Skip to main content

Exploring the Ecological Significance of Microbial Diversity and Networking in the Rice Ecosystem

  • Chapter
  • First Online:
Soil Biology and Agriculture in the Tropics

Part of the book series: Soil Biology ((SOILBIOL,volume 21))

Abstract

Rice fields represent “hot spots of biodiversity” – encompassing a complicated network of aerobic, anaerobic and facultative micro-organisms, whose interactions with the resident macro flora and fauna lead to unique and complex biochemical and physicochemical reactions. In turn, these reactions fuel the major nutrient cycles. The dynamics of microbiological activity of rice soil, especially in the rhizosphere, represents a model system to study the fundamentals of microbial ecology, such as the mechanisms for maintenance and communication between diverse and overlapping bacterial populations. Modern molecular tools such as innovative micro-scale-measuring devices and use of extensive long-term field data have revealed the culturable/unculturable diversity – which includes not only the commonly recorded eubacteria and cyanobacteria but also members of Archaea, Planctomycetes, β-Proteobacteria, and an increasing number of associated endophytes. This compilation presents the current knowledge about this key soil habitat and its global significance to agriculture and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ariosa Y, Quesada A, Aburto J, Carrasco D, Carreres R, Leganis F, Valiente EF (2004) Epiphytic cyanobacteria on Chara vulgaris are the main contributors to N2 fixation in rice fields. Appl Environ Microbiol 70:5391–5397

    Article  PubMed  CAS  Google Scholar 

  • Babu JY, Li C, Frolking S, Nayak DR, Adhya TK (2006) Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India. Nutr Cycl Agroecosyst 74:157–174

    Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–489

    Article  Google Scholar 

  • Barraquio WL, Revilla L, Ladha JK (1997) Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil 194:15–24

    Article  CAS  Google Scholar 

  • Begg CBM, Kirk GJUD, Mackenjia AF, Neue HU (1994) Root induced iron oxidation and pH changes in the lowland rice rhizosphere. New Phytol 128:469–477

    Article  CAS  Google Scholar 

  • Bin C, Si-Ping Z, Li-Juan Z, Zhi-Min L, Ya-Na S, Wei-Wen Z (2007) Genetic diversity analysis of diazotrophs in the rice rhizosphere. Chin J Agric Biotechnol 4:253–258

    Article  CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886

    Google Scholar 

  • Bodelier PLE, Hahn AP, Arth IR, Frenzel P (2000) Effects of ammonium-based fertilization on microbial processes involved in methane emission from soils planted with rice. Biogeochemistry 51:225–257

    Article  Google Scholar 

  • Briones AM, Okabe S, Umemiya Y, Ramsing N-B, Reichardt W, Okuyama H (2002) Influence of different cultivars on populations of ammonia-oxidizing bacteria in the root environment of rice. Appl Environ Microbiol 68:3067–3075

    Article  PubMed  CAS  Google Scholar 

  • Bronson KF, Hussain F, Pasuquin E, Ladha JK (2000) Use of 15N-labeled soil in measuring nitrogen fertilizer recovery efficiency in transplanted rice. Soil Sci Soc Am J 64:235–239

    Article  CAS  Google Scholar 

  • Charyulu PBBN, Nayak DN, Rao VR (1981) 15N2 incorporation by rhizosphere soil: influence of rice variety, organic matter and combined nitrogen. Plant Soil 59:399–405

    Article  CAS  Google Scholar 

  • Chen J, Xuan J, Du C, Xie J (1997) Effect of potassium nutrition of rice on rhizosphere redox status. Plant Soil 188:131–137

    Article  CAS  Google Scholar 

  • Chen X-P, Zhu Y-G, Xia Y, Shen J-P, He J-Z (2008) Ammonia-oxidizing archaea: important players in paddy rhizosphere soil. Environ Microbiol 10:1978–1987

    Article  PubMed  CAS  Google Scholar 

  • Chi F, Shen S-H, Cheng H-P, Jing Y-X, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    Article  PubMed  CAS  Google Scholar 

