Skip to main content

Introducing Nanoneuroscience as a Distinct Discipline

  • Chapter
  • First Online:
Nanoneuroscience

Summary

Nanoneuroscience is a new emerging discipline that seeks to solve certain hitherto intractable problems in the neurosciences using nanoscientific perspectives and tools. These state–of–the–art methods stand to meet some of the most challenging feats in neuroscience, such as finding better means of diagnosis, treatment, and prevention for various neurological, neurodevelopmental, and neuropsychiatric disorders. Nanotechnology is arguably one of the most optimal ways currently available to address the core essence of higher cognitive functions. A nanoscale emphasis on the mechanical interactions of biomolecules is uniquely capable of demonstrating the multiple ways in which neurons communicate and transmit signals, ranging from the traditional means of interneuronal and intraneuronal communication to novel modes of biomolecular computation. Notable milestones in nanoscience include the development of instruments and techniques enabling interactions with small surfaces or individual molecules, such as scanning tunneling microscopy (STM), atomic force microscopy (ATM), and nanotweezers. These tools operate in the nanometer size range and have the potential to reveal details about molecular events and subcellular operations within neurons. Nanoscientists have also developed a wide variety of nanomaterials – carbon nanotubes, nanoparticles, nanowires, and quantum dots, among others – that can be used to probe and stimulate neurons or parts of neurons. Nanoparticle–based drug delivery systems (or gene therapy delivery systems) showing enhanced ability to cross the blood–brain barrier could potentially be used to treat a number of neurological, neurodevelopmental, and neuropsychiatric diseases. Nanomaterials, used alone and in hybrid combinations with other materials, can be used to diagnose nervous system disorders, to measure neurotransmitter levels or electrical activity in discrete brain sites, to stimulate discrete brain sites, and finally, to build potential nanoscale prosthetic devices that restore normal neural activity patterns and cognitive function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Taniguchi, “On the Basic Concept of ‘Nano-Technology’ ”: Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974.

    Google Scholar 

  2. Franks A. Nanotechnology. J. Phys. E Sci. Instrum. 1987 20:1442-1451.

    Article  Google Scholar 

  3. Malsch I. Biomedical applications of nanotechnology. The Industrial Physicist, 2002.

    Google Scholar 

  4. NIH Roadmap for Medical Research. http://nihroadmap.nih.gov/ Retrived on Sept. 21, 2008.

  5. Biomimetics and bio-inspired systems. [http://ipt.arc.nasa.gov/Graphics/nano technasamissions.pdf] Retrived on Sept. 21, 2008.

  6. Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M and Ballerini L (2005) Carbon nanotube substrates boost neuronal electrical signaling, Nano Letters, 5: 1107-1110.

    Article  CAS  Google Scholar 

  7. Sucapane, A., Cellot, G., Prato, M., Giugliano, M., Parpura, V., Ballerini, L. Interactions Between Cultured Neurons and Carbon Nanotubes: a Nanoneuroscience Vignette Journal of Nanoneuroscience 1:1-7, (2008).

    Google Scholar 

  8. Silva GA. Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci. 2006 Jan;7(1):65-74.

    Article  CAS  Google Scholar 

  9. Bressler SL, Tognoli E. Operational principles of neurocognitive networks. Int J Psychophysiol. 2006 May;60(2):139-48.

    Article  Google Scholar 

  10. Love BC, Gureckis TM. Models in search of a brain. Cogn Affect Behav Neurosci. 2007 Jun;7(2):90-108.

    Article  Google Scholar 

  11. Hart J Jr, Anand R, Zoccoli S, Maguire M, Gamino J, Tillman G, King R, Kraut MA. Neural substrates of semantic memory. J Int Neuropsychol Soc. 2007 Sep;13(5):865-80.

    Article  Google Scholar 

  12. Just MA, Carpenter PA, Varma S. Computational modeling of high-level cognition and brain function. Hum Brain Mapp. 1999;8(2-3):128-36.

