Skip to main content

New Technologies for Application to Veterinary Therapeutics

  • Chapter
  • First Online:
Comparative and Veterinary Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 199))

Abstract

The purpose of this contribution is to review new technologies and make an educated prediction as to how they will impact veterinary pharmacology over the coming decades. By examining past developments, it becomes evident that change is incremental and predictable unless either a transforming discovery or a change in societal behaviour occurs. In the last century, both discoveries and behaviours have dramatically changed medicine, pharmacology and therapeutics. In this chapter, the potential effects of six transforming technologies on veterinary therapeutics are examined: continued advances in computer technology, microfluidics, nanotechnology, high-throughput screening, control and targeted drug delivery and pharmacogenomics. These should lead to the more efficacious and safer use of existing medicants, and the development of novel drugs across most therapeutic classes through increases in our knowledge base, as well as more efficient drug development. Although this growth in technology portends major advances over the next few decades, economic and regulatory constraints must still be overcome for these new drugs or therapeutic approaches to become common practise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Andersen L, Higby GJ (1995) The spirit of voluntarism. A legacy of commitment and contribution. The United States Pharmacopeia 1820–1899. The United States Pharmacopeial Convention, Rockville

    Google Scholar 

  • Baynes RE, Xia XR, Imram M, Riviere JE (2008) Quantification of chemical mixture interactions that modulate dermal absorption using a multiple membrane coated fiber array. Chem Res Toxicol 21:591–599

    Article  CAS  PubMed  Google Scholar 

  • Booker R, Boysen E (2005) Nanotechnology for dummies. Wiley, New York

    Google Scholar 

  • Buur J, Baynes R, Smith G, Riviere J (2006) Use of probabilistic modeling within a physiologically based pharmacokinetic model to predict sulfamethazine residue withdrawal times in edible tissues in swine. Antimicrob Agents Chemother 50:2344–2351

    Article  CAS  PubMed  Google Scholar 

  • Buur JL, Baynes RE, Riviere JE (2008) Estimating meat withdrawal times in pigs exposed to melamine contaminated feed using a physiologically based pharmacokinetic model. Reg Toxicol Pharmacol 51:324–331

    Article  CAS  Google Scholar 

  • Craigmill AL (2003) A physiologically based pharmacokinetic model for oxytetracycline residues in sheep. J Vet Pharmacol Ther 26:55–63

    Article  CAS  PubMed  Google Scholar 

  • Cunningham MJ (2000) Genomics and proteomics: The new millennium of drug discovery and development. J Pharmacol Toxicol Methods 44:291–300

    Article  CAS  PubMed  Google Scholar 

  • Davis LE (1982) Veterinary Pharmacology – An Introduction to the Discipline. In: Booth NJ, McDonald LE (eds) Veterinary Pharmacology and Therapeutics, 5th edn. Iowa State University Press, Ames

    Google Scholar 

  • Elkins S (ed) (2007) Computational toxicology. Wiley, New York

    Google Scholar 

  • Enserink M (2007) Initiative aims to merge animal and human health science to benefit both. Science 316:1553

    Article  CAS  PubMed  Google Scholar 

  • Ette EI, Williams PJ (eds) (2007) Pharmacometrics: the science of quantitative pharmacology. Wiley, New York

    Google Scholar 

  • Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–773

    Article  CAS  PubMed  Google Scholar 

  • Food and Drug Administration (2009) Center for Veterinary Medicine. Three-Year Research Plan. Food and Drug Administration, Rockville

    Google Scholar 

  • Greenwald RB (2001) PEG drugs: an overview. J Control Release 74:159–171

    Article  CAS  PubMed  Google Scholar 

  • Hsieh Y, Korfmacher WA (2006) Increasing speed and throughput when using HPLC-MS/MS systems for drug metabolism and pharmacokinetic screening. Curr Drug Metab 7:479–489

    Article  CAS  PubMed  Google Scholar 

  • Jones LM (1977) Veterinary Pharmacology – Past, Present, and Future. In: Jones LM, Booth NJ, McDonald LE (eds) Veterinary Pharmacology and Therapeutics, 4th edn. Iowa State University Press, Ames