  • Choudhury ATMA, Kennedy IR (2004) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227

    Article  Google Scholar 

  • Conrad R, Klose M, Claus P (2000) Phosphate inhibits acetotrophic methanogenesis on rice roots. Appl Environ Microbiol 66:828–831

    Article  PubMed  CAS  Google Scholar 

  • Conrad R, Klose M, Noll M, Kemnitz D, Bodelier PLE (2008) Soil type links microbial colonization of rice roots to methane emission. Global Change Biol 14:657–669

    Article  Google Scholar 

  • Das AC, Chakravarty A, Sukul P, Mukherjee D (2003) Effect of HCH and Fenvalerate on growth and distribution of micro-organisms in relation to persistence of the insecticides in the rhizosphere soils of wetland rice. Bull Environ Contam Toxicol 70:1059–1064

    Article  PubMed  CAS  Google Scholar 

  • De Datta SK (1981) Principles and practices of rice production. Wiley, New York

    Google Scholar 

  • Derakshani M, Lukow T, Liesack W (2001) Novel bacterial lineages at the (Sub) division level as detected by signature nucleotide-targeted recovery of 16S rRNA genes from bulk soil and rice roots of flooded rice microcosms. Appl Environ Microbiol 67:623–631

    Article  PubMed  CAS  Google Scholar 

  • Doi T, Hagiwara Y, Abe J, Morita S (2007) Analysis of rhizosphere bacteria of rice cultivated in andosol lowland and upland fields using molecular biological methods. Plant Root 1:66–74

    Article  CAS  Google Scholar 

  • Dubey SK, Padmanabhan P, Purohit HJ, Upadhyay SN (2003) Tracking of methanotrophs and their diversity in paddy soil: a molecular approach. Curr Sci 85:92–95

    CAS  Google Scholar 

  • Elbeltagy A et al (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46:617–629

    Google Scholar 

  • Elbeltagy A et al (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice. Appl Environ Microbiol 67:5287–5293

    Article  Google Scholar 

  • Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus sp. in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945

    Article  PubMed  CAS  Google Scholar 

  • Galal YGM (1997) Estimation of nitrogen fixation in an Azolla–rice association using the 15N isotope dilution technique. Biol Fertil Soils 24:76–80

    Article  CAS  Google Scholar 

  • Gillis M et al (1995) Polyphasic taxonomy in the genus Burkholderia leading to an amended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 45:274–289

    Article  CAS  Google Scholar 

  • Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B, Ladha JK (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    Article  PubMed  CAS  Google Scholar 

  • Habte M, Alexander M (1980) Nitrogen fixation by photosynthetic bacteria in lowland rice cultivar. Appl Environ Microbiol 39:342–347

    Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    PubMed  CAS  Google Scholar 

  • Hendrick RL, Pregitzer KS (1992) The demography of fine roots in a northern hardwood forest. Ecology 73:1094–1104

    Article  Google Scholar 

  • Hirano K, Hayatsu M, Nioh I, Nakai H (2001) Comparison of nitrogen-fixing bacterial flora of rice rhizosphere in the fields treated long-term with agrochemicals and non-agrochemicals. Microbes Environ 16:155–160

    Article  Google Scholar 

  • Horz H-P, Yimga MT, Liesack W (2001) Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Appl Environ Microbiol 67:4177–4185

    Article  PubMed  CAS  Google Scholar 

  • Hou AX, Chen GX, Wang ZP, Cleemput OV, Patrick WH Jr (2000) Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Sci Soc Am J 64:2180–2186

    Article  CAS  Google Scholar 

  • Hurek T, Handley L, Reinhold-Hurek B, Piche Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant Microbe Interact 15:233–242

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal P, Prasanna R, Nayak S, Sood A, Suseela MR (2008) Characterization of rhizo-cyanobacteria and their associations with wheat seedlings. Egypt J Biol 10:20–27

    Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197–209

    Article  Google Scholar 

  • James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PPM, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906

