Skip to main content

Reactive Oxygen Species, Oxidative Stress and Plant Ion Channels

  • Chapter
  • First Online:
Ion Channels and Plant Stress Responses

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Reactive oxygen species (ROS) are important toxic and regulatory agents in plants. They are produced in response to a number of stimuli, including major biotic and abiotic stresses. Disruption of respiratory and photosynthetic electron transport chains, as well as activation of NADPH oxidases (NOXs) and peroxidases, is a major reason for ROS generation and accumulation during stress conditions. ROS production results in an additional challenge for plants that is called oxidative stress. The latter can not only damage plant cells but can also signal prime stresses to gene expression through activation of Ca2+ influx and K+ efflux ion channels. This chapter reviews the mechanisms of stress-induced ROS generation in plants and discusses properties, regulation and possible structure of plant ROS-activated ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NSCC:

Non-selective cation channel

KOR:

K+ outward rectifier

KIR:

K+ inward rectifier

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

HACC:

Hyperpolarisation-activated Ca2+ channel

PCD:

Programmed cell death

GORK:

Guard cell outwardly rectifying K+ channel

CNGC:

Cyclic nucleotide gated channel

NOX:

NADPH oxidase

RBOH:

Respiratory burst oxidase homologues

References

  • Alcázar R, Marco F, Cuevas JC, Patron M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Anbar M, Neta P (1967) A compilation of specific bimolecular rate constants for the reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals with inorganic and organic compounds in aqueous solution. Int J Appl Radiat Isoton 18:493–523

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Bànfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnàr GZ, Krause K-H, Cox JA (2004) Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J Biol Chem 279:18583–18591

    Article  PubMed  CAS  Google Scholar 

  • Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J (2002) RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science 296:2026–2028

    Article  CAS  PubMed  Google Scholar 

  • Becana M, Klucas RV (1992) Transition metals in legume root nodules: iron-dependent free radical production increases during nodule senescence. Proc Natl Acad Sci USA 89:8958–8962

    Article  CAS  PubMed  Google Scholar 

  • Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147

    Article  CAS  Google Scholar 

  • Belantine JD (1982) Pathology of oxygen toxicity. Academic, New York

    Google Scholar 

  • Bergmann W (1992) Nutritional disorders of plants – development, visual and analytical diagnosis. Fisher, Jena

    Google Scholar 

  • Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochimica Biophysica Acta 1758:994–1003

    Article  CAS  Google Scholar 

  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863

    Article  CAS  PubMed  Google Scholar 

  • Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S-cerevisiae sulphiredoxin. Nature 425:980–984

    Article  CAS  PubMed  Google Scholar 

  • Bolwell GP, Wojtaszek P (1997) Mechanisms for the generation of reactive oxygen species in plant defence – a broad perspective. Physiol Mol Plant Pathol 51:347–366

    Article  CAS  Google Scholar 

  • Bolwell GP, Davies DR, Gerrish C, Auh CK, Murphy TM (1998) Comparative biochemistry of the oxidative burst produced by rose and French bean cells reveals two distinct mechanisms. Plant Physiol 116:1379–1385

    Article  CAS  PubMed  Google Scholar 

  • Breusegem FV, Bailey-Serres J, Mittler R (2008) Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol 147:978–984

    Article  PubMed  CAS  Google Scholar 

  • Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L (2005) A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438:1013–1016

    Article  CAS  PubMed  Google Scholar 

  • Chang CCC, Slesak I, Jorda L, Sotnikov A, Melzer M, Miszalski Z, Mullineaux PM, Parker JE, Karpinska B, Karpinski S (2009) Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol 150:670–683

    Article  CAS  PubMed  Google Scholar 

  • Coelho SMB, Brownlee C, Bothwell JHF (2008) A tip-high, Ca2+-interdependent, reactive oxygen species gradient is associated with polarized growth in Fucus serratus zygotes. Planta 227:1037–1046

    Article  CAS  PubMed  Google Scholar 

  • Coelho SM, Taylor AR, Ryan KP, Sousa-Pinto I, Brown MT, Brownlee C (2002) Spatiotemporal patterning of reactive oxygen production and Ca2+ wave propagation in Fucus rhizoid cells. Plant Cell 14:2369–2381

    Article  CAS  PubMed  Google Scholar 

  • del Rio LA, Corpasa FJ, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792

