenges and solutions. Conf Proc IEEE Eng Med Biol Soc 7:5238–5241

    PubMed  CAS  Google Scholar 

  • Bogdanov A Jr, Matuszewski L, Bremer C et al (2002) Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol Imaging 1:16–23

    PubMed  CAS  Google Scholar 

  • Bohndiek SE, Brindle KM (2010) Imaging and ‘omic’ methods for the molecular diagnosis of cancer. Expert rev mol diagn 10:417–434

    PubMed  CAS  Google Scholar 

  • Bolan PJ, Nelson MT, Yee D et al (2005) Imaging in breast cancer: magnetic resonance spectroscopy. Breast Cancer Res 7:149–152

    PubMed  CAS  Google Scholar 

  • Boll DT, Merkle EM, Paulson EK et al (2008) Calcified vascular plaque specimens: assessment with cardiac dual-energy multidetector CT in anthropomorphically moving heart phantom. Radiology 249:119–126

    PubMed  Google Scholar 

  • Bolskar RD, Benedetto AF, Husebo LO et al (2003) First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J Am Chem Soc 125:5471–5478

    PubMed  CAS  Google Scholar 

  • Boutry S, Burtea C, Laurent S et al (2005) Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent. Magn Reson Med 53:800–807

    PubMed  CAS  Google Scholar 

  • Brix G, Semmler W, Port R et al (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628

    PubMed  CAS  Google Scholar 

  • Caravan P (2009) Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action. Acc Chem Res 42:851–862

    PubMed  CAS  Google Scholar 

  • Caride VJ, Sostman HD, Winchell RJ et al (1984) Relaxation enhancement using liposomes carrying paramagnetic species. Magn Reson Imaging 2:107–112

    PubMed  CAS  Google Scholar 

  • Charnley N, Donaldson S, Price P (2009) Imaging angiogenesis. Methods mol biol (Clifton, N.J) 467:25–51

    Google Scholar 

  • Chen TJ, Cheng TH, Chen CY et al (2009) Targeted Herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J Biol Inorg Chem 14:253–260

    PubMed  CAS  Google Scholar 

  • Cheon J, Lee JH (2008) Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 41:1630–1640

    PubMed  CAS  Google Scholar 

  • Cohen B, Dafni H, Meir G et al (2005) Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7:109–117

    PubMed  CAS  Google Scholar 

  • Cohen B, Ziv K, Plaks V et al (2007) MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med 13:498–503

    PubMed  CAS  Google Scholar 

  • Cyran CC, Fu Y, Raatschen HJ et al (2008) New macromolecular polymeric MRI contrast agents for application in the differentiation of cancer from benign soft tissues. J Magn Reson Imaging 27:581–589

    PubMed  Google Scholar 

  • Daldrup H, Shames DM, Wendland M et al (1998) Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. Am J Roentgenol 171:941–949

    CAS  Google Scholar 

  • Deans AE, Wadghiri YZ, Bernas LM et al (2006) Cellular MRI contrast via coexpression of transferrin receptor and ferritin. Magn Reson Med 56:51–59

    PubMed  CAS  Google Scholar 

  • DeClerck K, Elble RC (2010) The role of hypoxia and acidosis in promoting metastasis and resistance to chemotherapy. Front Biosci 15:213–225

    PubMed  CAS  Google Scholar 

  • DeLeo MJ 3rd, Gounis MJ, Hong B et al (2009) Carotid artery brain aneurysm model: in vivo molecular enzyme-specific MR imaging of active inflammation in a pilot study. Radiology 252:696–703

    PubMed  Google Scholar 

  • Deng CX, Exner A (2010) Image-guided therapeutics. Mol Pharm 7:1–2

    PubMed  CAS  Google Scholar 

  • Deoni SC, Peters TM, Rutt BK (2005) High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 53:237–241

    PubMed  Google Scholar 

  • Deoni SC, Williams SC, Jezzard P et al (2008) Standardized structural magnetic resonance imaging in multicentre studies using quantitative T1 and T2 imaging at 1.5 T. Neuroimage 40:662–671

    PubMed  Google Scholar 

  • Desser TS, Rubin DL, Muller HH et al (1994) Dynamics of tumor imaging with Gd-DTPA-polyethylene glycol polymers: dependence on molecular weight. J Magn Reson Imaging 4:467–472

    PubMed  CAS  Google Scholar 

  • Devoisselle JM, Vion-Dury J, Galons JP et al (1988) Entrapment of gadolinium-DTPA in liposomes. Characterization of vesicles by P-31 NMR spectroscopy. Invest Radiol 23:719–724

    PubMed  CAS  Google Scholar 

  • Dhermain F, Saliou G, Parker F et al (2010) Microvascular leakage and contrast enhancement as prognostic factors for recurrence in unfavourable low-grade gliomas. J Neurooncol 97:81–88

    PubMed  CAS  Google Scholar 

  • Dighe M, Chaturvedi A, Lee JH et al (2008) Staging of gynecologic malignancies. Ultrasound q 24:181–194

    PubMed  Google Scholar 

  • Duimstra JA, Femia FJ, Meade TJ (2005) A gadolinium chelate for detection of beta-glucuronidase: a self-immolative approach. J Am Chem Soc 127:12847–12855

    PubMed  CAS  Google Scholar 

  • Dyke JP, Panicek DM, Healey JH et al (2003) Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast-enhanced MR imaging. Radiology 228:271–278

    PubMed  Google Scholar 

  • Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247

    PubMed  CAS  Google Scholar 

  • Enochs WS, Petherick P, Bogdanova A et al (1997) Paramagnetic metal scavenging by melanin: MR imaging. Radiology 204:417–423