    Article  CAS  Google Scholar 

  13. D’Esposito M. From cognitive to neural models of working memory. Philos Trans R Soc Lond B Biol Sci. 2007.

    Google Scholar 

  14. Friston KJ , Price CJ. Dynamic representations and generative models of brain function.Brain Res Bull. 2001 Feb;54(3):275-85.

    Google Scholar 

  15. Handy TC. Capacity theory as a model of cortical behavior. J Cogn Neurosci. 2000 Nov;12(6):1066-9.

    Article  CAS  Google Scholar 

  16. Coslett HB. Consciousness and attention. Semin Neurol. 1997 Jun;17(2):137-44.

    Article  CAS  Google Scholar 

  17. Sergent C, Dehaene S. Neural processes underlying conscious perception: experimental findings and a global neuronal workspace framework. J Physiol Paris. 2004 Jul-Nov;98(4-6):374-84.

    Google Scholar 

  18. Jack AI, Shallice T. Introspective physicalism as an approach to the science of consciousness. Cognition. 2001 Apr;79(1-2):161-96.

    Article  CAS  Google Scholar 

  19. Lau HC, Passingham RE. Unconscious activation of the cognitive control system in the human prefrontal cortex. J Neurosci. 2007 May 23;27(21):5805-11.

    Article  CAS  Google Scholar 

  20. Osaka N. [Active consciousness and the prefrontal cortex: a working-memory approach] Shinrigaku Kenkyu. 2007 Feb;77(6):553-66.

    Google Scholar 

  21. Tong F. Primary visual cortex and visual awareness. Nat Rev Neurosci. 2003 Mar;4(3):219-29.

    Article  CAS  Google Scholar 

  22. Clavagnier S, Falchier A, Kennedy H. Long-distance feedback projections to area V1: implications for multisensory integration, spatial awareness, and visual consciousness. Cogn Affect Behav Neurosci. 2004 Jun;4(2):117-26.

    Article  Google Scholar 

  23. Priel A, Ramos AJ, Tuszyński JA, Cantiello HF. A biopolymer transistor: electrical amplification by microtubules. Biophys J. 2006 Jun 15;90(12):4639-43.

    Article  CAS  Google Scholar 

  24. Tuszyński JA, Portet S, Dixon JM, Luxford C, Cantiello HF. Ionic wave propagation along actin filaments. Biophys J. 2004 Apr;86(4):1890-903.

    Article  Google Scholar 

  25. Priel A, Tuszyński JA, Cantiello HF.(2005) Electrodynamic signaling by the dendritic cytoskeleton: toward an intracellular information processing model, Electromagnetic Biology and Medicine,24:3,221 - 231

    Article  Google Scholar 

  26. Young, T. (1802). On the theory of light and colours. Philosophical Transactions of the Royal Society of London, 92, 12-48.

    Article  Google Scholar 

  27. von Helmholtz, H. (1850). Über die Theorie der zusammengesetzten Farben. Archiv für Anatomie, Physiologie und wissenschaftliche Medizin, 461-482.

    Google Scholar 

  28. Wyszecki, Günther; Stiles, W.S. (1982). Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed., New York: Wiley Series in Pure and Applied Optics

    Google Scholar 

  29. Dartnall, H. J. A., Bowmaker, J. K. & Mollon, J. D. Proc. R. Soc. B220, 115–130 (1983).

    Google Scholar 

  30. von Békésy, G. (1949) On the resonance curve and the decay period different points along the cochlear partition. Journal of the Acoustical Society of America, 21, 245-254

    Article  Google Scholar 

  31. S. Ramon y Cajal

    Google Scholar 

  32. Maeda T, Imanishi Y, Palczewski K. Rhodopsin phosphorylation: 30 years later. Prog Retina Eye Res. 2003 Jul;22(4):417-34.