    Article  PubMed  CAS  Google Scholar 

  • Jena PK, Adhya TK, Rao VR (1990) Nitrogen-fixing bacterial populations as influenced by butachlor and thiobencarb in rice soils. Microbiol Res 145:457–460

    CAS  Google Scholar 

  • Kannaiyan S (1998) Nitrogen contribution by Azolla to rice crop. Proc Indian Natl Sci Acad Part B Biol Sci 59:309–314

    Google Scholar 

  • Kanungo PK, Panda D, Adhya TK, Ramakrishnan B, Rao VR (1997) Nitrogenase activity and nitrogen fixing bacteria associated with rhizosphere of rice cultivars with varying N absorption efficiency. J Sci Food Agric 73:485–488

    Article  CAS  Google Scholar 

  • Karthikeyan N, Prasanna R, Sood A, Jaiswal P, Nayak S, Kaushik BD (2009) Physiological characterization and electron microscopic investigations of cyanobacteria associated with wheat rhizosphere. Folia Microbiol 54:43–51

    Article  CAS  Google Scholar 

  • Kaushik BD, Prasanna R (1989) Status of biological nitrogen fixation by cyanobacteria and Azolla in India. In: Dadarwal KR, Yadav KS (eds) Biological nitrogen fixation research status in India: 1889–1989. Society of Plant Physiologists and Biochemists, New Delhi, pp 141–208

    Google Scholar 

  • Kimura M, Wada H, Takai Y (1979) The studies on the rhizosphere of paddy rice IV. The effects of anaerobiosis on microbes. Soil Sci Plant Nutr 25:145–153

    CAS  Google Scholar 

  • Knauth S, Hurch T, Brar D, Reinhold-Hurek B (2005) Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environ Microbiol 7:1725–1733

    Article  PubMed  CAS  Google Scholar 

  • Ladha JK (1986) Studies on nitrogen fixation by free-living and rice-plant associated bacteria in wetland rice field. Bionature 6:47–58

    Google Scholar 

  • Lakshmi Kumari M, Kavimandan SK, Subba Rao NS (1976) Occurrence of nitrogen-fixing Spirillum in roots of rice, sorghum, maize and other plants. Indian J Exp Biol 14:638–639

    Google Scholar 

  • Lawongsa P, Boonkerd N, Wongkaew S, O’Gara F, Teaumroong N (2008) Molecular and phenotypic characterization of potential plant growth promoting Pseudomonas from rice and maize rhizospheres. World J Microbiol Biotechnol 24:1877–1884

    Article  Google Scholar 

  • Lee KK, Watanabe I (1977) Problems of the acetylene reduction technique applied to water-saturated paddy soils. Appl Environ Microbiol 34:654–660

    PubMed  CAS  Google Scholar 

  • Liesack W, Schnell S, Revsbech NP (2000) Microbiology of flooded rice paddies. FEMS Microbiol Rev 24:625–645

    Article  PubMed  CAS  Google Scholar 

  • Lim J-M, Jeon CO, Lee GS, Park D-J, Kang U-G, Park C-Y, Kim C-J (2007) Leeia oryzae gen. nov., sp. nov., isolated from a rice field in Korea. Int J Syst Evol Microbiol 57:1204–1208

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Rosencrantz D, Liesack W, Conrad R (2006) Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ Microbiol 8:1351–1360

    Article  PubMed  CAS  Google Scholar 

  • Manjunath M, et al. Biocontrol potential of cyanobacterial metabolites against damping off disease caused by Pythium aphanidermatum in solanaceous vegetables. Arch Phytopathol Plant Protect (in press).

