Skip to main content

Root Oxygen Deprivation and Leaf Biochemistry in Trees

  • Chapter
  • First Online:
Waterlogging Signalling and Tolerance in Plants

Abstract

Plants are aerobic organisms, that is, they depend on oxygen for their life. Therefore, oxygen deficiency impacts on the biochemical and molecular processes of the plant cell. However, plant cells have evolved inducible strategies to cope with low oxygen stress conditions. When O2 is reduced, energy production in the form of ATP is reduced too. Cells respond to this energy crisis by switching to fermentative metabolism, producing ATP and regenerating NAD+ through the glycolytic and fermentative pathways.

Roots are the organs most easily subject to low O2 stress, but changes in fermentative enzymatic activities are also seen in leaves. Nevertheless, leaves already possess a constitutive expression of these enzymes. Since leaves are the plant organs less likely exposed to low O2 conditions, they should have evolved in addition an alternative role for the enzymes usually related to fermentative metabolism. Leaves seem to have the ability to take advantage of the enzymes of a metabolic pathway commonly useful in parts of the plant which can undergo anoxia or hypoxia stress: they make use of fermentative metabolism in a different way, to limit the damage that stress condition imposes to the whole plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ADH:

Alcohol dehydrogenase

ALDH:

Aldehyde dehydrogenase

ANPs:

Anaerobiosis related proteins

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

LDH:

Lactate dehydrogenase

PDC:

Pyruvate decarboxylase

PPi:

Inorganic pyrophosphate

Suc:

Sucrose

SuSy:

Sucrose synthase

References

  • Ahmed S, Nawata E, Hosokawa M, Domae Y, Sakuratani T (2002) Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci 163:117–123

    Article  CAS  Google Scholar 

  • Albert B, Bray D, Lewis J, Raff M, Roberts K, Watson J (1983) Molecular biology of the cells. Garland Publishing, New York, pp 67–80

    Google Scholar 

  • Albrecht G, Kammerer S, Praznik W, Wiedenroth EM (1993) Fructan content of wheat seedlings (Triticum aestivum L) under hypoxia and following re-aeration. New Phytol 123:471–476

    Article  CAS  Google Scholar 

  • Angelov MN, Sung SJS, Doong RL, Harms WR, Kormanik PP, Black CC Jr (1996) Long- and short-termflooding effects on survival and sink-source relationships of swamp-adapted tree species. Tree Physiol 16:477–484

    PubMed  Google Scholar 

  • Ap Rees T (1980) Assessment of the contributions of metabolic pathways to plant respiration. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, a comprehensive treatise, 2nd edn. Academic Press, New York, pp 1–29

    Google Scholar 

  • Armstrong W, Brandle R, Jackson MB (1994) Mechanisms of flood tolerance in plants. Acta Bot Neerl 43:307–358

    CAS  Google Scholar 

  • Atkinson CJ, Harrison-Murraya RS, Taylora JM (2008) Rapid flood-induced stomatal closure accompanies xylem sap transportation of root-derived acetaldehyde and ethanol in Forsythia. Env Exp Bot 64:196–205

    Article  CAS  Google Scholar 

  • Balakhnina TI, Bennicelli RP, StÄ™pniewska Z, StÄ™pniewski W, Fomina IR (2009) Oxidative damage and antioxidant defense system in leaves of Vicia faba major L. cv. Bartom during soil flooding and subsequent drainage 2009. Plant Soil. doi:10.1007/s11104-009-0054-6

    Google Scholar 

  • Barta AL (1987) Supply and partitioning of assimilates to roots of Medicago sativa L. and Lotus corniculatus L. under anoxia. Plant Cell Environ 10:151–156

    CAS  Google Scholar 

  • Barta AL (1988) Response of field grown alfalfa to root water-logging and shoot removal. I. Plant injury and carbohydrate and mineral content of roots. Agron J 88:889–892

    Article  Google Scholar 

  • Biemelt S, Keetman U, Mock HP, Grimm B (2000) Expression and activity of isoenzymes of superoxide dismutase in wheat roots in response to hypoxia and anoxia. Plant Cell Environ 23:135–144