    PubMed  CAS  Google Scholar 

  • Erlemann R, Sciuk J, Bosse A et al (1990) Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology 175:791–796

    PubMed  CAS  Google Scholar 

  • Farrell E, Wielopolski P, Pavljasevic P et al (2009) Cell labelling with superparamagnetic iron oxide has no effect on chondrocyte behaviour. Osteoarth Cartil 17:961–967

    CAS  Google Scholar 

  • Fink C, Kiessling F, Bock M et al (2003) High-resolution three-dimensional MR angiography of rodent tumors: morphologic characterization of intratumoral vasculature. J Magn Reson Imaging 18:59–65

    PubMed  Google Scholar 

  • Fischer MA, Nanz D, Hany T et al (2011) Diagnostic accuracy of whole-body MRI/DWI image fusion for detection of malignant tumours: a comparison with PET/CT. Eur Radiol 21:246–255

    Google Scholar 

  • Fleysher L, Oesingmann N, Inglese M (2010) B(0) inhomogeneity-insensitive triple-quantum-filtered sodium imaging using a 12-step phase-cycling scheme. NMR Biomed 23:1191–1198

    Google Scholar 

  • Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    PubMed  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    PubMed  CAS  Google Scholar 

  • Forstner R (2007) Radiological staging of ovarian cancer: imaging findings and contribution of CT and MRI. Eur Radiol 17:3223–3235

    PubMed  Google Scholar 

  • Fossheim SL, Fahlvik AK, Klaveness J et al (1999) Paramagnetic liposomes as MRI contrast agents: influence of liposomal physicochemical properties on the in vitro relaxivity. Magn Reson Imaging 17:83–89

    PubMed  CAS  Google Scholar 

  • Frich L, Bjornerud A, Fossheim S et al (2004) Experimental application of thermosensitive paramagnetic liposomes for monitoring magnetic resonance imaging guided thermal ablation. Magn Reson Med 52:1302–1309

    PubMed  CAS  Google Scholar 

  • Fu Y, Raatschen HJ, Nitecki DE et al (2007) Cascade polymeric MRI contrast media derived from poly(ethylene glycol) cores: initial syntheses and characterizations. Biomacromolecules 8:1519–1529

    PubMed  CAS  Google Scholar 

  • Fuchs VR, Sox HC Jr (2001) Physicians’ views of the relative importance of thirty medical innovations. Health Aff (Millwood) 20:30–42

    CAS  Google Scholar 

  • Galban S, Brisset JC, Rehemtulla A et al (2010) Diffusion-weighted MRI for assessment of early cancer treatment response. Curr Pharm Biotechnol 11:701–708

    PubMed  CAS  Google Scholar 

  • Gao GH, Im GH, Kim MS et al (2010) Magnetite-nanoparticle-encapsulated pH-responsive polymeric micelle as an MRI probe for detecting acidic pathologic areas. Small (Weinheim an der Bergstrasse, Germany) 6:1201–1204

    Google Scholar 

  • Garcia-Martin ML, Martinez GV, Raghunand N et al (2006) High resolution pH(e) imaging of rat glioma using pH-dependent relaxivity. Magn Reson Med 55:309–315

    PubMed  CAS  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    PubMed  CAS  Google Scholar 

  • Genove G, DeMarco U, Xu H et al (2005) A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11:450–454

    PubMed  CAS  Google Scholar 

  • Geraldes CF, Laurent S (2009) Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging 4:1–23

    PubMed  CAS  Google Scholar 

  • Gerber BL, Bluemke DA, Chin BB et al (2002) Single-vessel coronary artery stenosis: myocardial perfusion imaging with Gadomer-17 first-pass MR imaging in a swine model of comparison with gadopentetate dimeglumine. Radiology 225:104–112

    PubMed  Google Scholar 

  • Gilad AA, McMahon MT, Walczak P et al (2007a) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25:217–219

    PubMed  CAS  Google Scholar 

  • Gilad AA, Winnard PT Jr, van Zijl PC et al (2007b) Developing MR reporter genes: promises and pitfalls. NMR Biomed 20:275–290

    PubMed  CAS  Google Scholar 

  • Gillies RJ, Morse DL (2005) In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng 7:287–326

    PubMed  CAS  Google Scholar 

  • Gossmann A, Okuhata Y, Shames DM et al (1999) Prostate cancer tumor grade differentiation with dynamic contrast-enhanced MR imaging in the rat: comparison of macromolecular and small-molecular contrast media–preliminary experience. Radiology 213:265–272

    PubMed  CAS  Google Scholar 

  • Grandin C, Van Beers BE, Demeure R et al (1995) Comparison of gadolinium-DTPA and polylysine-gadolinium-DTPA–enhanced magnetic resonance imaging of hepatocarcinoma in the rat. Invest Radiol 30:572–581

    PubMed  CAS  Google Scholar 

  • Grange C, Geninatti-Crich S, Esposito G et al (2010) Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi’s sarcoma. Cancer Res 70:2180–2190

    PubMed  CAS  Google Scholar 

  • Gupta RT, Ho LM, Marin D et al (2010) Dual-energy CT for characterization of adrenal nodules: initial experience. AJR Am J Roentgenol 194:1479–1483

    PubMed  Google Scholar 

  • Haberkorn U, Altmann A, Mier W et al (2007) Molecular imaging of tumor metabolism and apoptosis. Ernst Schering Foundation symposium proceedings 125–152

    Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  • Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499

    PubMed  Google Scholar 

  • Hartman KB, Laus S, Bolskar RD et al (2008) Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging. Nano Lett 8:415–419

    PubMed  CAS  Google Scholar 

  • Hayashida Y, Yakushiji T, Awai K et al (2006) Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: Initial results. Eur Radiol 16:2637–2643

    PubMed  Google Scholar 

  • Hayes CE, Hattes N, Roemer PB (1991) Volume imaging with MR phased arrays. Magn Reson Med 18:309–319

    PubMed  CAS  Google Scholar 

  • Heidemann RM, Ozsarlak O, Parizel PM et al (2003) A brief review of parallel magnetic resonance imaging. Eur Radiol 13:2323–2337

    PubMed  Google Scholar 

  • Helfer BM, Balducci A, Nelson AD et al (2010) Functional assessment of human dendritic cells labeled for in vivo (19)F magnetic resonance imaging cell tracking. Cytotherapy 12:238–250

    PubMed  CAS  Google Scholar 

  • Himmelreich U, Aime S, Hieronymus T et al (2006) A responsive MRI contrast agent to monitor functional cell status. NeuroImage 32:1142–1149

    PubMed  CAS  Google Scholar 

  • Hogemann-Savellano D, Bos E, Blondet C et al (2003) The transferrin receptor: a potential molecular imaging marker for human cancer. Neoplasia 5:495–506

    PubMed  Google Scholar 

  • Hong H, Yang Y, Zhang Y et al (2010) Non-invasive cell tracking in cancer and cancer therapy. Curr Top Med Chem 10:1237–1248

    PubMed  CAS  Google Scholar 

  • Hounsfield GN (1973) Computerized transverse axial scanning (tomography). 1 Description of system. Br J Radiol 46:1016–1022

    PubMed  CAS  Google Scholar 

  • Hsiao JK, Chu HH, Wang YH et al (2008) Macrophage physiological function after superparamagnetic iron oxide labeling. NMR Biomed 21:820–829

    PubMed  CAS  Google Scholar 

  • Hwang do W, Ko HY, Lee JH et al (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 51:98–105

    Google Scholar 

  • Iyer AK, Khaled G, Fang J et al (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–818

    PubMed  CAS  Google Scholar 

  • Jastrzebska B, Lebel R, Therriault H et al (2009) New enzyme-activated solubility-switchable contrast agent for magnetic resonance imaging: from synthesis to in vivo imaging. J Med Chem 52:1576–1581

    PubMed  CAS  Google Scholar 

  • Jiang T, Zhang C, Zheng X et al (2009) Noninvasively characterizing the different alphavbeta3 expression patterns in lung cancers with RGD-USPIO using a clinical 3.0T MR scanner. Int J Nanomedicine 4:241–249

    PubMed  CAS  Google Scholar 

  • Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    PubMed  Google Scholar 

  • Juers DH, Jacobson RH, Wigley D et al (2000) High resolution refinement of beta-galactosidase in a new crystal form reveals multiple metal-binding sites and provides a structural basis for alpha-complementation. Protein Sci 9:1685–1699

    PubMed  CAS  Google Scholar 

  • Kabalka GW, Davis MA, Moss TH et al (1991) Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver. Magn Reson Med 19:406–415

    PubMed  CAS  Google Scholar 

  • Kachelriess M, Ulzheimer S, Kalender WA (2000) ECG-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med Phys 27:1881–1902

    PubMed  CAS  Google Scholar 

  • Kaiser WA, Zeitler E (1989) MR imaging of the breast: fast imaging sequences with and without Gd-DTPA Preliminary observations. Radiology 170:681–686

    PubMed  CAS  Google Scholar 

  • Kak ACaS M (1988) Principles of computerized tomographic imaging. IEEE Press

    Google Scholar 

  • Kalender WA (2005) Computed tomography. Fundamentals, system technology, image quality, applications. Publicis Corporate Publishing, Erlangen

    Google Scholar 

  • Kalender WA, Perman WH, Vetter JR et al (1986) Evaluation of a prototype dual-energy computed tomographic apparatus I. Phantom studies. Med Phys 13:334–339

    PubMed  CAS  Google Scholar 

  • Kang JH, Chung JK (2008) Molecular-genetic imaging based on reporter gene expression. J Nucl Med 49(Suppl 2):164S–179S

    PubMed  CAS  Google Scholar 

  • Karcaaltincaba M, Karaosmanoglu D, Akata D et al (2009) Dual energy virtual CT colonoscopy with dual source computed tomography: initial experience. Rofo 181:859–862

    PubMed  CAS  Google Scholar 

  • Kharuzhyk SA, Petrovskaya NA, Vosmitel MA (2010) Diffusion-weighted magnetic resonance imaging in non-invasive monitoring of antiangiogenic therapy in experimental tumor model. Exp Oncol 32:104–106

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Reijnders K, English S et al (2004) Application of a macromolecular contrast agent for detection of alterations of tumor vessel permeability induced by radiation. Clin Cancer Res 10:7712–7720

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Nishikawa M, Sakamoto C et al (2009) Dual temperature- and pH-responsive fluorescence molecular probe for cellular imaging utilizing a PNIPAAm-fluorescein copolymer. Anal Sci 25:1043–1047

    PubMed  CAS  Google Scholar 

  • Kodibagkar VD, Cui W, Merritt ME et al (2006) Novel 1H NMR approach to quantitative tissue oximetry using hexamethyldisiloxane. Magn Reson Med 55:743–748