    Google Scholar 

  • Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 22:175–185

    Article  Google Scholar 

  • Mano H, Tanaka F, Nakamura C, Kaga H, Morisaki H (2007) Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ 22:175–185

    Article  Google Scholar 

  • Mirza MS, Rasul G, Mehnaz S, Ladha JK, So RB, Ali S, Malik KA (2000) Beneficial effects of inoculated nitrogen-fixing bacteria on rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, Makati City, Philippines, pp 191–204

    Google Scholar 

  • Mishra S, Rath AK, Adhya TK, Rao VR, Sethunathan N (1997) Effect of continuous and alternate water regimes on methane efflux from rice under greenhouse conditions. Biol Fertil Soils 24:399–405

    Article  CAS  Google Scholar 

  • Misra S, Kaushik BD (1989) Growth promoting substances of cyanobacteria. I. Vitamins and their influence on rice plant. Proc Indian Sci Acad B55:295–300

    Google Scholar 

  • Mukhopadhyay K, Garrison NK, Hinton DM, Bacon CW, Khush GS, Peck HD, Datta N (1996) Identification and characterization of bacterial endophytes of rice. Mycopathologia 134:151–159

    Article  PubMed  CAS  Google Scholar 

  • Murase J, Noll M, Frenzel P (2006) Impact of protists on the activity and structure of the bacterial community in a rice field soil. Appl Environ Microbiol 72:5436–5444

    Article  PubMed  CAS  Google Scholar 

  • Nakaji T, Noguchi K, Oguma H (2008) Classification of rhizosphere components using visible–near infrared spectral images. Plant Soil 310:245–261

    Article  CAS  Google Scholar 

  • Nayak S, Prasanna R (2007) Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Appl Ecol Environ Res 5:103–113

    Google Scholar 

  • Nayak S, Prasanna R, Dominic TK, Singh PK (2001) Floristic abundance and relative distribution of different cyanobacterial genera in rice field soil at different crop growth stages. Phykos 40:14–21

    Google Scholar 

  • Nayak S, Prasanna R, Pabby A, Dominic TK, Singh PK (2004) Effect of BGA–Azolla biofertilizers on nitrogen fixation and chlorophyll accumulation at different depths in soil cores. Biol Fertil Soils 40:67–72

    Article  CAS  Google Scholar 

  • Nayak S, Prasanna R, Prasanna BM, Sahoo DB (2008) Genotypic and phenotypic diversity of Anabaena isolates from diverse rice agroecologies of India. J Basic Microbiol 49:165–177

    Article  CAS  Google Scholar 

  • Noll M, Frenzel P, Conrad R (2008) Selective stimulation of type I methanotrophs in rice paddy soil by urea fertilization revealed by RNA-based stable isotope probing. FEMS Microbiol Ecol 65:125–132

    Article  PubMed  CAS  Google Scholar 

  • Pabby A, Prasanna R, Singh PK (2004) Biological significance of Azolla and its utilization in agriculture. Proc India Natl Sci Acad Sect B 70:301–335

    Google Scholar 

  • Piao Z et al (2005) Changes in acetylene reduction activities and effects of inoculated rhizosphere nitrogen fixing bacteria on rice. Biol Fertil Soils 41:371–378

    Article  CAS  Google Scholar 

  • Ponnamperuma FN, Detruck P (1993) A review of fertilization in rice production. Int Rice Commun News 42:1–12

    Google Scholar 

  • Prasanna R, Nayak S (2007) Influence of diverse rice soil ecologies on cyanobacterial diversity and abundance. Wetlands Ecol Manag 15:127–134

    Article  Google Scholar 

  • Prasanna R et al (2002) Methane production in rice soils is inhibited by cyanobacteria. Microbiol Res 157:1–6

    Article  PubMed  Google Scholar 

  • Prasanna R, Tripathi U, Dominic TK, Singh AK, Yadav AK, Singh PK (2003) An improvised technique for measurement of nitrogen fixation by blue green algae and Azolla using intact soil cores. Expl Agric 39:145–150

    Article  CAS  Google Scholar 

  • Prasanna R, Saxena AK, Jaiswal P, Nayak S (2006) Development of alternative support system for viable count of cyanobacteria by MPN method. Folia Microbiol 51:455–458

    Article  CAS  Google Scholar 

  • Prasanna R, Jaiswal P and Kaushik BD (2008a) Cyanobacteria as potential options for environmental sustainability – promises and challenges. Indian J Microbiol 48:89–94