    Article  CAS  Google Scholar 

  33. Shim K. The auditory sensory epithelium: the instrument of sound perception. Int J Biochem Cell Biol. 2006;38(11):1827-33.

    Article  CAS  Google Scholar 

  34. de Araujo IE, Rolls ET, Kringelbach ML, McGlone F, Phillips N. Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur J Neurosci. 2003 Oct;18(7):2059-68.

    Article  Google Scholar 

  35. Zacks JM, Michelon P. Transformations of visuospatial images. Behav Cogn Neurosci Rev. 2005 Jun;4(2):96-118.

    Article  Google Scholar 

  36. Wang X. Neural coding strategies in auditory cortex. Hear Res. 2007 Jul;229(1-2):81-93.

    Article  Google Scholar 

  37. Cole GG, Liversedge SP. Change blindness and the primacy of object appearance. Psychon Bull Rev. 2006 Aug;13(4):588-93.

    Google Scholar 

  38. Beck MR, Levin DT, Angelone B. Change blindness blindness: beliefs about the roles of intention and scene omplexity in change detection. onscious Cogn. 2007 Mar;16(1):31-51.

    Google Scholar 

  39. Simons DJ, Rensink RA. Change blindness: past, present, and future. rends Cogn Sci. 2005 Jan;9(1):16-20.

    Google Scholar 

  40. Awater H, Kerlin JR, Evans KK, Tong F. Cortical representation of space around the blind spot. J Neurophysiol. 2005 Nov;94(5):3314-24.

    Article  Google Scholar 

  41. Meng M, Remus DA, Tong F. Filling-in of visual phantoms in the human brain. Nat Neurosci. 2005 Sep;8(9):1248-54.

    Article  CAS  Google Scholar 

  42. Shuwairi SM, Curtis CE, Johnson SP. Neural substrates of dynamic object occlusion. J Cogn Neurosci. 2007 Aug;19(8):1275-85.

    Article  Google Scholar 

  43. Teyler TJ, Discenna P. Long-term potentiation as a candidate mnemonic device. Brain Res. 1984 Mar;319(1):15-28.

    CAS  Google Scholar 

  44. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993 Jan 7;361(6407):31-9.

    Article  CAS  Google Scholar 

  45. D.O. Hebb (1949) The Organization of Behavior, Lawrence Erlbaum Associates.

    Google Scholar 

  46. Ramón y Cajal, S.R. (1907) Regeneración de los Nervios. [Translation and edited by J. Bresler (1908) Studien über Nervenregeneration, Johann Ambrosius Barth].

    Google Scholar 

  47. Fiori S. Nonlinear complex-valued extensions of Hebbian learning: an essay. Neural Comput. 2005 Apr;17(4):779-838.

    Article  Google Scholar 

  48. Vogel DD. A neural network model of memory and higher cognitive functions. Int J Psychophysiol. 2005 Jan;55(1):3-21.

    Article  Google Scholar 

  49. Doya K. Metalearning and neuromodulation.Neural Netw. 2002 Jun-Jul;15(4-6):495-506.

    Google Scholar 

  50. Woolf NJ, Zinnerman MD, Johnson GV. Hippocampal microtubule-associated protein-2 alterations with contextual memory. Brain Res. 1999 Mar 6;821(1):241-9.

    Article  CAS  Google Scholar 

  51. Rogers JL, Kesner RP. Cholinergic modulation of the hippocampus during encoding and retrieval of tone/shock-induced fear conditioning. Learn Mem. 2004 Jan-Feb;11(1):102-7.

    Google Scholar 

  52. Hupbach A, Hardt O, Gomez R, Nadel L. The dynamics of memory: context-dependent updating. Learn Mem. 2008 Aug 6;15(8):574-9.