    Google Scholar 

  • Khavari PA, Rollman O, Vahlquist A (2002) Cutaneous gene transfer for skin and systemic diseases. J Intern Med 252:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kim L, Vahey MD, Lee HY, Voldman J (2006) Microfluidic arrays for logarithmically perfused embryonic stem cell cultures. Lab Chip 6:394–406

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  PubMed  Google Scholar 

  • Lagoni LS, Hetts S, Butler CS (1994) The human animal bond and grief. Saunders, Philadelphia

    Google Scholar 

  • Langer R (2001) Drugs on target. Science 293:58–59

    Article  CAS  PubMed  Google Scholar 

  • Leduc PR, Wong MS, Ferreira PM, Groff RE, Haslinger K, Koonce M, Lee WY, Love JC, McCammon JA, Monteiro-Riviere NA, Rotello VM, Rubloff GW, Westervelt R, Yoda M (2007) Towards an in vivo biologically inspired nanofactory. Nat Nanotech 2:3–7

    Article  CAS  Google Scholar 

  • Lee HA, Leavens T, Mason SE, Monteiro-Riviere NA, Riviere JE (2009) Comparison of quantum dot biodistribution with blood-flow limited physiologically-based pharmacokinetic model. Nano Lett 9:794–799

    Article  CAS  PubMed  Google Scholar 

  • Manz A, Grabe N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens Actuators B :244–248

    Google Scholar 

  • Martin-Jimenez T, Riviere JE (1998) Population pharmacokinetics in veterinary medicine. Potential uses for therapeutic drug monitoring and prediction of tissue residues. J Vet Pharmacol Ther 21:167–189

    Article  CAS  PubMed  Google Scholar 

  • McClain MA, Culbertson CT, Jacobson SC, Allbritton NL, Sims CE, Ramsey JM (2003) Microfluidic devices for high-throughput chemical analysis of cells. Anal Chem 75:5646–5655

    Article  CAS  PubMed  Google Scholar 

  • Mealey KL (2004) Therapeutic implications of the MDR-1 gene. J Vet Pharmacol Ther 27:257–264

    Article  CAS  PubMed  Google Scholar 

  • Monteiro-Riviere NA, Tran L (eds) (2007) Nanotoxicology: characterization, dosing and health effects. Informa, New York

    Google Scholar 

  • National Research Council (2001) Scientific criteria to ensure safe food. National Academy Press, Washington, DC

    Google Scholar 

  • National Research Council (2006) A matter of size – triennial review of the national nanotechnology initiative. National Academy Press, Washington, DC

    Google Scholar 

  • National Research Council (2007) Toxicity testing in the 21st century: a vision and a strategy. National Academy Press, Washington, DC

    Google Scholar 

  • National Research Council (2009) Review of the federal strategy for nanotechnology-related environmental. National Academy Press, Washington, DC, Health and Safety Research

    Google Scholar 

  • Nellemann C, MacDevette M, Manders T, Eickhout B, Svihus B, Prins AG, Kaltenborn BP (eds) (2009) The Environmental Food Crisis: The Environment’s Role in Averting Future Food Crises – A UNEP Rapid Response Assessment. United Nations Environment Programme, Arendal

    Google Scholar 

  • Overall K (2001) Pharmacological treatment in behavioural medicine. Vet J 162:9–23

    Article  CAS  PubMed  Google Scholar 

  • Parascandola J (1992) The Development of American Pharmacology: John J. The John Hopkins University Press, Baltimore, Abel and the Shaping of a Discipline

    Google Scholar 

  • Rantanen J (2007) Process analytical applications of Raman spectroscopy. J Pharm Pharmacol 59:171–177

    Article  CAS  PubMed  Google Scholar 

  • Reddy MB, Yang RSH, Clewell HJ, Andersen ME (eds) (2005) Physiologically based pharmacokinetic modeling. Science and applications. Wiley, New York