    PubMed  CAS  Google Scholar 

  • Koenig SH, Brown RD 3rd, Kurland R et al (1988) Relaxivity and binding of Mn2 + ions in solutions of phosphatidylserine vesicles. Magn Reson Med 7:133–142

    PubMed  CAS  Google Scholar 

  • Koretsky AP, Brosnan MJ, Chen LH et al (1990) NMR detection of creatine kinase expressed in liver of transgenic mice: determination of free ADP levels. Proc Natl Acad Sci U S A 87:3112–3116

    PubMed  CAS  Google Scholar 

  • Koretsky AP, Lin Y-J, Schorle H, Jaenisch R (1996) Genetic control of MRI contrast by expression of the transferrin receptor. Proc Int Soc Magn Reson Med. 4:69

    Google Scholar 

  • Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49(Suppl 2):129S–148S

    PubMed  CAS  Google Scholar 

  • Kurhanewicz J, Vigneron DB, Hricak H et al (1996a) Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7 cm3) spatial resolution. Radiology 198:795–805

    PubMed  CAS  Google Scholar 

  • Kurhanewicz J, Vigneron DB, Hricak H et al (1996b) Prostate cancer: metabolic response to cryosurgery as detected with 3D H-1 MR spectroscopic imaging. Radiology 200:489–496

    PubMed  CAS  Google Scholar 

  • Kurhanewicz J, Vigneron DB, Males RG et al (2000) The prostate: MR imaging and spectroscopy. Present and future. Radiol Clin North Am 38:115–138, viii–ix

    Google Scholar 

  • Kurhanewicz J, Vigneron D, Carroll P et al (2008) Multiparametric magnetic resonance imaging in prostate cancer: present and future. Curr Opin Urol 18:71–77

    PubMed  Google Scholar 

  • Kweon S, Lee HJ, Hyung WJ et al (2010) Liposomes coloaded with iopamidol/lipiodol as a RES-targeted contrast agent for computed tomography imaging. Pharm Res 27:1408–1415

    PubMed  CAS  Google Scholar 

  • Langereis S, Keupp J, van Velthoven JL et al (2009) A temperature-sensitive liposomal 1H CEST and 19F contrast agent for MR image-guided drug delivery. J Am Chem Soc 131:1380–1381

    PubMed  CAS  Google Scholar 

  • Lauffer RB, Parmelee DJ, Ouellet HS et al (1996) MS-325: a small-molecule vascular imaging agent for magnetic resonance imaging. Acad Radiol 3(Suppl 2):S356–358

    PubMed  Google Scholar 

  • Lee KC, Hamstra DA, Bhojani MS et al (2007) Noninvasive molecular imaging sheds light on the synergy between 5-fluorouracil and TRAIL/Apo2L for cancer therapy. Clin Cancer Res 13:1839–1846

    PubMed  CAS  Google Scholar 

  • Lee JW, Yoon DY, Choi CS et al (2008) Anaplastic thyroid carcinoma: computed tomographic differentiation from other thyroid masses. Acta Radiol 49:321–327

    PubMed  Google Scholar 

  • Lee CM, Jeong HJ, Kim EM et al (2009) Superparamagnetic iron oxide nanoparticles as a dual imaging probe for targeting hepatocytes in vivo. Magn Reson Med 62:1440–1446

    PubMed  CAS  Google Scholar 

  • Lee CM, Jeong HJ, Cheong SJ et al (2010a) Prostate cancer-targeted imaging using magnetofluorescent polymeric nanoparticles functionalized with bombesin. Pharm Res 27:712–721

    PubMed  CAS  Google Scholar 

  • Lee S, Xie J, Chen X (2010b) Peptide-based probes for targeted molecular imaging. Biochemistry 49:1364–1376

    PubMed  CAS  Google Scholar 

  • Lewis JS, Lewis MR, Srinivasan A et al (1999) Comparison of four 64Cu-labeled somatostatin analogues in vitro and in a tumor-bearing rat model: evaluation of new derivatives for positron emission tomography imaging and targeted radiotherapy. J Med Chem 42:1341–1347

    PubMed  CAS  Google Scholar 

  • Li X, Du X, Huo T et al (2009) Specific targeting of breast tumor by octreotide-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 3.0-Tesla magnetic resonance scanner. Acta Radiol 50:583–594

    PubMed  Google Scholar 

  • Liao C, Sun Q, Liang B et al (2010) Targeting EGFR-overexpressing tumor cells using Cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur J Radiol 80:699–705

    Google Scholar 

  • Lin C, Luciani A, Itti E et al (2010) Whole-body diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient mapping for staging patients with diffuse large B-cell lymphoma. Eur Radiol 20:2027–2038

    PubMed  Google Scholar 

  • Lindfors KK, Boone JM, Nelson TR et al (2008) Dedicated breast CT: initial clinical experience. Radiology 246:725–733

    PubMed  Google Scholar 

  • Liu PF, Debatin JF, Caduff RF et al (1998) Improved diagnostic accuracy in dynamic contrast enhanced MRI of the breast by combined quantitative and qualitative analysis. Br J Radiol 71:501–509

    PubMed  CAS  Google Scholar 

  • Loebinger MR, Kyrtatos PG, Turmaine M et al (2009) Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res 69:8862–8867

    PubMed  CAS  Google Scholar 

  • Lokling KE, Fossheim SL, Skurtveit R et al (2001) pH-sensitive paramagnetic liposomes as MRI contrast agents: in vitro feasibility studies. Magn Reson Imaging 19:731–738

