Skip to main content

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 8))

Abstract

Electric field sensitive dyes allow electrical events in biological membranes to be detected optically by converting changes in electric field strength into a fluorescence or UV absorbance response. Their response mechanisms to a change in electric field can involve movement of the dye as a whole (either across or within the membrane) or the movement of the dye’s electrons, with the mechanism followed by a particular dye depending on its molecular structure. The response times can vary from nanoseconds (for electron movement) to seconds (for dye movement across the entire membrane). Applications of the dyes include the quantification of plasma membrane potential, the surface potential, and the intramembrane dipole potential, as well as following the kinetic activity of electrogenic ion pumps, such as the Na+,K+-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross WN, Salzberg BM, Cohen LB et al (1977) Changes in absorption, fluorescence, dichroism and birefringence in stained giant axons: optical measurement of membrane potential. J Membr Biol 33:141–183

    Article  CAS  Google Scholar 

  2. Zochowski M, Wachowiak M, Falk CX et al (2000) Imaging membrane potential with voltage-sensitive dyes. Biol Bull 198:1–21

    Article  CAS  Google Scholar 

  3. Waggoner A (1976) Optical probes of membrane potential. J Membr Biol 27:317–334

    Article  CAS  Google Scholar 

  4. Waggoner AS (1979) Dye indicators of membrane potential. Ann Rev Biophys Bioeng 8:47–68

    Article  CAS  Google Scholar 

  5. Waggoner AS (1985) Dye probes of cell, organelle, and vesicle membrane potentials. In: Martonosi AN (ed) The enzymes of biological membranes, 2nd edn. Plenum, New York

    Google Scholar 

  6. Grinvald A, Frostig RD, Lieke E et al (1988) Optical imaging of neuronal activity. Physiol Rev 68:1285–1366

    CAS  Google Scholar 

  7. Loew LM (1988) How to choose a potentiometric membrane probe. In: Loew LM (ed) Spectroscopic membrane probes, vol 2. CRC Press, Boca Raton, FL

    Google Scholar 

  8. Loew LM (1994) Characterization of potentiometric membrane dyes. In: Blank M, Vodyanoy I (eds) Biomembrane electrochemistry. Washington DC, American Chemical Society

    Google Scholar 

  9. Fromherz P, Dambacher KH, Ephardt H et al (1991) Fluorescent dyes as probes of voltage transients in neuron membranes: progress report. Ber Bunsenges Phys Chem 95:1333–1345

    Article  CAS  Google Scholar 

  10. Kuhn B, Fromherz P (2003) Anellated hemicyanine dyes in a neuron membrane: molecular Stark effect and optical voltage recording. J Phys Chem B 107:7093–7913

    Article  Google Scholar 

  11. Klymchenko AS, Stoeckel H, Takeda K et al (2006) Fluorescent probe based on intramolecular proton transfer for fast ratiometric measurement of cellular transmembrane potential. J Phys Chem B 110:13624–13632

    Article  CAS  Google Scholar 

  12. Demchenko AP, Mély Y, Duportail G et al (2009) Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys J 96:3461–3470

    Article  CAS  Google Scholar 

  13. Klymchenko AS, Demchenko AP (2002) Electrochromic modulation of excited-state intramolecular proton transfer: the new principle in design of fluorescence sensors. J Am Chem Soc 124:12372–12379

    Article  CAS  Google Scholar 

  14. Klymchenko AS, Duportail G, Mély Y et al (2003) Ultrasensitive two-colour fluorescence probes for dipole potential in phospholipid membranes. PNAS 100:11219–11224

    Article  CAS  Google Scholar 

  15. Shynkar VV, Klymchenko AS, Duportial G et al (2005) Two-colour fluorescent probes for imaging the dipole potential of cell plasma membranes. Biochim Biophys Acta Biomem 1712:128–136

    Article  CAS  Google Scholar 

  16. Bullen A, Saggau P (1999) High-speed, random-access fluorescence microscopy: II. Fast quantitative measurement with voltage-sensitive dyes. Biophys J 76:2272–2287

    Article  CAS  Google Scholar 

  17. Vitha MF, Clarke RJ (2007) Comparison of excitation and emission ratiometric fluorescence methods for quantifying the membrane dipole potential. Biochim Biophys Acta Biomem 1768:107–114

    Article  CAS  Google Scholar 

  18. Amoroso S, Agon VV, Starke-Peterkovic T et al (2006) Photochemical behaviour and Na+, K+-ATPase sensitivity of voltage-sensitive styrylpyridinium fluorescent membrane probes. Photochem Photobiol 82:495–502

    Article  CAS  Google Scholar 

  19. Pham THN, Clarke RJ (2008) Solvent dependence of the photochemistry of the styrylpyridinium dye RH421. J Phys Chem B 112:6513–6520

    Article  CAS  Google Scholar 

  20. Davila J, Harriman A, Gulliya KS (1991) Photochemistry of merocyanine 540: The mechanism of chemotherapeutic activity with cyanine dyes. Photochem Photobiol 53:1–11

    Article  CAS  Google Scholar 

  21. Pervaiz S, Hirpara JL, Clément M-V (1998) Caspase proteases mediate apoptosis induced by anticancer preactivated MC540 in human tumor lines. Cancer Lett 128:11–22

    Article  CAS  Google Scholar 

  22. Nowak-Sliwinska P, Karocki A, Elas M, Pawlak A, Stochel G, Urbanska K (2006) Verteporfin, photofrin II, and merocyanine 540 as PDT photosensitizers against melanoma cells. Biochem Biophys Res Commun 349:549–555

    Article  CAS  Google Scholar 

  23. Clarke RJ (2001) The dipole potential of phospholipid membranes and methods for its detection. Adv Colloid Interfac Sci 89–90:263–281

    Article  Google Scholar 

  24. Clarke RJ (1997) Effect of lipid structure on the dipole potential of phosphatidylcholine bilayers. Biochim Biophys Acta 1327:269–278

    Article  CAS  Google Scholar 

  25. Starke-Peterkovic T, Clarke RJ (2009) Effect of headgroup on the dipole potential of phospholipid vesicles. Eur Biophys J 39:103–110

    Article  CAS  Google Scholar 

  26. Starke-Peterkovic T, Turner N, Vitha MF et al (2006) Cholesterol effect on the dipole potential of lipid membranes. Biophys J 90:4060–4070

    Article  CAS  Google Scholar 

  27. Clarke RJ, Lüpfert C (1999) Influence of anions and cations on the dipole potential of phosphatidylcholine vesicles: a basis for the Hofmeister effect. Biophys J 76:2614–2624

    Article  CAS  Google Scholar 

  28. Kane DJ, Fendler K, Grell E et al (1997) Stopped-flow kinetic investigations of conformational changes of pig kidney Na+,K+-ATPase. Biochemistry 36:13406–13420

    Article  CAS  Google Scholar 

  29. Clarke RJ, Apell H-J, Kong BY (2007) Allosteric effect of ATP on Na+,K+-ATPase conformational kinetics. Biochemistry 46:7034–7044

    Article  CAS  Google Scholar 

  30. Clarke RJ, Kane DJ (2007) Two gears of pumping by the sodium pump. Biophys J 93:4187–4196

    Article  CAS  Google Scholar 

  31. Callis PR (2010) Electrochromism and solvatochromism in fluorescence response of organic dyes: a nanoscopic view. In: Demchenko AP (ed) Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Ser Fluoresc 8:309–330

    Google Scholar 

  32. Demchenko AP (2010) The concept of lambda-ratiometry in fluorescence sensing and imaging. J Fluoresc DOI 10.1007/s10895-010-0644-y

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald J. Clarke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clarke, R.J. (2010). Electric Field Sensitive Dyes. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology I. Springer Series on Fluorescence, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04702-2_10

Download citation

Publish with us

Policies and ethics