    Google Scholar 

  • Rhee SW, Taylor AM, Tu CH, Cribbs DH, Cotman CW, Jeon NL (2005) Patterned cell culture inside microfluidic devices. Lab Chip 5:102–107

    Article  CAS  PubMed  Google Scholar 

  • Riviere JE (ed) (2006) Biological concepts and techniques in toxicology. Taylor and Francis, New York

    Google Scholar 

  • Riviere JE (2007) The future of veterinary therapeutics: A glimpse towards 2030. Vet J 174:462–471

    Article  CAS  PubMed  Google Scholar 

  • Riviere JE (2009) Pharmacokinetics of nanomaterials: an overview of carbon nanotubes, fullerenes and quantum dots. WIRES Nanomed Nanobiotech 1:26–34

    Article  CAS  Google Scholar 

  • Riviere JE, Heit M (1997) Electrically-assisted transdermal drug delivery. Pharm Res 14:691–701

    Article  Google Scholar 

  • Riviere JE, Papich M (2001) Potential and problems of developing transdermal patches for veterinary applications. Adv Drug Del Rev 50:175–203

    Article  CAS  Google Scholar 

  • Riviere JE, Papich M (eds) (2009) Veterinary pharmacology and therapeutics, 9th edn. Wiley-Blackwell, IA, Ames

    Google Scholar 

  • Rudenko L, Greenlees KJ, Matheson JC (2006) Risk-based approaches to foods derived from genetically engineered animals. In: Riviere JE (ed) Biological concepts and techniques in toxicology. Taylor and Francis, New York

    Google Scholar 

  • Ryman-Rasmussen J, Riviere JE, Monteiro-Riviere NA (2007) Variables influencing interactions of untargeted quantum dot nanoparticles with skin cells and identification of biochemical modulators. NanoLetters 7:1344–1348

    CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complimentary DNA microarray. Science 270:467–470

    Article  CAS  PubMed  Google Scholar 

  • Semizarov D, Blomme E (eds) (2009) Genomics in drug discovery and development. Wiley, New York

    Google Scholar 

  • Service RF (2005) Nanotechnology takes aim at cancer. Science 310:1132–1134

    Article  PubMed  Google Scholar 

  • Sillence MN (2004) Technologies for the control of fat and lean deposition in livestock. Vet J 167:242–257

    Article  CAS  PubMed  Google Scholar 

  • Verbaan FJ, Bal SM, van den Berg DJ, Groenink WH, Verpoorten H, Luttge R, Bouwstra JA (2007) Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J Control Release 12:238–245

    Article  Google Scholar 

  • Wen X, Fuhrman S, Michaels GS, Carr DB, Smith S, Barker JL, Somogyi R (1998) Large-scale temporal gene expression mapping of central nervous system development. PNAS 95:334–339

    Article  CAS  PubMed  Google Scholar 

  • Widera G, Johnson J, Kim L, Libiran L, Nyam K, Daddona PE, Cormier M (2006) Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration of a coated microneedle array patch system. Vaccine 24:1653–1664

    Article  CAS  PubMed  Google Scholar 

  • Wren JA, Gossellin J, Sunderland SJ (2007) Dirlotapide: a review of its properties and role in the management of obesity in dogs. J Vet Pharmacol Ther 30(Suppl 1):11–13

    Article  CAS  PubMed  Google Scholar 

  • Xia XR, Baynes RE, Monteiro-Riviere NA, Riviere JE (2007) An experimental based approach for predicting skin permeability of chemicals and drugs using a membrane coated fiber array. Toxicol Appl Pharmacol 221:320–328

    Article  CAS  PubMed  Google Scholar 

  • Yengi LG, Leung L, Kao J (2007) The evolving role of drug metabolism in drug discovery and development. Pharm Res 24:842–858

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim E. Riviere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Riviere, J.E. (2010). New Technologies for Application to Veterinary Therapeutics. In: Cunningham, F., Elliott, J., Lees, P. (eds) Comparative and Veterinary Pharmacology. Handbook of Experimental Pharmacology, vol 199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10324-7_8

Download citation

Publish with us

Policies and ethics