    PubMed  CAS  Google Scholar 

  • Louie AY, Huber MM, Ahrens ET et al (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325

    PubMed  CAS  Google Scholar 

  • Maeda H, Matsumura Y (1989) Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 6:193–210

    PubMed  CAS  Google Scholar 

  • Maeng JH, Lee DH, Jung KH et al (2010) Multifunctional doxorubicin loaded super paramagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31:4995–5006

    PubMed  CAS  Google Scholar 

  • Matuszewski L, Persigehl T, Wall A et al (2005) Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labelling efficiency. Radiology 235:155–161

    PubMed  Google Scholar 

  • Meisamy S, Bolan PJ, Baker EH et al (2004) Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo (1)H MR spectroscopy–a pilot study at 4 T. Radiology 233:424–431

    PubMed  Google Scholar 

  • Melancon MP, Lu W, Huang Q et al (2010) Targeted imaging of tumor-associated M2 macrophages using a macromolecular contrast agent PG-Gd-NIR813. Biomaterials 31:6567–6573

    PubMed  CAS  Google Scholar 

  • Mikawa M, Kato H, Okumura M et al (2001) Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjug Chem 12:510–514

    PubMed  CAS  Google Scholar 

  • Miles KA (2002) Functional computed tomography in oncology. Eur J Cancer 38:2079–2084

    PubMed  CAS  Google Scholar 

  • Miles KA (2006) Perfusion imaging with computed tomography: brain and beyond. Eur Radiol 16(Suppl 7):M37–43

    PubMed  Google Scholar 

  • Misselwitz B, Schmitt-Willich H, Michaelis M et al (2002) Interstitial magnetic resonance lymphography using a polymeric t1 contrast agent: initial experience with Gadomer-17. Invest Radiol 37:146–151

    PubMed  Google Scholar 

  • Moats R, Ma LQ, Wajed R et al (2000) Magnetic resonance imaging for the evaluation of a novel metastatic orthotopic model of human neuroblastoma in immunodeficient mice. Clin Exp Metastasis 18:455–461

    PubMed  CAS  Google Scholar 

  • Montet X, Pastor CM, Vallee JP et al (2007) Improved visualization of vessels and hepatic tumors by micro-computed tomography (CT) using iodinated liposomes. Invest Radiol 42:652–658

    PubMed  CAS  Google Scholar 

  • Moore A, Josephson L, Bhorade RM et al (2001) Human transferrin receptor gene as a marker gene for MR imaging. Radiology 221:244–250

    PubMed  CAS  Google Scholar 

  • Morawski AM, Winter PM, Crowder KC et al (2004) Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med 51:480–486

    PubMed  CAS  Google Scholar 

  • Nilsen L, Fangberget A, Geier O et al (2010) Diffusion-weighted magnetic resonance imaging for pretreatment prediction and monitoring of treatment response of patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. Acta Oncologica (Stockholm, Sweden) 49:354–360

    Google Scholar 

  • Ntziachristos V, Bremer C, Tung C et al (2002) Imaging cathepsin B up-regulation in HT-1080 tumor models using fluorescence-mediated molecular tomography (FMT). Acad Radiol 9(Suppl 2):S323–S325

    PubMed  Google Scholar 

  • O’Connor JP, Jackson A, Parker GJ et al (2007) DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96:189–195

    PubMed  Google Scholar 

  • Oksendal AN, Hals PA (1993) Biodistribution and toxicity of MR imaging contrast media. J Magn Reson Imaging 3:157–165

    PubMed  CAS  Google Scholar 

  • Olafsen T, Wu AM (2010) Antibody vectors for imaging. Semin Nucl Med 40:167–181

    PubMed  Google Scholar 

  • Opsahl LR, Uzgiris EE, Vera DR (1995) Tumor imaging with a macromolecular paramagnetic contrast agent: gadopentetate dimeglumine-polylysine. Acad Radiol 2:762–767

    PubMed  CAS  Google Scholar 

  • Padhani AR (2002) Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16:407–422

    PubMed  Google Scholar 

  • Padhani AR (2005) Where are we with imaging oxygenation in human tumours? Cancer Imaging 5:128–130

    PubMed  Google Scholar 

  • Padhani AR, Krohn KA, Lewis JS et al (2007) Imaging oxygenation of human tumours. Eur Radiol 17:861–872

    PubMed  Google Scholar 

  • Parivar F, Hricak H, Shinohara K et al (1996) Detection of locally recurrent prostate cancer after cryosurgery: evaluation by transrectal ultrasound, magnetic resonance imaging, and three-dimensional proton magnetic resonance spectroscopy. Urology 48:594–599

    PubMed  CAS  Google Scholar 

  • Pathak AP, Gimi B, Glunde K et al (2004) Molecular and functional imaging of cancer: advances in MRI and MRS. Methods Enzymol 386:3–60

    PubMed  CAS  Google Scholar 

  • Paulus MJ, Gleason SS, Kennel SJ et al (2000) High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia 2:62–70

    PubMed  CAS  Google Scholar 

  • Plathow C, Weber WA (2008) Tumor cell metabolism imaging. J Nucl Med 49(Suppl 2):43S–63S

    PubMed  CAS  Google Scholar 

  • Ponce AM, Viglianti BL, Yu D et al (2007) Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J Natl Cancer Inst 99:53–63

    PubMed  CAS  Google Scholar 

  • Ponomarev V (2009) Nuclear imaging of cancer cell therapies. J Nucl Med 50:1013–1016

    PubMed  CAS  Google Scholar 

  • Popovtzer R, Agrawal A, Kotov NA et al (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8:4593–4596