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagestedt KV (2002) Antioxidants, oxidative damage, and oxygen deprivation stress: a review. Ann Bot (Lond) 91:179–194

    Article  Google Scholar 

  • Bode K, Helas G, Kesselmeier J (1997) Biogenic contribution to atmospheric organic acids. In: Helas G, Slanina J, Steinbrecher R (eds) Biogenic volatile organic compounds in the atmosphere. SPB Academic Publishers, Amsterdam, pp 157–170

    Google Scholar 

  • Branco-Price C, Kaiser KA, Jang CJH, Larive CK, Bailey-Serres J (2008) Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. Plant J 56:743–755

    Article  CAS  PubMed  Google Scholar 

  • Branco-Price C, Kawaguchi R, Ferreira RB, Bailey-Serres J (2005) Genomewide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Ann Bot (Lond) 96:647–660

    Article  CAS  Google Scholar 

  • Castonguay Y, Nadeau P, Simard RR (1993) Effects of flooding on carbohydrate and ABA levels in roots and shoots of alfalfa. Plant Cell Environ 16:695–702

    Article  CAS  Google Scholar 

  • Crawford RMM, Finegan DM (1989) Removal of ethanol from lodgepole pine roots. Tree Physiol 5:53–61

    CAS  PubMed  Google Scholar 

  • Davies DD, Grego S, Kenworthy P (1974) The control of the production of lactate and ethanol by higher plants. Planta 118:297–310

    Article  CAS  Google Scholar 

  • Drew MC, Sisworo EJ (1977) Early effects of flooding on nitrogen deficiency and leaf chlorosis in barley. New Phytol 79:567–571

    Article  CAS  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  CAS  PubMed  Google Scholar 

  • Eklund L (1990) Endogenous levels of oxygen, carbon dioxide and ethylene in stems of Norway spruce trees during one growing season. Trees 4:150–154

    Article  Google Scholar 

  • Else MA, Tiekstra AE, Croker SJ, Davies WJ, Jackson MB (1996) Stomatal closure in flooded tomato plants involves abscisic acid and a chemically unidentified anti-transpirant in xylem sap. Plant Physiol 112:239–247

    CAS  PubMed  Google Scholar 

  • Enders G, Dlugi R, Steinbrecher R, Clement B, Daiber R, Van Eijk J, Gab S, Haziza M, Helas G, Herrmann U, Kessel K, Kesselmeier J, Kotzias D, Kourtidis K, Kurth HH, McMillan RT, Roider G, Schurmann W, Teichmann U, Torres L (1992) Biosphere/atmosphere interactions: integrated research in a European coniferous forest ecosystem. Atmos Environ 26:171–189

    Google Scholar 

  • Freeling M, Bennett DC (1985) Maize Adhl. Annu Rev Genet 19:297–323

    CAS  PubMed  Google Scholar 

  • Fukao T, Bailey-Serres J (2004) Plant responses to hypoxia – is survival a balancing act? Trends Plant Sci 9:449–456

    Article  CAS  PubMed  Google Scholar 

  • Garnczarska M, Bednarski W (2004) Effect of a short-term hypoxia treatment followed by re-aeration on free radicals level and antioxidant enzymes in lupine roots. Plant Physiol Biochem 42:233–240

    Article  CAS  PubMed  Google Scholar 

  • Geigenberger P (2003) Response of plant metabolism to too little oxygen. Curr Opin Plant Biol 6:247–256

    Article  CAS  PubMed  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  CAS  Google Scholar 

  • Gibbs J, Morrell S, Valdez A, Setter TL, Greenway T (2000) Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia. J Exp Bot 51:785–796

    Article  CAS  PubMed  Google Scholar 

  • Hahn J, Steinbrecher R, Slemr J. 1991. Study of the emission of low molecular-weight organic compounds by various plants. EUROTRAC Annu Rep Part 4. BIATEX., pp 230–235

    Google Scholar 

  • Harry DE, Kimmerer TW (1991) Molecular genetics and physiology of alcohol dehydrogenase in woody plants. For Ecol Manage 43:251–272