    Article  CAS  Google Scholar 

  • Prasanna R, Lata, Tripathi RM, Gupta V, Middha S, Joshi M, Ancha R and Kaushik BD (2008b) Evaluation of fungicidal activity of extracellular filtrates of cyanobacteria - possible role of hydrolytic enzymes. J Basic Microbiol 48:186–194

    Article  PubMed  CAS  Google Scholar 

  • Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik B D (2009) Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 49:89–97

    Google Scholar 

  • Quesada A, Leganis F, Valiente EF (1997) Environmental factors controlling N2 fixation in Mediterranean rice fields. Microb Ecol 34:39–48

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishna C, Sethunathan N (1982) Stimulation of autotrophic ammonium oxidation in rice rhizosphere soil by the insecticide carbofuran. Appl Environ Microbiol 44:1–4

    PubMed  CAS  Google Scholar 

  • Rangarajan S, Saleena LM, Nair S (2002) Diversity of Pseudomonas spp. isolated from rice rhizosphere populations grown along a salinity gradient. Microb Ecol 43:280–289

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W, Mascarina G, Padre B, Doll J (1997) Microbial communities of continuously cropped, irrigated rice fields. Appl Environ Microbiol 63:233–238

    PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    Article  PubMed  CAS  Google Scholar 

  • Roger PA (1986) Effect of algae and aquatic macrophytes on nitrogen dynamics in wetland rice fields. Conference of International Soil Science Society, Hamburg, Germany, pp 13–21

    Google Scholar 

  • Sahrawat KL (2000) Macro and micronutrients removed by upland and lowland rice cultivars in West Africa. Commun Soil Sci Plant Anal 31:717–723

    Article  CAS  Google Scholar 

  • Sano Y, Fujii T, Iyama S, Hirota Y, Komagata K (1981) Nitrogen fixation in the rhizosphere of cultivated and wild rice strains. Crop Sci 21:758–761

    Article  CAS  Google Scholar 

  • Sakai S, Imachi H, Sekiguchi Y, Ohashi A, Harada H, Kamagata Y (2007) Isolation of key methanogens for global methane emission from rice paddy fields: a novel isolate affiliated with the clone cluster rice cluster I. Appl Environ Microbiol 73:4326–4331

    Article  PubMed  CAS  Google Scholar 

  • Satpathy SN, Rath AK, Ramakrishnan B, Rao VR, Adhya TK, Sethunathan N (1997) Diurnal variation in methane efflux at different growth stages of tropical rice. Plant Soil 195:267–271

    Article  CAS  Google Scholar 

  • Schwarz MVJ, Frenzel P (2005) Methanogenic symbionts of anaerobic ciliates and their contribution to methanogenesis in an anoxic rice field soil. FEMS Microbiol Ecol 52:93–99

    Article  PubMed  CAS  Google Scholar 

  • Sethunathan N, Rao VR, Adhya TK, Raghu K (1982) Microbiology of rice soils. CRC Crit Rev Microbiol 10:125–172

    Article  Google Scholar 

  • Shrestha RK, Ladha JK (1996) Genotypic variation in promotion of rice dinitrogen fixation as determined by 15N dilution. Soil Sci Soc Am J 60:1815–1821

    Article  CAS  Google Scholar 

  • Singh PK, Bisoyi RN (1989) Blue green algae in rice fields. Phykos 28:181–195

    Google Scholar 

  • Stoltzfus JR, So R, Malarvizhi PP, Ladha JK, De Bruijn FJ (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36

    Article  CAS  Google Scholar 

  • Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2007) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424

    Article  PubMed  CAS  Google Scholar 

  • Tan Z, Hurek T, Vinuesa P, Müller P, Ladha JK, Reinhold-Hurek B (2001) Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S–23S ribosomal DNA intergenic spacer-targeted PCR. Appl Environ Microbiol 67:3655–3664

    Article  PubMed  CAS  Google Scholar 

  • Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Thakuria D, Talukdar NC, Goswami C, Hazarika S, Boro RC, Khan MR (2004) Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr Sci 86:978–985