    PubMed  CAS  Google Scholar 

  • Purcell EMT HC; Pound RV (1946) Resonance absorption by nuclear magnetic moment in a solid. Phys Rev 69:37–38

    Google Scholar 

  • Qian Y, Stenger VA, Boada FE (2009) Parallel imaging with 3D TPI trajectory: SNR and acceleration benefits. Magn Reson Imaging 27:656–663

    PubMed  Google Scholar 

  • Raghunand N, Jagadish B, Trouard TP et al (2006) RedoX-sensitive contrast agents for MRI based on reversible binding of thiols to serum albumin. Magn Reson Med 55:1272–1280

    PubMed  CAS  Google Scholar 

  • Renan MJ (1993) How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog 7:139–146

    PubMed  CAS  Google Scholar 

  • Ritman EL (2002) Molecular imaging in small animals–roles for micro-CT. J Cell Biochem Suppl 39:116–124

    PubMed  Google Scholar 

  • Ronald JA, Chen JW, Chen Y et al (2009) Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation 120:592–599

    PubMed  CAS  Google Scholar 

  • Schambach SJ, Bag S, Schilling L et al (2010) Application of micro-CT in small animal imaging. Methods 50:2–13

    PubMed  CAS  Google Scholar 

  • Schepkin VD, Choy IO, Budinger TF et al (1998) Sodium TQF NMR and intracellular sodium in isolated crystalloid perfused rat heart. Magn Reson Med 39:557–563

    PubMed  CAS  Google Scholar 

  • Schepkin VD, Chenevert TL, Kuszpit K et al (2006) Sodium and proton diffusion MRI as biomarkers for early therapeutic response in subcutaneous tumors. Magn Reson Imaging 24:273–278

    PubMed  CAS  Google Scholar 

  • Schottelius M, Laufer B, Kessler H et al (2009) Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res 42:969–980

    PubMed  CAS  Google Scholar 

  • Schuhmann-Giampieri G, Schmitt-Willich H, Frenzel T et al (1991) In vivo and in vitro evaluation of Gd-DTPA-polylysine as a macromolecular contrast agent for magnetic resonance imaging. Invest Radiol 26:969–974

    PubMed  CAS  Google Scholar 

  • Schwendener RA, Wuthrich R, Duewell S et al (1990) A pharmacokinetic and MRI study of unilamellar gadolinium-, manganese-, and iron-DTPA-stearate liposomes as organ-specific contrast agents. Invest Radiol 25:922–932

    PubMed  CAS  Google Scholar 

  • Schwickert HC, Stiskal M, Roberts TP et al (1996) Contrast-enhanced MR imaging assessment of tumor capillary permeability: effect of irradiation on delivery of chemotherapy. Radiology 198:893–898

    PubMed  CAS  Google Scholar 

  • Semelka RC, Helmberger TK (2001) Contrast agents for MR imaging of the liver. Radiology 218:27–38

    PubMed  CAS  Google Scholar 

  • Serganova I, Mayer-Kukuck P, Huang R et al (2008) Molecular imaging: reporter gene imaging. Handb Exp Pharmacol 167–223

    Google Scholar 

  • Shubayev VI, Pisanic TR 2nd, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477

    PubMed  CAS  Google Scholar 

  • Sitharaman B, Wilson LJ (2006) Gadonanotubes as new high-performance MRI contrast agents. Int J Nanomedicine 1:291–295

    PubMed  CAS  Google Scholar 

  • Sitharaman B, Tran LA, Pham QP et al (2007) Gadofullerenes as nanoscale magnetic labels for cellular MRI. Contrast Media Mol Imaging 2:139–146

    PubMed  CAS  Google Scholar 

  • Smith TA (2010) Towards detecting the HER-2 receptor and metabolic changes induced by HER-2-targeted therapies using medical imaging. Br J Radiol 83:638–644

    PubMed  CAS  Google Scholar 

  • So PW, Kalber T, Hunt D et al (2010) Efficient and rapid labeling of transplanted cell populations with superparamagnetic iron oxide nanoparticles using cell surface chemical biotinylation for in vivo monitoring by MRI. Cell Transplant 19:419–429

    PubMed  Google Scholar 

  • Spanoghe M, Lanens D, Dommisse R et al (1992) Proton relaxation enhancement by means of serum albumin and poly-l-lysine labeled with DTPA-Gd3+: relaxivities as a function of molecular weight and conjugation efficiency. Magn Reson Imaging 10:913–917

    PubMed  CAS  Google Scholar 

  • Stegman LD, Rehemtulla A, Beattie B et al (1999) Noninvasive quantitation of cytosine deaminase transgene expression in human tumor xenografts with in vivo magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 96:9821–9826

    PubMed  CAS  Google Scholar 

  • Swanson SD, Kukowska-Latallo JF, Patri AK et al (2008) Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomedicine 3:201–210

    PubMed  CAS  Google Scholar 

  • Tang C, Russell PJ, Martiniello-Wilks R et al (2010) Nanoparticles and cellular carriers—allies in cancer imaging and cellular gene therapy? Stem Cells 28:1686–1702

    Google Scholar 

  • Tei L, Mazooz G, Shellef Y et al (2010) Novel MRI and fluorescent probes responsive to the Factor XIII transglutaminase activity. Contrast Media Mol Imaging 5:213–222

    PubMed  CAS  Google Scholar 

  • Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    PubMed  CAS  Google Scholar 

  • Thorek DL, Tsourkas A (2008) Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29:3583–3590