    Article  Google Scholar 

  • Hsu YM, Tseng MJ, Lin CH (1999) The fluctuation of carbohydrates and nitrogen compounds in flooded wax-apple trees. Bot Bull Acad Sin 40:193–198

    CAS  Google Scholar 

  • Huang B, Johnson JW (1995) Root respiration and carbohydrate status of two wheat genotypes in response to hypoxia. Ann Bot (Lond) 75:427–432

    Article  CAS  Google Scholar 

  • Huang S, Greenway H, Colmer TD, Millar H (2005) Protein synthesis by rice coleoptiles during prolonged anoxia: implication for glycolysis, growth and energy utilization. Ann Bot (Lond) 96:703–715

    Article  CAS  Google Scholar 

  • Jackson MB, Davies WJ, Else MA (1996) Pressure-flow relationships, xylem solutes, and root hydraulic conductance in flooded tomato. Ann Bot 77:17–24

    Article  Google Scholar 

  • Jackson MB, Drew MC (1984) Effects of flooding on growth and metabolism of herbaceous plants. In: Kozlowski T (ed) Flooding and plant growth. Academic Press, New York, pp 47–128

    Google Scholar 

  • Jackson MB, Herman B, Goodenough A (1982) An examination of the importance of ethanol in causing injury to flooded plants. Plant Cell Environ 5:163–172

    CAS  Google Scholar 

  • Kalashnikov YUE, Zakrzhevsky DA, Balakhnina TI (1994) Effect of soil hypoxia on activation of oxygen and the system of protection from oxidative damage in roots and leaves of Hordeum vulgare L. Russ J Plant Physiol 41:583–588

    CAS  Google Scholar 

  • Kawaguchi R, Bailey-Serres J (2005) mRNA sequence features responsible for translational regulation in Arabidopsis. Nucleic Acids Res 33:955–965

    Article  CAS  PubMed  Google Scholar 

  • Kesselmeier J, Bode K, Hofmann U, Muller H, Schafer L, Wolf A, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M, Foster P, Ferrari C, Jacob V, Fugit JL, Dutaur L, Simon V, Torres L (1997) Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms. Atmos Environ 31:119–133

    Article  CAS  Google Scholar 

  • Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  CAS  Google Scholar 

  • Kimmerer TW, Kozlowski TT (1982) Ethylene, ethane, acetaldehyde and ethanol production by plants under stress. Plant Physiol 69:840–847

    Article  CAS  PubMed  Google Scholar 

  • Kimmerer TW, MacDonald RC (1987) Acetaldehyde and ethanol biosynthesis in leaves of plants. Plant Physiol 84:1204–1209

    Article  CAS  PubMed  Google Scholar 

  • Kimmerer TW, Stringer MA (1988) Alcohol dehydrogenase and ethanol in the stems of trees. Plant Physiol 87:693–697

    Article  CAS  PubMed  Google Scholar 

  • Kimmerer TW (1987) Alcohol dehydrogenase and pyruvate decarboxylase activity in leaves and roots of eastem cottonwood (Populus deltoides Bartr.) and soybean (Glycine max L.). Plant Physiol 84:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494

    Article  CAS  PubMed  Google Scholar 

  • Kreuzwieser J, Harren FJM, Laarhoven LJ, Boamfa I, Lintel-Hekkert S, Scheerer U, Huglin C, Rennenberg H (2001) Acetaldehyde emission by the leaves of trees: correlation with physiological and environmental parameters. Physiol Plant 113:41–49

    Article  CAS  Google Scholar 

  • Kreuzwieser J, Hauberg J, Howell KA, Carroll A, Rennenberg H, Millar AH, Whelan J (2009) Differential response of gray poplar leaves and roots underpins stress adaptation during hypoxia. Plant Physiol 149:461–473

    Article  CAS  PubMed  Google Scholar 

  • Kreuzwieser J, Papadopoulou E, Rennenberg H (2004) Interaction of flooding with carbon metabolism of forest trees. Plant Biol 6:299–306