    Article  Google Scholar 

  53. Abbott LF, Regehr WG. Synaptic computation. Nature. 2004 Oct 14;431(7010):796-803.

    Article  CAS  Google Scholar 

  54. Abraham WC. How long will long-term potentiation last? Philos Trans R Soc Lond B Biol Sci. 2003 Apr 29;358(1432):735-44. 45 LTP fades in real animals

    Google Scholar 

  55. Woolf, N.J. Microtubules in the cerebral cortex: role in memory and consciousness. In Tuszyński, J.A. (ed.) The Emerging Physics of Consciousness, 2006, Springer Verlag.

    Google Scholar 

  56. Alzheimer’s Association Report: 2007 Alzheimer’s Disease Facts and Figures [http://www.alz.org/national/documents/Report2007FactsAndFigures.pdf]

  57. Parkinson’s Disease Foundation: Fact Sheet. [http://www.pdf.org/ Publications/factsheets/PDFFact _ Sheet_ 1.0_ Final.pdf].

  58. Alzheimer A. Über eigenartige Krankheitsfälle des späteren Alters. Zeitschrift für die Gesamte Neurologie und Psychiatrie 1911; 4: 356-85.

    Article  Google Scholar 

  59. Wisniewski KE, Wisniewski HM, Wen GY. Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol. 1985 Mar;17(3):278-82.

    Article  CAS  Google Scholar 

  60. Iritani S. Neuropathology of schizophrenia: a mini review. Neuropathology. 2007 Dec;27(6):604-8.

    Article  Google Scholar 

  61. McIntosh AM, Job DE, Moorhead WJ, Harrison LK, Whalley HC, Johnstone EC, Lawrie SM. Genetic liability to schizophrenia or bipolar disorder and its relationship to brain structure. Am J Med Genet B Neuropsychiatr Genet. 2006 Jan 5;141(1):76-83.

    Google Scholar 

  62. Nestler EJ, Hyman SE, Malenka RC. Molecular neuropharmacology, a foundation for clinical neuroscience. McGraw-Hill, New York, 2001.

    Google Scholar 

  63. Talkowski ME, Bamne M, Mansour H, Nimgaonkar VL. Dopamine genes and schizophrenia: case closed or evidence pending? Schizophr Bull. 2007 Sep;33(5):1071-81. Epub 2007 Jul 14.

    Google Scholar 

  64. Littrell RA, Schneiderhan M. The neurobiology of schizophrenia. Pharmacotherapy. 1996 Nov-Dec;16(6 Pt 2):143S-147S.

    Google Scholar 

  65. Cipriani A, Geddes JR, Furukawa TA, Barbui C. Metareview on short-term effectiveness and safety of antidepressants for depression: an evidence-based approach to inform clinical practice. Can J Psychiatry. 2007 Sep;52(9):553-62.

    Google Scholar 

  66. Greydanus DE, Sloane MA, Rappley MD. Psychopharmacology of ADHD in adolescents. Adolesc Med. 2002 Oct;13(3):599-624.

    Google Scholar 

  67. Carlson GA, Finch SJ, Fochtmann LJ, Ye Q, Wang Q, Naz B, Bromet EJ.Antidepressant-associated switches from depression to mania in severe bipolar disorder. Bipolar Disord. 2007 Dec;9(8):851-9.

    Google Scholar 

  68. Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965 Nov;122(5):509-22.

    CAS  Google Scholar 

  69. Jabbi M, Kema IP, van der Pompe G, te Meerman GJ, Ormel J, den Boer JA. Catechol-o-methyltransferase polymorphism and susceptibility to major depressive disorder modulates psychological stress response. Psychiatr Genet. 2007 Jun;17(3):183-93.

    Google Scholar 

  70. Lasky-Su JA, Faraone SV, Glatt SJ, Tsuang MT. Meta-analysis of the association between two polymorphisms in the serotonin transporter gene and affective disorders. Am J Med Genet B Neuropsychiatr Genet. 2005 Feb 5;133(1):110-5.

    Google Scholar 

  71. L. Stryer. Biochemistry, 2nd Ed.1981, W.H. Freeman and Co. San Fransisco, CA.

    Google Scholar 

  72. Tetley TD. Health effects of nanomaterials. Biochem Soc Trans. 2007 Jun;35(Pt 3):527-31.

    CAS  Google Scholar 

  73. Donaldson K. Resolving the nanoparticles paradox. Nanomed. 2006 Aug;1(2):229-34.

    Article  CAS  Google Scholar 

  74. Feynman, R.P. Plenty of Room at the Bottom, December 1959, The Archives of California Institute of Technology. [http://www.its.caltech.edu/feynman/plenty.html].

  75. Taniguchi, N. “On the Basic Concept of ’Nano-Technology’,” Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974.

    Google Scholar 

  76. Taniguchi N. (Ed.) Nanotechnology: Integrated Processing Systems for Ultra-precision and Ultra-fine products 1996, Oxford University Press, USA.

    Google Scholar 

  77. Drexler KE. Engines of Creation: The Coming Era of Nanotechnology, 1986, Random House, New York.

    Google Scholar 

  78. Drexler KE. Nanosystems: Molecular Machinery, Manufacturing, and Computation, 1992, John Wiley

    Google Scholar 

  79. Moore GE. Electronics, Volume 38, Number 8, April 19, 1965

    Google Scholar 

  80. Lundstrom M. Applied physics. Moore’s law forever? Science. 2003 Jan 10;299(5604):210-1.

    Google Scholar 

  81. Likharev K, Mayr A, Muckra I, Türel O. CrossNets: high-performance neuromorphic architectures for CMOL circuits. Ann N Y Acad Sci. 2003 Dec;1006:146-63.

    Article  CAS  Google Scholar 

  82. Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clin Chem. 2007 Nov;53(11):2002-9.

    Article  CAS  Google Scholar 

  83. Ajayan, PM and Iijima, S. Nature, 358, 23-23 (1992).

    Google Scholar 

  84. Graham AP, Duesberg GS, Seidel RV, Liebau M, Unger E, Pamler W, Kreupl F, Hoenlein W. Carbon nanotubes for microelectronics? Small. 2005 Apr;1(4):382-90.

    Article  CAS  Google Scholar 

  85. A New Model of Quantum Dots: Rethinking the Electronics Scientific. Research News Berkeley Lab. June 15, 2005, contact: Lin-Wang Wang, (510) 486-5571, lwwang@lbl.gov [http://www.lbl.gov/Science-Articles/Archive/Quantum-Dot-Electronics.html]

  86. Venkatesan N, Yoshimitsu J, Ito Y, Shibata N, Takada K. Liquid filled nanoparticles as a drug delivery tool for protein therapeutics. Biomaterials. 2005 Dec;26(34):7154-63.

    Article  CAS  Google Scholar 

  87. Montemagno CD, Bachand G. Nanotechnology (Vol. 10, No.3).

    Google Scholar 

  88. Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005;7:55-76.

    Article  CAS  Google Scholar 

  89. Doty RC, Fernig DG, Lévy R. Nanoscale science: a big step towards the Holy Grail of single molecule biochemistry and molecular biology. Cell Mol Life Sci. 2004 Aug;61(15):1843-9.

    Article  CAS  Google Scholar 

  90. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH. Functional finishing of cotton fabrics using silver nanoparticles. J Nanosci Nanotechnol. 2007 Jun;7(6):1893-7.

    Article  CAS  Google Scholar 

  91. Marini M, De Niederhausern S, Iseppi R, Bondi M, Sabia C, Toselli M, Pilati F. Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules. 2007 Apr;8(4):1246-54.

    Article  CAS  Google Scholar 

  92. Liu Y, Cui T. Silica nanowires fabricated with layer-by-layer self-assembled nanoparticles. J Nanosci Nanotechnol. 2006 Apr;6(4):1019-23.

    Article  CAS  Google Scholar 

  93. Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol. 2003 Oct;21(10):1171-8.

    Article  CAS  Google Scholar 

  94. Robinson AL. Electron Microscope Inventors Share Nobel Physics Prize: Ernst Ruska built the first electron microscope in 1931; Gerd Binnig and Heinrich Rohrer developed the scanning tunneling microscope 50 years later. Science. 1986 Nov 14;234(4778):821-822.

    Article  CAS  Google Scholar 

  95. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930-933.

    Article  Google Scholar 

  96. Tourney, C. The man who understood the Feynman machine. Nature Nanotechnology, 2007, 2: 9-10.

    Google Scholar 

  97. Kim P, Lieber CM. Nanotube nanotweezers Science. 1999 Dec 10;286(5447):2148-50.

    CAS  Google Scholar 

  98. Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science. 2006 Aug 25;313(5790):1100-4.

    Article  CAS  Google Scholar 

  99. Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H, Prato M, Ballerini L. Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci. 2007 Jun 27;27(26):6931-6.

    Article  CAS  Google Scholar 

  100. Park I, Li Z, Li X, Pisano AP, Williams RS. Towards the silicon nanowire-based sensor for intracellular biochemical detection. Biosens Bioelectron. 2007 Apr 15;22(9-10):2065-70.

    Article  CAS  Google Scholar 

  101. Wallace R. Neural membrane microdomains as computational systems: Toward molecular modeling in the study of neural disease. Biosystems. 2007 Jan;87(1):20-30.

    Article  CAS  Google Scholar 

  102. Wang K, Fishman HA, Dai H, Harris JS. Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 2006 Sep;6(9):2043-8.

    Article  CAS  Google Scholar 

  103. Nadeau JL, Clarke SJ, Hollmann CA, Bahcheli DM. Quantum dot-FRET systems for imaging of neuronal action potentials. Conf Proc IEEE Eng Med Biol Soc. 2006;1:855-8.

    Article  CAS  Google Scholar 

  104. Jan E, Kotov NA. Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett. 2007 May;7(5):1123-8.

    Article  CAS  Google Scholar 

  105. Meng J, Song L, Meng J, Kong H, Zhu G, Wang C, Xu L, Xie S, Xu H. Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-term cell proliferation in vitro. J Biomed Mater Res A. 2006 Nov;79(2):298-306.

    Google Scholar 

  106. Cui B, Wu C, Chen L, Ramirez A, Bearer EL, Li WP, Mobley WC, Chu S. One at a time, live tracking of NGF axonal transport using quantum dots. Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13666-71.

    Article  CAS  Google Scholar 

  107. Echarte MM, Bruno L, Arndt-Jovin DJ, Jovin TM, Pietrasanta LI. Quantitative single particle tracking of NGF-receptor complexes: transport is bi-directional but biased by longer retrograde run lengths. FEBS Lett. 2007 Jun 26;581(16):2905-13.

    Article  CAS  Google Scholar 

  108. Brueggemann A, George M, Klau M, Beckler M, Steindl J, Behrends JC, Fertig N. Ion channel drug discovery and research: the automated Nano-Patch-Clamp technology. Curr Drug Discov Technol. 2004 Jan;1(1):91-6.

    Article  CAS  Google Scholar 

  109. Lehmann-Horn F, Jurkat-Rott K. Nanotechnology for neuronal ion channels.

    Google Scholar 

  110. Pamir E, George M, Fertig N, Benoit M. Planar patch-clamp force microscopy on living cells. Ultramicroscopy. 2008 May;108(6):552-7.

    Article  CAS  Google Scholar 

  111. Yang TH, Yee CK, Amweg ML, Singh S, Kendall EL, Dattelbaum AM, Shreve AP, Brinker CJ, Parikh AN. Optical detection of ion-channel-induced proton transport in supported phospholipid bilayers. Nano Lett. 2007 Aug;7(8):2446-51.

    Article  CAS  Google Scholar 

  112. Tamkun MM, O’connell KM, Rolig AS. A cytoskeletal-based perimeter fence selectively corrals a sub-population of cell surface Kv2.1 channels. J Cell Sci. 2007 Jul 15;120(Pt 14):2413-23.

    Google Scholar 

  113. Dr. Horacio Cantiello, Harvard University, personal communication.

    Google Scholar 

  114. Levi-Montalcini R, Dal Toso R, della Valle F, Skaper SD, Leon A. Update of the NGF saga. J Neurol Sci. 1995 Jun;130(2):119-27.

    Google Scholar 

  115. Woolf NJ. Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol. 1991;37(6):475-524.

    Article  CAS  Google Scholar 

  116. Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST. Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J Chem Neuroanat. 2003 Dec;26(4):233-42.

    Article  CAS  Google Scholar 

  117. Woolf NJ, Jacobs RW, Butcher LL. The pontomesencephalotegmental cholinergic system does not degenerate in Alzheimer’s disease. Neurosci Lett. 1989 Jan 30;96(3):277-82.

    Article  CAS  Google Scholar 

  118. Mufson EJ, Conner JM, Kordower JH. Nerve growth factor in Alzheimer’s disease: defective retrograde transport to nucleus basalis. Neuroreport. 1995 May 9;6(7):1063-6.

    Article  CAS  Google Scholar 

  119. Siegel GJ, Chauhan NB. Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Brain Res Rev. 2000 Sep;33(2-3):199-227.

    Article  CAS  Google Scholar 

  120. Jordan PC. Fifty years of progress in ion channel research. IEEE Trans Nanobioscience. 2005 Mar;4(1):3-9.

    Article  Google Scholar 

  121. Sakai N, Mareda J, Matile S. Ion channels and pores, made from scratch. Mol Biosyst. 2007 Oct;3(10):658-66.

    Article  CAS  Google Scholar 

  122. Park KH, Chhowalla M, Iqbal Z, Sesti F. Single-walled carbon nanotubes are a new class of ion channel blockers. J Biol Chem. 2003 Dec 12;278(50):50212-6.

    Article  CAS  Google Scholar 

  123. Gorostiza P, Isacoff E. Optical switches and triggers for the manipulation of ion channels and pores. Mol Biosyst. 2007 Oct;3(10):686-704.

    Article  CAS  Google Scholar 

  124. Azzazy HM, Mansour MM, Kazmierczak SC. Nanodiagnostics: a new frontier for clinical laboratory medicine. Clin Chem. 2006 Jul;52(7):1238-46.

    Article  CAS  Google Scholar 

  125. Sharma SH, Nanoneuroscience: emerging concepts on nanoneurotoxicity and nanoneuroprotection. Nanomedicine, 2007, 2:753-758.

    Article  CAS  Google Scholar 

  126. Fradinger EA, Bitan G. En route to early diagnosis of Alzheimer’s disease–are we there yet? Trends Biotechnol. 2005 Nov;23(11):531-3

    Article  CAS  Google Scholar 

  127. Keating CD. Nanoscience enables ultrasensitive detection of Alzheimer’s biomarker. Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2263-4.

    Article  CAS  Google Scholar 

  128. Marx J. Alzheimer’s disease. A new take on tau. Science. 2007 Jun 8;316(5830):1416-7.

    Google Scholar 

  129. Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2273-6.

    Article  CAS  Google Scholar 

  130. Nam J-M, Thaxton, C. S. Mirkin, C. A. (2003) Science 301, 1884-1886.

    Google Scholar 

  131. Härtig W, Paulke BR, Varga C, Seeger J, Harkany T, Kacza J. Electron microscopic analysis of nanoparticles delivering thioflavin-T after intrahippocampal injection in mouse: implications for targeting beta-amyloid in Alzheimer’s disease. Neurosci Lett. 2003 Feb 27;338(2):174-6.

    Article  CAS  Google Scholar 

  132. Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu A, Mallikarjuana NN, Manohar S, Liang HF, Kulkarni AR, Sung HW, Sairam M, Aminabhavi TM. Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J Control Release. 2005 Nov 28;108(2-3):193-214.

    Article  CAS  Google Scholar 

  133. Sharma HS, Ali SF, Dong W, Tian ZR, Patnaik R, Patnaik S, Sharma A, Boman A, Lek P, Seifert E, Lundstedt T. Drug delivery to the spinal cord tagged with nanowire enhances neuroprotective efficacy and functional recovery following trauma to the rat spinal cord. Ann N Y Acad Sci. 2007 Dec;1122:197-218.

    Article  CAS  Google Scholar 

  134. Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science. 2007 May 4;316(5825):750-4.

    Article  CAS  Google Scholar 

  135. Cash AD, Aliev G, Siedlak SL, Nunomura A, Fujioka H, Zhu X, Raina AK, Vinters HV, Tabaton M, Johnson AB, Paula-Barbosa M, Avíla J, Jones PK, Castellani RJ, Smith MA, Perry G. Microtubule reduction in Alzheimer’s disease and aging is independent of tau filament formation. Am J Pathol. 2003 May;162(5):1623-7.

    CAS  Google Scholar 

  136. Singh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C.D., Briand, J.P., Prato, M., Bianco, A., Kostarelos, K., 2005. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc. 127 (12), 4388-4396.

    Article  CAS  Google Scholar 

  137. Fahn S; and the Parkinson Study Group. Does levodopa slow or hasten the rate of progression of Parkinson’s disease? J Neurol. 2005 Oct;252 Suppl 4:IV37-IV42.

    Google Scholar 

  138. Ali SR, Ma Y, Parajuli RR, Balogun Y, Lai WY, He H. A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal Chem. 2007 Mar 15;79(6):2583-7.

    Article  CAS  Google Scholar 

  139. Kurth MC. Using liquid levodopa in the treatment of Parkinson’s disease. A practical guide. Drugs Aging. 1997 May;10(5):332-40.

    Google Scholar 

  140. Tan AK. Current and emerging treatments in Parkinson’s disease. Ann Acad Med Singapore. 2001 Mar;30(2):128-33.

    CAS  Google Scholar 

  141. Li J, Andrews RJ. Trimodal nanoelectrode array for precise deep brain stimulation: prospects of a new technology based on carbon nanofiber arrays. Acta Neurochir Suppl. 2007;97(Pt 2):537-45.

    Article  CAS  Google Scholar 

  142. Altshuler L, Bookheimer S, Proenza MA, Townsend J, Sabb F, Firestine A, Bartzokis G, Mintz J, Mazziotta J, Cohen MS. Increased amygdala activation during mania: a functional magnetic resonance imaging study. Am J Psychiatry. 2005 Jun;162(6):1211-3.

    Article  Google Scholar 

  143. Ishizuka K, Paek M, Kamiya A, Sawa A. A review of Disrupted-In-Schizophrenia-1 (DISC1): neurodevelopment, cognition, and mental conditions. Biol Psychiatry. 2006 Jun 15;59(12):1189-97.

    Article  CAS  Google Scholar 

  144. Camargo LM, Collura V, Rain JC, Mizuguchi K, Hermjakob H, Kerrien S, Bonnert TP, Whiting PJ, Brandon NJ. Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Mol Psychiatry. 2007 Jan;12(1):74-86.

    Article  CAS  Google Scholar 

  145. Woolf NJ. Bionic microtubules: potential applications to multiple neurological and neuropsychiatric diseases. Journal of Nanoneuroscience 2009, 1:85-94.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy J. Woolf .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Woolf, N.J., Priel, A., Tuszynski, J.A. (2009). Introducing Nanoneuroscience as a Distinct Discipline. In: Nanoneuroscience. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03584-5_1

Download citation

Publish with us

Policies and ethics