    Google Scholar 

  • Tiller KG (1981) Micronutrients. Soils: an Australian viewpoint. CSIRO, Melbourne

    Google Scholar 

  • Tripathi BP, Ladha JK, Timsina J, Pascua SR (1997) Nitrogen dynamics and balance in intensified rainfed lowland rice-based cropping systems. Soil Sci Soc Am J 61:812–821

    Article  CAS  Google Scholar 

  • Trolldenier G (1987) Estimation of association nitrogen fixation in relation to water regime and plant nutrition in a long term pot experiment with rice (Oryza sativa L.). Biol Fertil Soils 5:133–140

    Article  Google Scholar 

  • Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol 177:1414–1417

    PubMed  CAS  Google Scholar 

  • Van Nieuwenhove C, Merck R, Van Holm L, Ulassak K (2001) Dinitrogen fixation activity of Azorhizobium caulinodans in the rice (Oryza sativa L.) rhizosphere assessed by nitrogen balance and N15 dilution method. Biol Fertil Soils 33:25–32

    Article  Google Scholar 

  • Van Tran V, Berge O, Ngo Ke S, Balandreau J, Heulin T (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield component in low fertility sulphate acid soils of Vietnam. Plant Soil 218:273–284

    Article  Google Scholar 

  • Venkataraman GS (1972) Algal biofertilizers and rice cultivation. Today and Tomorrow Publishers, Delhi

    Google Scholar 

  • Verma SC, Singh A, Chawdhury SP, Tripathi AK (2004) Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Lett 26:425–429

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ke X, Wu L, Lu Y (2009) Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization. Syst Appl Microbiol 32:27–36

    Article  PubMed  CAS  Google Scholar 

  • Watanabe I, De Datta SK, Roger PA (1988) Nitrogen cycling in wetland rice soil. In: Wilson JR (ed) Advances in nitrogen cycling in agricultural ecosystems. CAB International, Wallingford, pp 239–256

    Google Scholar 

  • Watt M, Silk WK, Paassioura JB (2006) Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. Ann Bot 97:839–855

    Article  PubMed  Google Scholar 

  • Whitton BA, Aziz A, Kawecka B, Rother JA (1988) Ecology of deep water rice fields in Bangladesh 3. Associated algae and macrophytes. Hydrobiologia 169:31–42

    Article  Google Scholar 

  • Xie HG, Cai MY, Tao GC, Steinbergan Y (2003) Cultivable heterotrophic N2-fixing bacterial diversity in rice fields in the Yangtze river plain. Biol Fertil Soils 37:29–38

    CAS  Google Scholar 

  • Yan Y et al (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri. Proc Natl Acad Sci USA 105:7564–7569

    Article  PubMed  Google Scholar 

  • Yanni YG, El-Fattah FKA (1999) Towards integrated biofertilization management with free living and associative dinitrogen fixers for enhancing rice performance in the Nile delta. Symbiosis 27:319–331

    Google Scholar 

  • Yanni YG et al (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Yoshida S, Ahn JS, Furno DA (1973) Occurrence, diagnosis and correction of zinc deficiency of lowland rice. Soil Sci Plant Nutr 101:83–89

    Google Scholar 

  • Zeigler R, Barclay A (2008) The relevance of rice. Rice 1:3–10

    Article  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge with gratitude the authorities of the Indian Agricultural Research Institute, New Delhi and Indian Council of Agricultural Research (ICAR), New Delhi for providing through various projects [AP Cess Fund, Network Project on Micro-organisms (AMAAS) and All India Coordinated Research Project on Biofertilizers (AINPB)] the funding and facilities necessary for undertaking the research activities described as part of this compilation. We also wish to thank our students/project staffs who have provided their research inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Prasanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prasanna, R., Nain, L., Pandey, A.K., Nayak, S. (2010). Exploring the Ecological Significance of Microbial Diversity and Networking in the Rice Ecosystem. In: Dion, P. (eds) Soil Biology and Agriculture in the Tropics. Soil Biology, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05076-3_7

Download citation

Publish with us

Policies and ethics