    Article  PubMed  CAS  Google Scholar 

  • Demidchik VV, Sokolik AI, Yurin VM (1996) Mechanisms of conductance modification in plant cell membranes under the action of trivalent iron ions. Doklady Akademii Nauk Belarusi 41:83–87

    Google Scholar 

  • Demidchik V, Sokolik A, Yurin V (1997) The effect of Cu2+ on ion transport systems of the plant cell plasmalemma. Plant Physiol 114:1313–1325

    CAS  PubMed  Google Scholar 

  • Demidchik V, Sokolik A, Yurin V (2001) Characteristics of non-specific permeability and H+-ATPase inhibition induced in the plasma membrane of Nitella flexilis by excessive Cu2+. Planta 212:583–590

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Bowen HC, Maathuis FJM, Shabala SN, Tester MA, White PJ, Davies JM (2002) Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. Plant J 32:799–808

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. J Cell Sci 116:81–88

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Sokolik A, Yurin V (2006) Electrophysiological characterisation of plant cation channels. In: Volkov AG (ed) Plant Electrophysiology: Theory and Methods. Springer, New York, pp 173–185

    Chapter  Google Scholar 

  • Demidchik V, Shabala S, Davies J (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant J 49:377–386

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–405

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Shang Z, Shin R, Thompson E, Rubio L, Chivasa S, Slabas AR, Glover BJ, Schachtman DP, Shabala SN, Davies JM (2009) Plant extracellular ATP signaling by plasma membrane NADPH oxidase and Ca2+ channels. Plant J 58:903–913

    Article  CAS  PubMed  Google Scholar 

  • Dowling DK, Simmons LW (2009) Reactive oxygen species as universal constraints in life-history evolution. Proc Royal Soc B Biol Sci 276:1737–1745

    Article  CAS  Google Scholar 

  • Downes A, Blunt TP (1879) The effect of sunlight upon hydrogen peroxide. Nature 20:521–521

    Google Scholar 

  • Driever SM, Fryer MJ, Mullineaux PM, Baker NR (2009) Imaging of reactive oxygen species in vivo. Methods Mol Biol 479:109–116

    CAS  PubMed  Google Scholar 

  • Duprat F, Guillemare E, Romey G, Fink M, Lesage F, Alzdunski M (1995) Susceptibility of cloned K+ channels to reactive oxygen species. Proc Natl Acad Sci USA 92:11796–800

    Article  CAS  PubMed  Google Scholar 

  • Dynowski M, Schaaf G, Loque D, Moran O, Ludewig U (2008) Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem J 414:53–61

    Article  CAS  PubMed  Google Scholar 

  • Eisenbarth DA, Weig AR (2005) Dynamics of aquaporins and water relations during hypocotyl elongation in Ricinus communis L. seedlings. J Exp Bot 56:1831–1842

    Article  CAS  PubMed  Google Scholar 

  • Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–911

    Article  CAS  Google Scholar 

  • Fernándeza AP, Stranda A (2008) Retrograde signaling and plant stress: plastid signals initiate cellular stress responses. Curr Opin Plant Biol 11:509–513

    Article  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  CAS  PubMed  Google Scholar 

  • Fornazari M, de Paula JG, Castilho RF, Kowaltowski AJ (2008) Redox properties of the adenoside triphosphate-sensitive K+ channel in brain mitochondria. J Neurosci Res 86:1548–1556

    Article  CAS  PubMed  Google Scholar 

  • Fry SC, Miller JG, Dumville JC (2002) A proposed role for copper ions in cell wall loosening. Plant Soil 247:57–67

    Article  CAS  Google Scholar 

  • Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullineaux PM, Nonell S, Wilson MT, Baker NR (2006) Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green (R). J Exp Bot 57:1725–1734

    Article  CAS  PubMed  Google Scholar 

  • Fluhr R (2009) Reactive oxygen-generating NADPH oxidases in plants. In: Rio LA, Puppo A (eds) Reactive oxygen species in plant signalling. Springer, Berlin, Heidelberg, pp 1–23

    Chapter  Google Scholar 

  • Garcia-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl− channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 100:11116–11121

    Article  CAS  PubMed  Google Scholar 

  • Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferriere N, Thibaud JB, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655

    Article  CAS  PubMed  Google Scholar 

  • Gelli A, Blumwald E (1997) Hyperpolarization-activated Ca2+-permeable channels in the plasma membrane of tomato cells. J Membr Biol 155:35–45

    Article  CAS  PubMed  Google Scholar 

  • Gilbert DL (ed) (1981) Oxygen and living processes: an interdisciplinary approach. Springer, New York

    Google Scholar 

  • Ghezzi P (2005) Oxidoreduction of protein thiols in redox regulation. Biochem Soc Trans 33:1378–1381

    Article  CAS  PubMed  Google Scholar 

  • Goldstein S, Meyerstein D, Czapski G (1993) The Fenton reagents. Free Rad Biol Med 15:435–445

    Article  CAS  PubMed  Google Scholar 

  • Guido V (2001) Fundamentals of physics and chemistry of the atmosphere. Springer, Berlin

    Google Scholar 

  • Guskos N, Likodimos V, Typek J, Maryniak M, Grech E, Kolodziej B (2007) Photoacoustic and EPR studies of two copper(II) complexes with spermine analoques. Rev Adv Mater Sci 14:97–103

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford, Oxford Univ Press

    Google Scholar 

  • Hamilton DA, Hills A, Köhler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97:4967–4972

    Article  CAS  PubMed  Google Scholar 

  • Haber F, Weiss J (1932) On the catalysis of hydroperoxide. Naturwissenschaften 20:948–950

    Article  CAS  Google Scholar 

  • Han H, Wang J, Zhang Y, Long H, Wang H, Xu D, Wang Z (2004) HERG K+ channel conductance promotes H2O2-induced apoptosis in HEK293 cells: cellular mechanisms. Cell Physiol Biochem 14:121–134

    Article  CAS  PubMed  Google Scholar 

  • Haugaard N (1968) Cellular mechanisms of oxygen toxicity. Physiol Rev 48:311–373

    CAS  PubMed  Google Scholar 

  • Hernandez JA, Copras FJ, Gomez M, Delrio LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89:103–110

    Article  CAS  Google Scholar 

  • Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427

    Article  CAS  PubMed  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes. Sinauer, USA

    Google Scholar 

  • Hoshi T, Heinemann SH (2001) Regulation of cell function by methionine oxidation and reduction. J Physiol 531:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100:5549–5554

    Article  CAS  PubMed  Google Scholar 

  • Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle HH, Hedrich R (2001) K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett 508:463–469

    Article  CAS  PubMed  Google Scholar 

  • Jagnandan D, Church JE, Banfi B, Stuehr DJ, Marrero MB, Fulton DJ (2007) Novel mechanism of activation of NADPH oxidase 5. Calcium sensitization via phosphorylation. J Biol Chem 282:6494–6507

    CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1998) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640

    Article  Google Scholar 

  • Kawano T, Sahashi N, Takahashi K, Uozumi N, Muto S (1998) Salicylic acid induces extracellular superoxide generation gollowed by an increase in cytosolic calcium ion in tobacco suspension culture: the earliest events in salicylic acid signal transduction. Plant Cell Physiol 39:721–730

    CAS  Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–66

    Article  CAS  PubMed  Google Scholar 

  • Kiss T, Osipenko ON (1994) Toxic effects of heavy metals on ionic channels. Pharm Rev 46:245–267

    CAS  PubMed  Google Scholar 

  • Kitajima S (2008) Peroxide-mediated inactivation of two chloroplastic peroxidases, ascorbate peroxidase and 2-Cys peroxiredoxin. Photochem Photobiol 84:1404–1409

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1680

    Article  CAS  PubMed  Google Scholar 

  • Köhler B, Blatt MR (2002) Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. Plant J 32:185–194

    Article  PubMed  Google Scholar 

  • Köhler B, Hills A, Blatt MR (2003) Control of guard cell ion channels by hydrogen peroxide and abscisic acid indicates their action through alternate signaling pathways. Plant Physiol 131:385–388

    Article  PubMed  CAS  Google Scholar 

  • Koppenol WH (2001) The Haber–Weiss cycle – 70 years later. Redox Rep 6:229–234

    Article  CAS  PubMed  Google Scholar 

  • Lahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, Prabhakar NR (2006) Oxygen sensing in the body. Progr Biophys Mol Biol 91:249–286

    Article  CAS  Google Scholar 

  • Lebaudy A, Very AA, Sentenac H (2007) K+ channel activity in plants: Genes, regulations and functions. FEBS Lett 581:2357–2366

    Article  CAS  PubMed  Google Scholar 

  • Liszkay A, van der Zalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O2•−, H2O2, and •OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol 136:3114–3123

    Article  CAS  PubMed  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • McAinsh MR, Clayton H, Mansfield TA, Hetherington AM (1996) Changes in stomatal behavior and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiol 111:1031–1042

    CAS  PubMed  Google Scholar 

  • McCleverty J (1999) Chemistry of the first-row transition metals. Oxford University Press, USA

    Google Scholar 

  • Meinhard M, Grill E (2001) Hydrogen peroxide is a regulator of ABI1, a protein phosphatase 2C from Arabidopsis. FEBS Lett 508:443–446

    Article  CAS  PubMed  Google Scholar 

  • Meinhard M, Rodriguez PL, Grill E (2002) The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta 214:775–782

    Article  CAS  PubMed  Google Scholar 

  • Miedema H, Demidchik V, Very AA, Bothwell JHF, Brownlee C, Davies JM (2008) Two voltage-dependent calcium channels co-exist in the apical plasma membrane of Arabidopsis thaliana root hairs. New Phytol 179:378–385

    Article  CAS  PubMed  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Ann Rev Plant Biol 58:459–481

    Article  CAS  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    Article  CAS  Google Scholar 

  • Moran JF, Klucas RV, Grayer RJ, Abian J, Becana M (1997) Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: Prooxidant and antioxidant properties. Free Radical Biol Med 22:861–870

    Article  CAS  Google Scholar 

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol 135:702–708

    Article  CAS  PubMed  Google Scholar 

  • Moschou PN, Sarris PF, Skandalis N, Andriopoulou AH, Paschalidis KA, Panopoulos NJ, Roubelakis-Angelakis KA (2009) Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes. Plant Physiol 149:1970–1981

    Article  CAS  PubMed  Google Scholar 

  • Murata Y, Pei Z-M, Mori IC, Schroeder JI (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1–1 and abi2–1 protein phosphatase 2C mutants. Plant Cell 13:2513–2523

    Article  CAS  PubMed  Google Scholar 

  • OKane D, Gill V, Boyd P, Burdon B (1996) Chilling, oxidative stress and antioxidant responses in Arabidopsis thaliana callus. Planta 198:371–377

    Article  CAS  Google Scholar 

  • Palavan-Unsal N, Arisan D (2009) Nitric oxide signalling in plants. Bot Rev 75:203–229

    Article  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Pou S, Hassett DJ, Britigan BE, Cohen MS, Rosen GM (1989) Problems associated with spin trapping oxygen-centered free radicals in biological systems. Anal Biochem 177:1–6

    Article  CAS  PubMed  Google Scholar 

  • Pryor WA, Squadrito GL (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 268:699–722

    Google Scholar 

  • Remillard CV, Yuan JXJ (2004) Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 286:49–67

    Article  Google Scholar 

  • Renew S, Heyno E, Schopfer P, Liszkay A (2005) Sensitive detection and localization of hydroxyl radical production in cucumber roots and Arabidopsis seedlings by spin trapping electron paramagnetic resonance spectroscopy. Plant J 44:342–347

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez AA, Grunberg KA, Taleisnik E (2002) Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiol 129:1627–1632

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez AA, Lascano R, Bustos D, Taleisnik E (2007) Salinity-induced decrease in NADPH oxidase activity in the maize leaf blade elongation zone. J Plant Physiol 164:223–230

    Article  PubMed  CAS  Google Scholar 

  • Sawyer DT, Gibian MJ (1979) The chemistry of superoxide ion. Tetrahedron 35:1471–1481

    Article  CAS  Google Scholar 

  • Schraudner M, Moeder W, Wiese C, Van Camp W, Inze D, Langebartels C, Sandermann H (1998) Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant J 16:235–245

    Article  CAS  Google Scholar 

  • Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1757

    Article  CAS  PubMed  Google Scholar 

  • Schwacke R, Hager A (1992) Fungal elicitors induce a transient release of active oxygen species from cultured spruce cells that is dependent on Ca2+ and protein-kinase activity. Planta 187:136–141

    Article  CAS  Google Scholar 

  • Sentenac H, Bonneaud N, Minet M, Lacroute F, Slamon JM, Gaumard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium-ion transport-system. Science 256:663–665

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Cuin TA, Pottosin I (2007) Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Lett 581:1993–1999

    Article  CAS  PubMed  Google Scholar 

  • Simon F, Varela D, Eguiguren AL, Díaz LF, Sala F, Stutzin A (2004) Hydroxyl radical activation of a Ca2+-sensitive nonselective cation channel in epithelial cell necrosis. Am J Physiol Cell Physiol 287:963–970

    Article  Google Scholar 

  • Squadrito GL, Pryor WA (1998) Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic Biol Med 25:392–403

    Article  CAS  PubMed  Google Scholar 

  • Sokolik AI, Yurin VM (1981) Transport properties of potassium channels of the plasmalemma in Nitella cells at rest. Soviet Plant Physiology 28:206–212

    Google Scholar 

  • Sokolik AI, Yurin VM (1986) Potassium channels in plasmalemma in Nitella cells at rest. J Membr Biol 89:9–22

    Article  CAS  Google Scholar 

  • Sokolovski S, Blatt MR (2004) Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. Plant Physiol 136:4275–4284

    Article  CAS  PubMed  Google Scholar 

  • Sokolovski S, Hills A, Gay RA, Blatt MR (2008) Functional interaction of the SNARE protein NtSyp121 in Ca2+ channel gating, Ca2+ transients and ABA signalling of stomatal guard cells. Molecular Plant 1:347–358

    Article  CAS  PubMed  Google Scholar 

  • Sumimoto H (2008) Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J 275:3249–3277

    Article  CAS  PubMed  Google Scholar 

  • Tadolini B (1988) The influence of polyamine-nucleic acid complexes on Fe2+ autoxidation. J Mol Cel Biochem 83:1573–4919

    Google Scholar 

  • Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Tirone F, Cox JA (2007) NADPH oxidase 5 (NOX5) interacts with and is regulated by calmodulin. FEBS Lett 581:1202–1208

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JD (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J 14:365–370

    Article  CAS  PubMed  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Traore DAK, Ghazouani AE, Jacquamet L, Borel F, Ferrer JL, Lascoux D, Ravanat JL, Jaquinod M, Blondin G, Caux-Thang C, Duarte V, Latour JM (2009) Structural and functional characterization of 2-oxo-histidine in oxidized PerR protein. Nat Chem Biol 5:53–59

    Article  CAS  PubMed  Google Scholar 

  • Trouverie J, Vidal G, Zhang Z, Sirichandra C, Madiona K, Amiar Z, Prioul JL, Jeannette E, Rona JP, Brault M (2008) Anion channel activation and Proton Pumping Inhibition Involved in the Plasma Membrane Depolarization Induced by ABA in Arabidopsis thaliana Suspension Cells are Both ROS Dependent. Plant Cell Physiol 49:1495–1507

    Article  CAS  PubMed  Google Scholar 

  • Vèry AA, Davies JM (2000) Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proc Natl Acad Sci USA 97:9801–9806

    Article  PubMed  Google Scholar 

  • Vitch NC (2004) Structural determinants of plant peroxidase function. Phytochem Rev 3:3–18

    Article  Google Scholar 

  • Wang YF, Fan LM, Zhang WZ, Zhang W, Wu WH (2004) Ca2+-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiol 136:3892–3904

    Article  CAS  PubMed  Google Scholar 

  • Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K (2007) Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension. Plant Cell 19:4022–4034

    Article  CAS  PubMed  Google Scholar 

  • Wu YS, Xu XD, Li SJ, Liu T, Ma LG, Shang ZL (2007) Heterotrimeric G-protein participation in Arabidopsis pollen germination through modulation of a plasmamembrane hyperpolarization-activated Ca2+-permeable channel. New Phytol 176:550–559

    Article  CAS  PubMed  Google Scholar 

  • Yu SP (2003) Regulation and critical role of potassium homeostasis in apoptosis. Progr Neirob 70:363–386

    Article  CAS  Google Scholar 

  • Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LMT, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, Choi DW (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–117

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Demidchik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demidchik, V. (2010). Reactive Oxygen Species, Oxidative Stress and Plant Ion Channels. In: Demidchik, V., Maathuis, F. (eds) Ion Channels and Plant Stress Responses. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10494-7_11

Download citation

Publish with us

Policies and ethics