    Article  CAS  PubMed  Google Scholar 

  • Kreuzwieser J, Scheerer U, Rennenberg H (1999) Metabolic origin of acetaldehyde emitted by trees. J Exp Bot 50:757–765

    Article  CAS  Google Scholar 

  • Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G, Beretta O, Vitulli F, Alpi A, Perata P (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231

    Article  CAS  PubMed  Google Scholar 

  • Lehninger AL (1982) Principles of biochemistry. Worth Publishers, New York

    Google Scholar 

  • Liao CT, Lin CH (1994) Effect of flooding stress on photosynthetic activities of Momordica charantia. Plant Physiol Biochem 32:479–485

    Google Scholar 

  • Liao CT, Lin CH (2001) Physiological adaptation of crop plants to flooding stress. Proc Natl Sci Counc 25:148–157

    CAS  Google Scholar 

  • Liu F, VanToai T, Moy LP, Bock G, Linford LD, Quackenbush J (2005) Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis. Plant Physiol 137:1115–1129

    Article  CAS  PubMed  Google Scholar 

  • Loreti E, Poggi A, Novi G, Alpi A, Perata P (2005) A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol 137:1130–1138

    Article  CAS  PubMed  Google Scholar 

  • MacDonald RC, Kimmerer TW, Razzaghi M (1989) Aerobic ethanol production by leaves: evidence for air pollution stress in tress of the Ohio River Valley, USA. Environ Pollut 62:337–351

    Article  CAS  PubMed  Google Scholar 

  • MacDonald RC, Kimmerer TW (1990) Remetabolism of transpired ethanol by Populus deltoides (abstract No. 658). Plant Physiol 93:S112

    Google Scholar 

  • MacDonald RC, Kimmerer TW (1991) Ethanol in the stems of trees. Physiol Plant 82:582–588

    Article  CAS  Google Scholar 

  • MacDonald RC, Kimmerer TW (1993) Metabolism of transpired ethanol by eastern cottonwood (Populus deltoides-Bartr). Plant Physiol 102:173–179

    CAS  PubMed  Google Scholar 

  • Magneschi L, Perata P (2009) Rice germination and seedling growth in the absence of oxygen. Ann Bot (Lond) 103:181–196

    Article  CAS  Google Scholar 

  • Mancuso S, Marras AM (2006) Adaptive response of Vitis root to anoxia. Plant Cell Physiol 47:401–409

    Article  CAS  PubMed  Google Scholar 

  • Perata P, Alpi A (1991) Ethanol-induced injuries carrot cells. The role of acetaldehyde. Plant Physiol 95:748–752

    Article  CAS  PubMed  Google Scholar 

  • Perata P, Pozueta-Romero J, Akazawa T, Yamaguchi J (1992) Effect of anoxia on starch breakdown in rice and wheat seeds. Planta 188:611–618

    Article  CAS  Google Scholar 

  • Perata P, Voesenek LA (2007) Submergence tolerance in rice requires Sub1A, an ethylene-response-factor-like gene. Trends Plant Sci 12:43–46

    Article  CAS  PubMed  Google Scholar 

  • Ricard B, Couée I, Raymond P, Saglio PH, Saint-Ges V, Pradet A (1994) Plant metabolism under hypoxia and anoxia. Plant Physiol Biochem 32:1–10

    CAS  Google Scholar 

  • Saglio PH, Raymond P, Pradet A (1980) Metabolic activity and energy charge of excised maize root tips under anoxia. Plant Physiol 66:1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Saglio PH (1985) Effect of path or sink anoxia on sugar translocation in roots of maize seedlings. Plant Physiol 77:285–290

    Article  CAS  PubMed  Google Scholar 

  • Setter TL, Ellis M, Laureles EV, Ella ES, Senadhira D, Mishra SB, Sarkarung S, Datta S (1997) Physiology and genetics of submergence tolerance in rice. Ann Bot (Lond) 79:67–77

    Article  CAS  Google Scholar 

  • Smit B, Stachowiak M, Van Volkenburgh E (1989) Cellular processes limiting leaf growth in plants under hypoxic root stress. J Exp Bot 40:89–94

