Skip to main content

Collective Effects Influencing Fluorescence Emission

  • Chapter
  • First Online:
Advanced Fluorescence Reporters in Chemistry and Biology II

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 9))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valeur B (2002) Molecular fluorescence. Wiley VCH, Weinheim

    Google Scholar 

  2. Demchenko AP (2009) Introduction to fluorescence sensing. Springer, Amsterdam

    Book  Google Scholar 

  3. Resch-Genger U, Grabolle M, Nitschke R, Nann T, Resch-Genger U, Grabolle M, Nitschke R, Nann T (2010) Nanocrystals and nanoparticles vs. molecular fluorescent labels as reporters for bioanalysis and the life sciences. A critical comparison. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. II. Springer Ser Fluoresc 9:3–40

    Google Scholar 

  4. Patsenker LD, Tatarets AL, Terpetschnig EA (2010) Long-wavelength probes and labels based on cyanines and squaraines. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. I. Springer Ser Fluoresc 8:65–104

    Google Scholar 

  5. Przhonska OV, Scott Webster S, Padilha LA, Hu H, Kachkovski AD, Hagan DJ, Stryland EW V (2010) Two-photon absorption in near-IR conjugated molecules: design strategy and structure–property relations. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. I. Springer Ser Fluoresc 8:105–147

    Google Scholar 

  6. Kim E, Park SB (2010) Discovery of New Fluorescent Dyes: targeted Syn-thesis or combinatorial approach? In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. I. Springer Ser Fluoresc 8:149–186

    Google Scholar 

  7. Borisov SM, Mayr T, Mistlberger G, Klimant I (2010) Dye-doped polymeric particles for sensing and imaging. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. II. Springer Ser Fluoresc 9:193–228

    Google Scholar 

  8. Liang S, John CL, Xu S, Chen J, Jin Y, Yuan Q, Tan W, Zhao JX (2010) Silica-based nanoparticles: design and properties. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. II. Springer Ser Fluoresc 9:229–251

    Google Scholar 

  9. Yao H (2010) Prospects for organic dye nanoparticles. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. II. Springer Ser Fluoresc 9:285–303

    Google Scholar 

  10. Suppan P, Ghoneim N (1997) Solvatochromism. Royal Society of Chemistry, Cambridge

    Google Scholar 

  11. Bakhshiev NG (1972) Spectroscopy of intermolecular interactions. Nauka, Leningrad

    Google Scholar 

  12. Mataga N, Kubota T (1970) Molecular interactions and electronic spectra. Marcel Dekker, New York

    Google Scholar 

  13. Tomin VI (2010) Physical principles behind spectroscopic response of organic fluorophores to intermolecular interactions. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. I. Springer Ser Fluoresc 8:189–223

    Google Scholar 

  14. Liptay W (1969) Electrochromism and solvatochromism. Angew Chem Int Ed 8:177–188

    Article  CAS  Google Scholar 

  15. Callis PR (2010) Electrochromism and solvatochromism in fluorescence response of organic dyes. A nanoscopic view. In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. I. Springer Ser Fluoresc 8:309–330

    Google Scholar 

  16. Maroncelli M, Macinnis J, Fleming GR (1989) Polar solvent dynamics and electron-transfer reactions. Science 243:1674–1681

    Article  CAS  Google Scholar 

  17. Hsieh C-C, Ho M-L, Chou P-T (2010) Organic dyes with excited-state transforma-tions (electron, charge and proton transfers). In: Demchenko AP (ed) Advanced fluorescence reporters in chemistry and biology. I. Springer Ser Fluoresc 8:225–266

    Google Scholar 

  18. Wang S-L, Lee T-C, Ho T-I (2002) Excited state proton transfer and steric effect on the hydrogen bonding interaction of the styrylquinoline system. J Photochem Photobiol A Chem 151:21–26

    Article  CAS  Google Scholar 

  19. Druzhinin SI, Kovalenko SA, Senyushkina TA, Demeter A, Januskevicius R, Mayer P, Stalke D, Machinek R, Zachariasse KA (2009) Intramolecular charge transfer with 4-fluorofluorazene and the flexible 4-fluoro-N-phenylpyrrole. J Phys Chem A 113:9304–20

    Article  CAS  Google Scholar 

  20. Jozefowicz M, Heldt JR (2003) Preferential solvation of fluorenone and 4-hydroxyfluorenone in binary solvent mixtures. Chem Phys 294:105–116

    Article  CAS  Google Scholar 

  21. Pivovarenko VG, Klueva AV, Doroshenko AO, Demchenko AP (2000) Bands separation in fluorescence spectra of ketocyanine dyes: evidence for their complex formation with monohydric alcohols. Chem Phys Lett 325:389–398

    Article  CAS  Google Scholar 

  22. Shynkar VV, Klymchenko AS, Piemont E, Demchenko AP, Mely Y (2004) Dynamics of intermolecular hydrogen bonds in the excited states of 4′-dialkylamino-3-hydroxyflavones. On the pathway to an ideal fluorescent hydrogen bonding sensor. J Phys Chem A 108:8151–8159

    Article  CAS  Google Scholar 

  23. Balter A, Nowak W, Pawelkiewicz W, Kowalczyk A (1988) Some remarks on the interpretation of the spectral properties of prodan. Chem Phys Lett 143:565–570

    Article  CAS  Google Scholar 

  24. Catalan J, Perez P, Laynez J, Garcia-Blanco F (1991) Analysis of the solvent effect on the photophysics properties of 6-propionyl-2-(dimethylamino)naphthalene (PRODAN). J Fluoresc 4:215–223

    Article  Google Scholar 

  25. Moyano F, Biasutti MA, Silber JJ, Correa NM (2006) New insights on the behavior of PRODAN in homogeneous media and in large unilamellar vesicles. J Phys Chem B 110:11838–11846

    Article  CAS  Google Scholar 

  26. Yuan MS, Liu ZQ, Fang Q (2007) Donor-and-acceptor substituted truxenes as multifunctional fluorescent probes. J Org Chem 72:7915–22

    Article  CAS  Google Scholar 

  27. Yang CJ, Jockusch S, Vicens M, Turro NJ, Tan W (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc Natl Acad Sci USA 102:17278–83

    Article  CAS  Google Scholar 

  28. Kadirvel M, Arsic B, Freeman S, Bichenkova EV (2008) Exciplex and excimer molecular probes: detection of conformational flip in a myo-inositol chair. Org Biomol Chem 6:1966–72

    Article  CAS  Google Scholar 

  29. Deepak VD, Asha SK (2009) Photophysical investigation into the self-organization in pyrene-based urethane methacrylate comb polymer. J Phys Chem B 113:11887–97

    Article  CAS  Google Scholar 

  30. Taniguchi T, Takeuchi N, Kobaru S, Nakahira T (2008) Preparation of highly monodisperse fluorescent polymer particles by miniemulsion polymerization of styrene with a polymerizable surfactant. J Colloid Interface Sci 327:58–62

    Article  CAS  Google Scholar 

  31. Búcsiová L, HrdloviI P, Chmela S (2001) Spectral characteristics of fluorescence probes based on pyrene in solution and in polymer matrix. J Photochem Photobiol A Chem 143:59–68

    Article  Google Scholar 

  32. Kim Y, Bouffard J, Kooi SE, Swager TM (2005) Highly emissive conjugated polymer excimers. J Am Chem Soc 127:13726–31

    Article  CAS  Google Scholar 

  33. Bhattacharyya K, Chowdhury M (1993) Environmental and magnetic field effects on exciplex and twisted charge transfer emission. Chem Rev 93:507–535

    Article  CAS  Google Scholar 

  34. Bichenkova EV, Gbaj A, Walsh L, Savage HE, Rogert C, Sardarian AR, Etchells LL, Douglas KT (2007) Detection of nucleic acids in situ: novel oligonucleotide analogues for target-assembled DNA-mounted exciplexes. Org Biomol Chem 5:1039–51

    Article  CAS  Google Scholar 

  35. Kasha M, Kasha M (1991) Energy transfer, charge transfer, and proton transfer in molecular composite systems. Basic Life Sci 58:231–251, discussion 251–255

    CAS  Google Scholar 

  36. Madjet Mel A, Muh F, Renger T (2009) Deciphering the influence of short-range electronic couplings on optical properties of molecular dimers: application to “special pairs” in photosynthesis. J Phys Chem B 113:12603–14

    Article  CAS  Google Scholar 

  37. Ishizaki A, Fleming GR (2009) Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J Chem Phys 130:234111

    Article  CAS  Google Scholar 

  38. Saini S, Srinivas G, Bagchi B (2009) Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles. J Phys Chem B 113:1817–32

    Article  CAS  Google Scholar 

  39. Clapp AR, Medintz IL, Mattoussi H (2006) Forster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem 7:47–57

    Article  CAS  Google Scholar 

  40. Nemkovich NA, Rubinov AN, Tomin VI (1991) Inhomogeneous broadening of electronic spectra of dye molecules in solutions. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy. Plenum, New York, pp 367–428

    Google Scholar 

  41. Demchenko AP, Sytnik AI (1991) Site-selectivity in excited-state reactions in solutions. J Phys Chem 95:10518–10524

    Article  CAS  Google Scholar 

  42. Vincent M, Gallay J, Demchenko AP (1995) Solvent relaxation around the excited-state of indole – analysis of fluorescence lifetime distributions and time-dependence spectral shifts. J Phys Chem 99:14931–14941

    Article  CAS  Google Scholar 

  43. Nemkovich NA, Rubinov AN, Tomin VI (1981) Kinetics of luminescence spectra of rigid dye solutions due to directed electronic-energy transfer. J Lumin 23:349–361

    Article  CAS  Google Scholar 

  44. Demchenko AP (2008) Site-selective red-edge effects. Chapter 4. Methods in enzymology. Academic, New York, pp 59–78

    Google Scholar 

  45. Demchenko AP (2002) The red-edge effects: 30 years of exploration. Luminescence 17:19–42

    Article  CAS  Google Scholar 

  46. Chattopadhyay A, Mukherjee S, Raghuraman H (2002) Reverse micellar organization and dynamics: a wavelength-selective fluorescence approach. J Phys Chem B 106:13002–13009

    Article  CAS  Google Scholar 

  47. Demchenko AP (1986) Ultraviolet spectroscopy of proteins. Springer Verlag, Berlin, Heidelberg, New York

    Book  Google Scholar 

  48. Haldar S, Chattopadhyay A (2007) Dipolar relaxation within the protein matrix of the green fluorescent protein: a red-edge excitation shift study. J Phys Chem B 111:14436–9

    Article  CAS  Google Scholar 

  49. Barja BC, Chesta C, Atvars TD, Aramendia PF (2005) Relaxations in poly(vinyl alcohol) and in poly(vinyl acetate) detected by fluorescence emission of 4-aminophthalimide and prodan. J Phys Chem B 109:16180–7

    Article  CAS  Google Scholar 

  50. Dias FB, King S, Monkman AP, Perepichka II, Kryuchkov MA, Perepichka IF, Bryce MR (2008) Dipolar stabilization of emissive singlet charge transfer excited states in polyfluorene copolymers. J Phys Chem B 112:6557–66

    Article  CAS  Google Scholar 

  51. Irimpan L, Krishnan B, Deepthy A, Nampoori VPN, Radhakrishnan P (2007) Excitation wavelength dependent fluorescence behaviour of nano colloids of ZnO. J Phys D Appl Phys 40:5670–5674

    Article  CAS  Google Scholar 

  52. Johansson MK, Cook RM (2003) Intramolecular dimers: a new design strategy for fluorescence-quenched probes. Chemistry 9:3466–3471

    Article  CAS  Google Scholar 

  53. Runnels LW, Scarlata SF (1995) Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys J 69:1569–83

    Article  CAS  Google Scholar 

  54. Varnavski OP, Ostrowski JC, Sukhomlinova L, Twieg RJ, Bazan GC, Goodson T (2002) Coherent effects in energy transport in model dendritic structures investigated by ultrafast fluorescence anisotropy spectroscopy. J Am Chem Soc 124:1736–1743

    Article  CAS  Google Scholar 

  55. Serin JM, Brousmiche DW, Frechet JMJ (2002) Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. Chem Commun 21:2605–2607

    Article  CAS  Google Scholar 

  56. Haustein E, Jahnz M, Schwille P (2003) Triple FRET: a tool for studying long-range molecular interactions. Chemphyschem 4:745–8

    Article  CAS  Google Scholar 

  57. Ziessel R, Goze C, Ulrich G, Cesario M, Retailleau P, Harriman A, Rostron JP (2005) Intramolecular energy transfer in pyrene-bodipy molecular dyads and triads. Chemistry 11:7366–78

    Article  CAS  Google Scholar 

  58. Harriman A, Mallon L, Ziessel R (2008) Energy flow in a purpose-built cascade molecule bearing three distinct chromophores attached to the terminal acceptor. Chemistry 14:11461–73

    Article  CAS  Google Scholar 

  59. Gao J, Strassler C, Tahmassebi D, Kool ET (2002) Libraries of composite polyfluors built from fluorescent deoxyribosides. J Am Chem Soc 124:11590–1

    Article  CAS  Google Scholar 

  60. Huang B, Wu HK, Bhaya D, Grossman A, Granier S, Kobilka BK, Zare RN (2007) Counting low-copy number proteins in a single cell. Science 315:81–84

    Article  CAS  Google Scholar 

  61. Szollosi J, Damjanovich S, Matyus L (1998) Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research. Cytometry 34:159–79

    Article  CAS  Google Scholar 

  62. Wang S, Gaylord BS, Bazan GC (2004) Fluorescein provides a resonance gate for FRET from conjugated polymers to DNA intercalated dyes. J Am Chem Soc 126:5446–51

    Article  CAS  Google Scholar 

  63. Aneja A, Mathur N, Bhatnagar PK, Mathur PC (2008) Triple-FRET technique for energy transfer between conjugated polymer and TAMRA dye with possible applications in medical diagnostics. J Biol Phys 34:487–93

    Article  CAS  Google Scholar 

  64. Chen CH, Liu KY, Sudhakar S, Lim TS, Fann W, Hsu CP, Luh TY (2005) Efficient light harvesting and energy transfer in organic–inorganic hybrid multichromophoric materials. J Phys Chem B 109:17887–91

    Article  CAS  Google Scholar 

  65. Frigoli M, Ouadahi K, Larpent C (2009) A cascade FRET-mediated ratiometric sensor for Cu2+ ions based on dual fluorescent ligand-coated polymer nanoparticles. Chemistry 15:8319–30

    Article  CAS  Google Scholar 

  66. Forde TS, Hanley QS (2005) Following FRET through five energy transfer steps: spectroscopic photobleaching, recovery of spectra, and a sequential mechanism of FRET. Photochem Photobiol Sci 4:609–616

    Article  CAS  Google Scholar 

  67. May V (2009) Beyond the Forster theory of excitation energy transfer: importance of higher-order processes in supramolecular antenna systems. Dalton Trans 45:10086–105

    Article  CAS  Google Scholar 

  68. Beljonne D, Curutchet C, Scholes GD, Silbey RJ (2009) Beyond Forster resonance energy transfer in biological and nanoscale systems. J Phys Chem B 113:6583–99

    Article  CAS  Google Scholar 

  69. Jameson DM, Croney JC (2003) Fluorescence polarization: past, present and future. Comb Chem High Throughput Screen 6:167–73

    Article  CAS  Google Scholar 

  70. Hildebrandt N, Charbonniere LJ, Lohmannsroben HG (2007) Time-resolved analysis of a highly sensitive Forster resonance energy transfer immunoassay using terbium complexes as donors and quantum dots as acceptors. J Biomed Biotechnol 2007:79169

    Article  CAS  Google Scholar 

  71. Charbonniere LJ, Hildebrandt N, Ziessel RF, Lohmannsroben HG (2006) Lanthanides to quantum dots resonance energy transfer in time-resolved fluoro-immunoassays and luminescence microscopy. J Am Chem Soc 128:12800–9

    Article  CAS  Google Scholar 

  72. Morrison LE (1988) Time-resolved detection of energy transfer: theory and application to immunoassays. Anal Biochem 174:101–20

    Article  CAS  Google Scholar 

  73. Algar WR, Krull UJ (2008) Quantum dots as donors in fluorescence resonance energy transfer for the bioanalysis of nucleic acids, proteins, and other biological molecules. Anal Bioanal Chem 391:1609–18

    Article  CAS  Google Scholar 

  74. Medintz IL, Mattoussi H (2009) Quantum dot-based resonance energy transfer and its growing application in biology. Phys Chem Chem Phys 11:17–45

    Article  CAS  Google Scholar 

  75. Thomas SW 3rd, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–86

    Article  CAS  Google Scholar 

  76. Kikuchi K, Takakusa H, Nagano T (2004) Recent advances in the design of small molecule-based FRET sensors for cell biology. Trends Analyt Chem 23:407–415

    Article  CAS  Google Scholar 

  77. Lakowicz JR (2005) Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal Biochem 337:171–94

    Article  CAS  Google Scholar 

  78. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16:55–62

    Article  CAS  Google Scholar 

  79. Gryczynski I, Malicka J, Jiang W, Fischer H, Chan WCW, Gryczynski Z, Grudzinski W, Lakowicz JR (2005) Surface-plasmon-coupled emission of quantum dots. J Phys Chem B 109:1088–1093

    Article  CAS  Google Scholar 

  80. Lee SY, Nakaya K, Hayashi T, Hara M (2009) Quantitative study of the gold-enhanced fluorescence of CdSe/ZnS nanocrystals as a function of distance using an AFM probe. Phys Chem Chem Phys 11:4403–9

    Article  CAS  Google Scholar 

  81. Park HJ, Vak D, Noh YY, Lim B, Kim DY (2007) Surface plasmon enhanced photoluminescence of conjugated polymers. Appl Phys Lett 90:161107

    Article  CAS  Google Scholar 

  82. Zhang YX, Aslan K, Previte MJR, Malyn SN, Geddes CD (2006) Metal-enhanced phosphorescence: Interpretation in terms of triplet-coupled radiating plasmons. J Phys Chem B 110:25108–25114

    Article  CAS  Google Scholar 

  83. Giorgetti E, Cicchi S, Muniz-Miranda M, Margheri G, Del Rosso T, Giusti A, Rindi A, Ghini G, Sottini S, Marcelli A, Foggi P (2009) Forster resonance energy transfer (FRET) with a donor–acceptor system adsorbed on silver or gold nanoisland films. Phys Chem Chem Phys 11:9798–803

    Article  CAS  Google Scholar 

  84. Tovmachenko OG, Graf C, van den Heuvel DJ, van Blaaderen A, Gerritsen HC (2006) Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv Mater 18:91–95

    Article  CAS  Google Scholar 

  85. Malicka J, Gryczynski I, Gryczynski Z, Lakowicz JR (2003) Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides. Anal Biochem 315:57–66

    Article  CAS  Google Scholar 

  86. Cade NI, Ritman-Meer T, Kwaka K, Richards D (2009) The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering. Nanotechnology 20:285201

    Article  CAS  Google Scholar 

  87. Wilson R, Cossins AR, Spiller DG (2006) Encoded microcarriers for high-throughput multiplexed detection. Angew Chem Int Ed Engl 45:6104–17

    Article  CAS  Google Scholar 

  88. Ma Q, Wang XY, Li YB, Shi YH, Su XG (2007) Multicolor quantum dot-encoded microspheres for the detection of biomolecules. Talanta 72:1446–1452

    Article  CAS  Google Scholar 

  89. Eastman PS, Ruan WM, Doctolero M, Nuttall R, De Feo G, Park JS, Chu JSF, Cooke P, Gray JW, Li S, Chen FQF (2006) Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett 6:1059–1064

    Article  CAS  Google Scholar 

  90. Clapp AR, Medintz IL, Uyeda HT, Fisher BR, Goldman ER, Bawendi MG, Mattoussi H (2005) Quantum dot-based multiplexed fluorescence resonance energy transfer. J Am Chem Soc 127:18212–18221

    Article  CAS  Google Scholar 

  91. Sekar RB, Periasamy A (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160:629–33

    Article  CAS  Google Scholar 

  92. Umezawa Y (2005) Genetically encoded optical probes for imaging cellular signaling pathways. Biosens Bioelectron 20:2504–11

    Article  CAS  Google Scholar 

  93. Miyawaki A (2003) Fluorescence imaging of physiological activity in complex systems using GFP-based probes. Curr Opin Neurobiol 13:591–6

    Article  CAS  Google Scholar 

  94. Xu X, Brzostowski JA, Jin T (2006) Using quantitative fluorescence microscopy and FRET imaging to measure spatiotemporal signaling events in single living cells. Methods Mol Biol 346:281–96

    CAS  Google Scholar 

  95. Miyawaki A (2003) Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell 4:295–305

    Article  CAS  Google Scholar 

  96. Miyawaki A, Nagai T, Mizuno H (2005) Engineering fluorescent proteins. Adv Biochem Eng Biotechnol 95:1–15

    CAS  Google Scholar 

  97. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) Review – The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  CAS  Google Scholar 

  98. Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124:6063–6076

    Article  CAS  Google Scholar 

  99. Guignet EG, Hovius R, Vogel H (2004) Reversible site-selective labeling of membrane proteins in live cells. Nat Biotechnol 22:440–444

    Article  CAS  Google Scholar 

  100. Zimmermann T, Rietdorf J, Pepperkok R (2003) Spectral imaging and its applications in live cell microscopy. FEBS Lett 546:87–92

    Article  CAS  Google Scholar 

  101. van Munster EB, Gadella TW (2005) Fluorescence lifetime imaging microscopy (FLIM). Adv Biochem Eng Biotechnol 95:143–75

    Google Scholar 

  102. Piston DW, Rizzo MA (2008) FRET by fluorescence polarization microscopy. Methods Cell Biol 85:415–30

    Article  CAS  Google Scholar 

  103. Yan L, Rueden CT, White JG, Eliceiri KW (2006) Applications of combined spectral lifetime microscopy for biology. Biotechniques 41:249, 251, 253 passim

    Article  CAS  Google Scholar 

  104. Bird DK, Eliceiri KW, Fan CH, White JG (2004) Simultaneous two-photon spectral and lifetime fluorescence microscopy. Appl Opt 43:5173–82

    Article  Google Scholar 

  105. Fisz JJ (2009) Another treatment of fluorescence polarization microspectroscopy and imaging. J Phys Chem A 113:3505–16

    Article  CAS  Google Scholar 

  106. Tramier M, Coppey-Moisan M (2008) Fluorescence anisotropy imaging microscopy for homo-FRET in living cells. Methods Cell Biol 85:395–414

    Article  CAS  Google Scholar 

  107. Bader AN, Hofman EG, Voortman J, en Henegouwen PM, Gerritsen HC (2009) Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Biophys J 97:2613–22

    Article  CAS  Google Scholar 

  108. Squire A, Verveer PJ, Rocks O, Bastiaens PI (2004) Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells. J Struct Biol 147:62–9

    Article  CAS  Google Scholar 

  109. Alamiry MAH, Harriman A, Mallon LJ, Ulrich G, Ziessel R (2008) Energy- and charge-transfer processes in a perylene–BODIPY–pyridine tripartite array. Eur J Org: Chem 16:2774–2782

    Google Scholar 

  110. Yao S, Schafer-Hales KJ, Belfield KD (2007) A new water-soluble near-neutral ratiometric fluorescent pH indicator. Org Lett 9:5645–8

    Article  CAS  Google Scholar 

  111. Povrozin YA, Markova LI, Tatarets AL, Sidorov VI, Terpetschnig EA, Patsenker LD (2009) Near-infrared, dual-ratiometric fluorescent label for measurement of pH. Anal Biochem 390:136–40

    Article  CAS  Google Scholar 

  112. Takakusa H, Kikuchi K, Urano Y, Kojima H, Nagano T (2003) A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral. Chemistry 9:1479–85

    Article  CAS  Google Scholar 

  113. Snee PT, Somers RC, Nair G, Zimmer JP, Bawendi MG, Nocera DG (2006) A ratiometric CdSe/ZnS nanocrystal pH sensor. J Am Chem Soc 128:13320–1

    Article  CAS  Google Scholar 

  114. Kim S, Pudavar HE, Prasad PN (2006) Dye-concentrated organically modified silica nanoparticles as a ratiometric fluorescent pH probe by one- and two-photon excitation. Chem Commun (Camb) 19:2071–2073

    Article  CAS  Google Scholar 

  115. Andreescu S, Sadik OA (2004) Trends and challenges in biochemical sensors for clinical and environmental monitoring. Pure Appl Chem 76:861–878

    Article  CAS  Google Scholar 

  116. Riu J, Maroto A, Rius FX (2006) Nanosensors in environmental analysis. Talanta 69:288–301

    Article  CAS  Google Scholar 

  117. Patel PD (2002) (Bio)sensors for measurement of analytes implicated in food safety: a review. Trac-Trends Analyt Chem 21:96–115

    Article  CAS  Google Scholar 

  118. Gooding JJ (2006) Biosensor technology for detecting biological warfare agents: Recent progress and future trends. Anal Chim Acta 559:137–151

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander P. Demchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demchenko, A.P. (2010). Collective Effects Influencing Fluorescence Emission. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology II. Springer Series on Fluorescence, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04701-5_3

Download citation

Publish with us

Policies and ethics