    PubMed  CAS  Google Scholar 

  • Thorek DL, Chen AK, Czupryna J et al (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23–38

    PubMed  Google Scholar 

  • Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    PubMed  CAS  Google Scholar 

  • Towner RA, Smith N, Asano Y et al (2010a) Molecular magnetic resonance imaging approaches used to aid in the understanding of angiogenesis in vivo: implications for tissue engineering. Tissue Eng 16:357–364

    CAS  Google Scholar 

  • Towner RA, Smith N, Doblas S et al (2010b) In vivo detection of inducible nitric oxide synthase in rodent gliomas. Free Radical Biol Med 48:691–703

    CAS  Google Scholar 

  • Townsend DW (2008) Dual-modality imaging: combining anatomy and function. J Nucl Med 49:938–955

    PubMed  Google Scholar 

  • Trubetskoy VS, Cannillo JA, Milshtein A et al (1995) Controlled delivery of Gd-containing liposomes to lymph nodes: surface modification may enhance MRI contrast properties. Magn Reson Imaging 13:31–37

    PubMed  CAS  Google Scholar 

  • Tsien C, Galban CJ, Chenevert TL et al (2010) Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol 28:2293–2299

    PubMed  CAS  Google Scholar 

  • Tsourkas A, Newton G, Perez JM et al (2005) Detection of peroxidase/H2O2-mediated oxidation with enhanced yellow fluorescent protein. Anal Chem 77:2862–2867

    PubMed  CAS  Google Scholar 

  • Turetschek K, Floyd E, Helbich T et al (2001a) MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS-325) with correlations to histopathology. J Magn Reson Imaging 14:237–242

    PubMed  CAS  Google Scholar 

  • Turetschek K, Huber S, Floyd E et al (2001b) MR imaging characterization of microvessels in experimental breast tumors by using a particulate contrast agent with histopathologic correlation. Radiology 218:562–569

    PubMed  CAS  Google Scholar 

  • Turetschek K, Roberts TP, Floyd E et al (2001c) Tumor microvascular characterization using ultrasmall superparamagnetic iron oxide particles (USPIO) in an experimental breast cancer model. J Magn Reson Imaging 13:882–888

    PubMed  CAS  Google Scholar 

  • Unger EC, MacDougall P, Cullis P et al (1989a) Liposomal Gd-DTPA: effect of encapsulation on enhancement of hepatoma model by MRI. Magn Reson Imaging 7:417–423

    PubMed  CAS  Google Scholar 

  • Unger EC, Winokur T, MacDougall P et al (1989b) Hepatic metastases: liposomal Gd-DTPA-enhanced MR imaging. Radiology 171:81–85

    PubMed  CAS  Google Scholar 

  • van Kasteren SI, Campbell SJ, Serres S et al (2009) Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Nat Acad Sci USA 106:18–23

    PubMed  Google Scholar 

  • van Laarhoven HW, Klomp DW, Rijpkema M et al (2007) Prediction of chemotherapeutic response of colorectal liver metastases with dynamic gadolinium-DTPA-enhanced MRI and localized 19F MRS pharmacokinetic studies of 5-fluorouracil. NMR Biomed 20:128–140

    PubMed  Google Scholar 

  • van Rijswijk CS, Geirnaerdt MJ, Hogendoorn PC et al (2003) Dynamic contrast-enhanced MR imaging in monitoring response to isolated limb perfusion in high-grade soft tissue sarcoma: initial results. Eur Radiol 13:1849–1858

    PubMed  Google Scholar 

  • van Tilborg GA, Strijkers GJ, Pouget EM et al (2008) Kinetics of avidin-induced clearance of biotinylated bimodal liposomes for improved MR molecular imaging. Magn Reson Med 60:1444–1456

    PubMed  Google Scholar 

  • van Vliet M, van Dijke CF, Wielopolski PA et al (2005) MR angiography of tumor-related vasculature: from the clinic to the micro-environment. Radiographics 25 Suppl 1:S85–97(discussion S97–88)

    Google Scholar 

  • Vaupel P (2009a) Prognostic potential of the pre-therapeutic tumor oxygenation status. Adv Exp Med Biol 645:241–246

    PubMed  Google Scholar 

  • Vaupel P (2009b) Physiological mechanisms of treatment resistance. In: Molls M, Vaupel P, Nieder C et al (eds) The impact of tumor biology on cancer treatment and multidisciplinary strategies. Springer, Heidelberg

    Google Scholar 

  • Vaupel P (2009c) Pathophysiology of solid tumors. In: Molls M, Vaupel P, Nieder C et al (eds) The impact of tumor biology on cancer treatment and multidisciplinary strategies. Springer, Heidelberg

    Google Scholar 

  • Villaraza AJ, Bumb A, Brechbiel MW (2010a) Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 110:2921–2959

    Google Scholar 

  • Villaraza AJ, Bumb A, Brechbiel MW (2010b) Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 110:2921–2959

    PubMed  CAS  Google Scholar 

  • Wahl RL, Jacene H, Kasamon Y et al (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S

    PubMed  CAS  Google Scholar 

  • Walter G, Barton ER, Sweeney HL (2000) Noninvasive measurement of gene expression in skeletal muscle. Proc Natl Acad Sci U S A 97:5151–5155

    PubMed  CAS  Google Scholar 

  • Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331

    PubMed  CAS  Google Scholar 

  • Wang H, Cao F, De A et al (2009) Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem cells (Dayton, Ohio) 27:1548–1558