    Article  Google Scholar 

  • Steinbrecher R, Hahn J, Stahl K, Eichstadter G, Lederle K, Rabong R, Schreiner AM, Slemr J (1997) Investigations on emissions of low molecular weight compounds (C2-C10) from vegetation. In: Slanina S (ed) Biosphere-atmosphere exchange of pollutants and trace substances. Springer, Berlin, pp 342–351 ISBN 3-540-61711-6

    Google Scholar 

  • Tadege M, Dupuis I, Kuhlemeier C (1999) Ethanolic fermentation: new functions for an old pathway. Trends Plant Sci 4:320–325

    Article  PubMed  Google Scholar 

  • Terazawa K, Maruyama Y, Morikawa Y (1992) Photosynthetic and stomatal responses of Larix kaempferi seedlings to short-term waterlogging. Ecol Res 7:193–197

    Article  Google Scholar 

  • Topa MA, Cheeseman JM (1992a) Carbon and phosphorus partitioning in Pinus serotina seedlings growing under hypoxic and low-phosphorous conditions. Tree Physiol 10:195–207

    CAS  PubMed  Google Scholar 

  • Topa MA, Cheeseman JM (1992b) Effects of root hypoxia and a low P supply on relative growth, carbon dioxide exchange rates and carbon partitioning in Pinus serotina seedlings. Physiol Plant 86:136–144

    Article  CAS  Google Scholar 

  • Van Dongen JT, Frohlich A, Ramirez-Aguilar SJ, Schauer N, Fernie AR, Erban A, Kopka J, Clark J, Langer A, Geigenberger P (2008) Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of Arabidopsis plants. Ann Bot (Lond). doi:doi/10.1093/aob/mcn126

    Google Scholar 

  • Vu CV, Yelenosky G (1991) Photosynthetic responses of citrus trees to soil flooding. Physiol Plant 81:7–14

    Article  CAS  Google Scholar 

  • Wample RL, Davis RW (1983) Effect of flooding on starch accumulation in chloroplasts of sunflower (Helianthus annuus L.). Plant Physiol 73:195–198

    Article  CAS  PubMed  Google Scholar 

  • Wang KH, Jiang YW (2007) Antioxidant responses of creeping bentgrass roots to waterlogging. Crop Sci 47:232–238

    Article  CAS  Google Scholar 

  • Waters I, Morrell S, Greenway H, Colmer TD (1991) Effects of anoxia on wheat seedlings. 2. Influence of O2 supply prior to anoxia on tolerance to anoxia, alcoholic fermentation, and sugar levels. J Exp Bot 42:832–841

    Google Scholar 

  • Webb T, Armstrong W (1983) The effects of anoxia and carbohydrates on the growth and viability of rice, pea and pumpkin roots. J Exp Bot 34:579–603

    Article  CAS  Google Scholar 

  • Williamson JR, Tischler M (1979) Ethanol metabolism in perfused liver and isolated hepatocytes with associated methodologies. In: Majchrowikz E, Noble EP (eds) Biochemistry and pharmacology of ethanol, vol 1. Plenum Press, New York, pp 167–189

    Google Scholar 

  • Yan B, Dai Q, Liu X, Huang S, Wang Z (1996) Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in com leaves. Plant Soil 179:261–268

    Article  CAS  Google Scholar 

  • Yordanova RY, Popova LP (2007) Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol Plant 29:535–541

    Article  CAS  Google Scholar 

  • Zakrzhevsky DA, Balakhnina TI, Stepniewski W, Stepniewska S, Bennicelli RP, Lipiec J (1995) Oxidation and growth processes in roots and leaves of higher plants at different oxygen availability in soil. Rus J Plant Physiol 42:242–248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Arru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arru, L., Fornaciari, S. (2010). Root Oxygen Deprivation and Leaf Biochemistry in Trees. In: Mancuso, S., Shabala, S. (eds) Waterlogging Signalling and Tolerance in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10305-6_9

Download citation

Publish with us

Policies and ethics