    Google Scholar 

  • Warntjes JB, Dahlqvist O, Lundberg P (2007) Novel method for rapid, simultaneous T1, T*2, and proton density quantification. Magn Reson Med 57:528–537

    PubMed  CAS  Google Scholar 

  • Warntjes JB, Leinhard OD, West J et al (2008) Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magn Reson Med 60:320–329

    PubMed  CAS  Google Scholar 

  • Watanabe Y, Uotani K, Nakazawa T et al (2009) Dual-energy direct bone removal CT angiography for evaluation of intracranial aneurysm or stenosis: comparison with conventional digital subtraction angiography. Eur Radiol 19:1019–1024

    PubMed  Google Scholar 

  • Watkins GA, Jones EF, Scott Shell M et al (2009) Development of an optimized activatable MMP-14 targeted SPECT imaging probe. Bioorg Med Chem 17:653–659

    PubMed  CAS  Google Scholar 

  • Weissleder R, Simonova M, Bogdanova A et al (1997) MR imaging and scintigraphy of gene expression through melanin induction. Radiology 204:425–429

    PubMed  CAS  Google Scholar 

  • Weissleder R, Moore A, Mahmood U et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355

    PubMed  CAS  Google Scholar 

  • Wiener EC, Brechbiel MW, Brothers H et al (1994) Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31:1–8

    PubMed  CAS  Google Scholar 

  • Wikstrom MG, Moseley ME, White DL et al (1989) Contrast-enhanced MRI of tumors. Comparison of Gd-DTPA and a macromolecular agent. Invest Radiol 24:609–615

    PubMed  CAS  Google Scholar 

  • Willmann JK, van Bruggen N, Dinkelborg LM et al (2008) Molecular imaging in drug development. Nat Rev 7:591–607

    CAS  Google Scholar 

  • Wilson CB, Lammertsma AA, McKenzie CG et al (1992) Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method. Cancer Res 52:1592–1597

    PubMed  CAS  Google Scholar 

  • Winter PM, Caruthers SD, Allen JS et al (2010) Molecular imaging of angiogenic therapy in peripheral vascular disease with alphanubeta3-integrin-targeted nanoparticles. Magn Reson Med 64:369–376

    PubMed  CAS  Google Scholar 

  • World Health Organisation (1979) WHO handbook for reporting results of cancer treatment. WHO

    Google Scholar 

  • Wu AM, Yazaki PJ (2000) Designer genes: recombinant antibody fragments for biological imaging. Q J Nucl Med 44:268–283

    PubMed  CAS  Google Scholar 

  • Wu L, Cao Y, Liao C et al (2010) Diagnostic performance of USPIO-enhanced MRI for lymph-node metastases in different body regions: a meta-analysis. Eur J Radiol 80:582–589

    Google Scholar 

  • Wyss C, Schaefer SC, Juillerat-Jeanneret L et al (2009) Molecular imaging by micro-CT: specific E-selectin imaging. Eur Radiol 19:2487–2494

    PubMed  Google Scholar 

  • Yang L, Mao H, Wang YA et al (2009) Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. Small (Weinheim an der Bergstrasse, Germany) 5:235–243

    Google Scholar 

  • Yang X, Gong H, Quan G et al (2010) Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging. Rev Sci Instrum 81:054304

    PubMed  Google Scholar 

  • Yao W, Qu N, Lu Z et al (2009) The application of T1 and T2 relaxation time and magnetization transfer ratios to the early diagnosis of patellar cartilage osteoarthritis. Skeletal Radiol 38:1055–1062

    PubMed  Google Scholar 

  • Yoo B, Pagel MD (2008) An overview of responsive MRI contrast agents for molecular imaging. Front Biosci 13:1733–1752

    PubMed  CAS  Google Scholar 

  • Yoo B, Raam MS, Rosenblum RM et al (2007) Enzyme-responsive PARACEST MRI contrast agents: a new biomedical imaging approach for studies of the proteasome. Contrast Media Mol Imaging 2:189–198

    PubMed  CAS  Google Scholar 

  • Yordanov AT, Kobayashi H, English SJ et al (2003) Gadolinium-labeled dendrimers as biometric nanoprobes to detect vascular permeability. J Mater Chem 13:1523–1525

    CAS  Google Scholar 

  • Yu JX, Kodibagkar VD, Cui W et al (2005) 19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Med Chem 12:819–848

    PubMed  CAS  Google Scholar 

  • Yuan F, Dellian M, Fukumura D et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756

    PubMed  CAS  Google Scholar 

  • Zahra MA, Hollingsworth KG, Sala E et al (2007) Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol 8:63–74

    PubMed  Google Scholar 

  • Zhang X, Lin Y, Gillies RJ (2010) Tumor pH and its measurement. J Nucl Med 51:1167–1170

    PubMed  CAS  Google Scholar 

  • Zhao D, Ran S, Constantinescu A et al (2003) Tumor oxygen dynamics: correlation of in vivo MRI with histological findings. Neoplasia 5:308–318

    PubMed  Google Scholar 

  • Zumsteg A, Strittmatter K, Klewe-Nebenius D et al (2010) A bioluminescent mouse model of pancreatic {beta}-cell carcinogenesis. Carcinogenesis 31:1465–1474

    PubMed  CAS  Google Scholar 

  • Zurkiya O, Chan AW, Hu X (2008) MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn Reson Med 59:1225–1231

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique R. Bernsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bernsen, M.R. et al. (2013). Computed Tomography and Magnetic Resonance Imaging. In: Schober, O., Riemann, B. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10853-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10853-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10852-5

  • Online ISBN: 978-3-642-10853-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics