Skip to main content

Utilizing Microbial Community Structure and Function to Evaluate the Health of Heavy Metal Polluted Soils

  • Chapter
  • First Online:
Book cover Soil Heavy Metals

Part of the book series: Soil Biology ((SOILBIOL,volume 19))

Abstract

The aim of this chapter is to combine perspectives developed in soil ecology, microbiology and biochemistry into a common framework for evaluating the health of soils polluted with heavy metals.

The use of microbial properties as indicators of soil health has been promoted by the recent development of effective methods for studying the diversity and functioning of microorganisms. Some of the strengths and weaknesses of these methodological approaches are discussed here. In addition, examples of their application to evaluate the health of heavy metal polluted soils are used to summarize the main results obtained so far on microbial function and community structure.

The study of soil resilience, which has recently been proposed as a promising indicator of soil health, can also guide us in the successful remediation of heavy metal polluted soils. This and other future challenges are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alef K (1995) Soil respiration. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, San Diego, pp 214–218

    Google Scholar 

  • Allan DL, Adriano DC, Bezdicek DF, Cline RG, Coleman DC, Doran JW, Haberen J, Harris RG, Juo ASR, Mausbach MJ, Peterson GA, Schuman GE, Singer MJ, Karlen DL (1995) SSSA statement on soil quality. In: Agronomy News, June 1995, ASA, Madison, WI, p 7

    Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA 105(Suppl):11512–11519

    PubMed  CAS  Google Scholar 

  • Almås ÅR, Bakken LR, Mulder J (2004) Changes in tolerance of soil microbial communities in Zn- and Cd-contaminated soils. Soil Biol Biochem 36:805–813

    Google Scholar 

  • Anderson TH, Domsch KH (1985) Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol Fertil Soils 1:81–89

    CAS  Google Scholar 

  • Anderson IC, Parkin PI, Campbell CD (2008) DNA- and RNA-derived assessments of fungal community composition in soil amended with sewage sludge rich in cadmium, copper and zinc. Soil Biol Biochem 40:2358–2365

    CAS  Google Scholar 

  • Bååth E (1989) Effects of heavy metals in soil microbial processes and populations (a review). Water Air and Soil Pollut 47:335–379

    Google Scholar 

  • Bååth E (1992) Thymidine incorporation into macromolecules of bacteria extracted from soil by homogenization centrifugation. Soil Biol Biochem 24:1157–1165

    Google Scholar 

  • Bååth E (1994) Measurement of protein synthesis by soil bacterial assemblages with the leucine incorporation technique. Biol Fertil Soils 17:147–153

    Google Scholar 

  • Bååth E (1998) Growth rates of bacterial communities in soils at varying pH: a comparison of the thymidine and leucine incorporation techniques. Microb Ecol 36:316–327

    PubMed  Google Scholar 

  • Bååth E (2001) Estimation of fungal growth rates in soil using 14C-acetate incorporation into ergosterol. Soil Biol Biochem 33:2011–2018

    Google Scholar 

  • Bååth E, Arnebrandt K, Nordgren A (1991) Microbial biomass and ATP in smelter-polluted forest humus. Bull Environ Contam Toxicol 47:278–282

    PubMed  Google Scholar 

  • Bååth E, Pettersson M, Söderberg KH (2001) Adaptation of a rapid and economical microcentrifugation method to measure thymidine and leucine incorporation by soil bacteria. Soil Biol Biochem 33:1571–1574

    Google Scholar 

  • Bååth E, Díaz-Raviña M, Bakken LR (2005) Microbial biomass, community structure, and metal tolerance of a naturally Pb-enriched forest soil. Microb Ecol 50:496–505

    PubMed  Google Scholar 

  • Barajas-Aceves M, Grace C, Ansorena J, Dendooven L, Brookes PC (1999) Soil microbial biomass and organic C in a gradient of zinc concentrations in soils around a mine spoil tip. Soil Biol Biochem 31:867–876

    Google Scholar 

  • Bardgett RD, Saggar S (1994) Effects of heavy metal contamination on the short-term decomposition of labelled [14C] glucose in a pasture soil. Soil Biol Biochem 26:727–733

    CAS  Google Scholar 

  • Bardgett RD, Speir TW, Ross DJ, Yeates GW, Kettles HA (1994) Impact of pasture contamination by copper chromium and arsenic timber preservative on soil microbial properties and nematodes. Biol Fertil Soils 18:71–79

    CAS  Google Scholar 

  • Bastida F, Zsolnay A, Hernández T, García C (2008) Past, present and future of soil quality indices: A biological perspective. Geoderma 147:159–171

    CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    PubMed  CAS  Google Scholar 

  • Bloem J, Breure AM (2003) Microbial indicators. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Elsevier, Oxford, pp 259–282

    Google Scholar 

  • Bogomolov DM, Chen SK, Parmelee RW, Subler S, Edwards CA (1996) An ecosystem approach to soil toxicity testing: a study of copper contamination in laboratory soil microcosms. Appl Soil Ecol 4:95–105

    Google Scholar 

  • Bradshaw AD (2002) Introduction and philosophy. In: Perrow MR, Davy AJ (eds) Handbook of ecological restoration, vol 1. Cambridge University Press, Cambridge, pp 1–9

    Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fert Soil 19:269–279

    CAS  Google Scholar 

  • Brookes PC, Mc Grath SP, Klein DA, Elliot ET (1984) Effect of heavy metal on microbial activity and biomass in field soils treated with sewage sludge. In: Environmental contamination. CEP Consultants Ltd. Edinburg, pp 574–583

    Google Scholar 

  • Brookes EC, McGrath SE, Heijnen CE (1986) Metal residues in soils previously treated with sewage-sludge and their effects on growth and nitrogen fixation by blue-green algae. Soil Biol Biochem 18:345–353

    CAS  Google Scholar 

  • Broos K, Beyens H, Smolders E (2005) Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biol Biochem 37:573–579

    CAS  Google Scholar 

  • Bunge J, Epstein SS, Peterson DG (2006) Comment on “computational improvements reveal Great bacterial diversity and high metal toxicity in soil”. Science 313:918

    PubMed  CAS  Google Scholar 

  • Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–3599

    PubMed  CAS  Google Scholar 

  • Chander K, Brookes PC (1991) Microbial biomass dynamics during the decomposition of glucose and maize in metal-contaminated and non-contaminated soils. Soil Biol Biochem 23:917–925

    CAS  Google Scholar 

  • Chander K, Dyckmans J, Joergensen RG, Meyer B, Raubuch M (2001) Different sources of heavy metals and their long-term effects on soil microbial properties. Biol Fertil Soils 34:241–247

    Google Scholar 

  • Chapin FS III, Torn MS, Tateno M (1996) Principles of ecosystem sustainability. Am Nat 148:1016–1037

    Google Scholar 

  • Clemente R, Almela C, Bernal MP (2006) A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environ Pollut 143:397–406

    PubMed  CAS  Google Scholar 

  • Conklin AR, MacGregor AN (1972) Soil adenosine triphosphate: extraction, recovery and half-life. Bull Environ Contam Toxicol 72:296–300

    Google Scholar 

  • Contin M, Todd A, Brookes PC (2001) The ATP concentration in the soil microbial biomass. Soil Biol Biochem 33:701–704

    CAS  Google Scholar 

  • Díaz-Raviña M, Bååth E (1996a) Thymidine and leucine incorporation into bacteria from soils experimentally contaminated with heavy metals. Appl Soil Ecol 3:225–234

    Google Scholar 

  • Díaz-Raviña M, Bååth E (1996b) Development of tolerance of soil bacterial communities exposed to experimentally increased metal levels. Appl Environ Microbiol 62:2970–2977

    PubMed  Google Scholar 

  • Díaz-Raviña M, Bååth E (2001) Response of soil bacterial communities pre-exposed to different metals and reinoculated in an unpolluted soil. Soil Biol Biochem 33:241–248

    Google Scholar 

  • Dick RP (1997) Enzyme activities as integrative indicators of soil health. In: Parkhurst CE (ed) Bioindicators of soil health. CAB International, Oxon, UK, pp 121–156

    Google Scholar 

  • Dick RP, Thomas DR, Halvorson JJ (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Soil Science Society of America, Madison, WI, pp 107–121

    Google Scholar 

  • Djajakirana G, Joergensen RG, Meyer B (1996) Ergosterol and microbial biomass relationship in soil. Biol Fertil Soils 22:299–304

    CAS  Google Scholar 

  • Doelman P (1985) Resistance of soil microbial communities to heavy metals. In: Jensen V, Kjøller A, Sørensen LH (eds) Microbial communities in soil. Elsevier, London, pp 369–384

    Google Scholar 

  • Doelman P, Haanstra L (1984) Short- and long-term effects of heavy metals on urease activity in soils. Biol Fertil Soils 2:213–218

    Google Scholar 

  • Doran JW, Zeiss MR (2000) Soil health and sustainability: managing the biotic component of soil quality. Appl Soil Ecol 15:3–11

    Google Scholar 

  • Doran JW, Sarrantonio M, Liebig MA (1996) Soil health and sustainability. Adv Agron 56:1–54

    CAS  Google Scholar 

  • Drenovsky RE, Elliot GN, Graham KJ, Scow KM (2004) Comparison of phospholipids fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities. Soil Biol Biochem 36:1793–1800

    CAS  Google Scholar 

  • Effron D, de la Horra AM, Defrieri RL, Fontanive V, Palma RM (2004) Effect of cadmium, copper, and lead on different enzyme activities in a native forest soil. Commun Soil Sci Plan 35:1309–1321

    CAS  Google Scholar 

  • Elliott ET (1997) Rationale for developing bioindicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds.) Biological Indicators of Soil Health, CAB International, New York, pp 49–57

    Google Scholar 

  • Ellis RJ, Best JG, Fry JC, Morgan P, Neish B, Trett MW, Weightman AJ (2002) Similarity of microbial and meiofaunal community analyses for mapping ecological effects of heavy-metal contamination in soil. FEMS Microbiol Ecol 40:113–122

    PubMed  CAS  Google Scholar 

  • Espejo RT, Romero J (1997) Bacterial communities in copper sulfide ores inoculated and leached with solution from a commercial-scale copper leaching plant. Appl Environ Microbiol 63:1344–1348

    PubMed  CAS  Google Scholar 

  • Flieβbach A, Martens R, Reber HH (1994) Soil microbial biomass and microbial activity in soil treated with heavy metal contaminated sewage sludge. Soil Biol Biochem 26:1201–1205

    Google Scholar 

  • Fortin N, Beaumier D, Lee K, Greer CW (2004) Soil washing improves the recovery of total community DNA from polluted and high organic content sediments. J Microbiol Met 56:181–191

    CAS  Google Scholar 

  • Frostegård Å, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Google Scholar 

  • Frostegård A, Tunlid A, Bååth E (1991) Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Methods 14:151–163

    Google Scholar 

  • Frostegård A, Tunlid A, Bååth E (1993) Phospholipids fatty acid composition, biomass and activity of microbial communities from two soil types exposed to different heavy metals. Soil Biol Biochem 25:723–730

    Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity. Soil Sci 309:1387–1390

    CAS  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    PubMed  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    CAS  Google Scholar 

  • Gil-Sotres F, Trasar-Cepeda C, Leirós MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887

    CAS  Google Scholar 

  • Gleeson D, McDermott F, Clipson N (2005) Structural diversity of bacterial communities in a heavy metal mineralized granite outcrop. Environ Microbiol 8:383–393

    Google Scholar 

  • Gremion F, Chatzinotas A, Kaufmann K, Von Sigler W, Harms H (2004) Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. FEMS Microbiol Ecol 48:273–283

    PubMed  CAS  Google Scholar 

  • Griffiths BS, Bonkowski M, Roy J, Ritz K (2001) Functional stability, substrate utilisation and biological indicators of soil following environmental impacts. Appl Soil Ecol 16:49–61

    Google Scholar 

  • Griffiths BS, Hallett PD (2005) Biological and physical resilience of soil amended with heavy metal-contaminated sewage sludge. Eur J Soil Science 56:197–205

    CAS  Google Scholar 

  • Guckert JB, Antworth CP, Nichols PD, White SC (1985) Phospholipid, ester-linked fatty acid profiles as reproducibility assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31:147–158

    CAS  Google Scholar 

  • Haack SK, Garchow H, Odelson DA, Forney LJ, Klug MJ (1994) Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol 60:2483–2493

    PubMed  CAS  Google Scholar 

  • Hartmann M, Frey B, Kolliker R, Widmer F (2005) Semi-automated genetic analyses of soil microbial communities: Comparison of T-RFLP and RISA based on descriptive and discriminative statistical approaches. J Microbiol Met 61:349–360

    CAS  Google Scholar 

  • Hattori H (1992) Influence of heavy metals on soil microbial activities. Soil Sci Plant Nutr 38:93–100

    CAS  Google Scholar 

  • Heipieper HJ, Meulenbeld G, Oirschot QV, de Bont JAM (1996) Effect of environment factors on trans/cis ratio of unsaturated fatty acids in Pseudomonas putida S12. Appl Environ Microbiol 62:2773–2777

    PubMed  CAS  Google Scholar 

  • Helmisaari HS, Derome J, Fritze H, Nieminen T, Palmgren K, Salemaa M, Vanha-Majamaa I (1995) Copper in Scots pine forests around a heavy-metal smelter in Southern-Western Finland. Water Air Soil Pollut 85:1727–1732

    CAS  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16 S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    PubMed  CAS  Google Scholar 

  • Hinojosa MB, Carreira J, Garcia-Ruiz R, Dick RP (2004a) Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biol Biochem 36:1559–1568

    CAS  Google Scholar 

  • Hinojosa MB, Garcia-Ruiz R, Vinegla B, Carreira JA (2004b) Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcollar toxic spill. Soil Biol Biochem 36:1637–1644

    CAS  Google Scholar 

  • Hinojosa MB, Carreira JA, García-Ruiz R, Dick RP (2005) Microbial response to heavy-metal polluted soils: community analysis from PLFA and EL-FA extracts. J Environ Qual 34:1789–1800

    PubMed  CAS  Google Scholar 

  • Hinojosa MB, Carreira JA, Rodríguez-Maroto JM, García-Ruíz R (2008) Effects of pyrite sludge pollution on soil enzyme activities: ecological dose-response model. Sci Total Environ 25:89–99

    Google Scholar 

  • Hiroki M (1992) Effects of heavy metal contamination on soil microbial population. Soil Sci Plant Nutr 38:141–147

    CAS  Google Scholar 

  • Holtan-Hartwig L, Bechmann M, Risnes Høyås T, Linjordet R, Reier Bakken L (2002) Heavy metals tolerance of soil denitrifying communities: N2O dynamics. Soil Biol Biochem 34:1181–1190

    CAS  Google Scholar 

  • Insam H, Hutchinson TC, Reber HH (1996) Effects of heavy metal stress on the metabolic quotient of the soil microflora. Soil Biol Biochem 28:691–694

    CAS  Google Scholar 

  • Inubushi K, Goyal S, Sakamoto K, Wada Y, Yamakawa K, Arai T (2000) Influences of application of sewage sludge compost on N2O production in soils. Chemosph – Global Chang Sci 2:329–334

    CAS  Google Scholar 

  • Jenkinson DS, Oades JN (1979) A method for measuring adenosine triphosphate in soil. Soil Biol Biochem 8:209–213

    Google Scholar 

  • Jenkinson DS, Powlson DS (1976) The effects of biocidal treatments on metabolism in soil. V.A method for measuring soil biomass. Soil Biol Biochem 8:208–213

    Google Scholar 

  • Karaca A, Naseby DC, Lynch JM (2002) Effect of cadmium contamination with sewage sludge and phosphate fertiliser amendments on soil enzyme activities, microbial structure and available cadmium. Biol Fertil Soils 35:428–434

    CAS  Google Scholar 

  • Kennedy C, Smith KL (1998) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86

    Google Scholar 

  • Khas KS, Xie ZM, Huang CY (1998) Relative toxicity of lead chloride and lead acetate to microbial biomass in red soil. Chin J Appl Environ Biol 4:179–184

    Google Scholar 

  • Killham K (1985) A physiological determination of the impact of environmental stress on the activity of microbial biomass. Environ Pollut 38:283–294

    CAS  Google Scholar 

  • Kizilkaya R, Bayrakli B (2005) Effect of N-enriched sewage sludge on soil enzyme activities. Appl Soil Ecol 30:192–202

    Google Scholar 

  • Kozdrój J, van Elsas JD (2000) Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol Biochem 32:1405–1417

    Google Scholar 

  • Kozdrój J, van Elsas JD (2001) Structural diversity of microbial communities in arable soils of a heavily industrialised area determined by PCR-DGGE fingerprinting and FAME profiling. Appl Soil Ecol 17:31–42

    Google Scholar 

  • Kroppenstedt RM (1992) The genus Nocardiopsis. In: Ballows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol 11. Springer, New York, pp 1139–1156

    Google Scholar 

  • Kunito T, Saeki K, Oyaizu H, Matsumoto S (1999) Influences of copper forms on the toxicity to microorganisms in soils. Ecotoxicol Environ Saf 44:174–181

    PubMed  CAS  Google Scholar 

  • Kunito T, Saeki K, Goto S, Hayashi H, Oyaizy H, Matsumoto S (2001) Copper and zing fractions affecting microorganism in long-term sludge-amended soils. Bioresour Technol 79:135–146

    PubMed  CAS  Google Scholar 

  • Kuperman RG, Carreiro MM (1997) Relationships between soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol Biochem 29:179–190

    CAS  Google Scholar 

  • Landi L, Renella G, Moreno JL, Falchini L, Nannipieri P (2000) Influence of cadmium on the metabolic quotient, l-d-glutamic acid respiration ratio and enzyme activity, microbial biomass ratio under laboratory conditions. Biol Fertil Soils 32:8–16

    CAS  Google Scholar 

  • Leita L, De Noblil M, Muhlbachova G, Mondini C, Marchiol L, Zerbi G (1995) Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biol Fertil Soils 19:103–108

    CAS  Google Scholar 

  • Leita L, De Nobili M, Mondini C, Muhlbachova G, Marchiol L, Bragato G, Contin M (1999) Influence of inorganic and organic fertilization on soil microbial biomass, metabolic quotient and heavy metal bioavailability. Biol Fertil Soils 28:371–376

    CAS  Google Scholar 

  • Li Z, Xu J, Tang C, Wu J, Muhammad A, Wang H (2006) Application of 16 S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Chemosphere 8:1374–1380

    Google Scholar 

  • Liao M, Xie X (2007) Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining waterland of red soil area. Ecotoxicol Environ Saf 66:217–223

    PubMed  CAS  Google Scholar 

  • Loisel P, Harmand J, Zemb O, Latrille E, Lobry C, Delgenès JP, Godon JJ (2006) Denaturing gradient electrophoresis (DGE) and single strand conformation polymorphism (SSCP) molecular fingerprintings revisited by simulation and used as a tool to measure microbial diversity. Environ Microb 8:720–731

    CAS  Google Scholar 

  • Lorenz SE, McGrath SP, Giller KE (1992) Assessment of freeliving nitrogen fixation activity as a biological indicator of heavy metal toxicity in soil. Soil Biol Biochem 24:601–606

    CAS  Google Scholar 

  • Macdonald CA, Campbell CD, Bacon JR, Singh BK (2008) Multiple profiling of soil microbial communities identifies potential genetic markers of metal-enriched sewage sludge. FEMS Microbiol Ecol 65:555–564

    PubMed  CAS  Google Scholar 

  • Maliszewska W, Dec S, Wierzbicka H, Wozniakowska A (1985) The influence of various heavy metal compounds on the development and activity of soil micro-organisms. Environ Pollut 37:195–215

    CAS  Google Scholar 

  • Martensson AM (1993) Use of heterotrophic and cyanobacterial nitrogen fixation to study the impact of anthropogenic substances on soil biological processes. Bull Environ Cont Toxicol 50:466–473

    CAS  Google Scholar 

  • MIDI (1995) Sherlock microbial identification system operating manual. Version 5. MIDI, Newark, DE

    Google Scholar 

  • Nannipieri P, Grego S, Ceccanti B (1990) Ecological significance of the biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York, pp 293–355

    Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burn RG, Dick RP (eds) Enzymes in the environment. Activity, ecology and applications. Marcel Dekker, New York, pp 1–33

    Google Scholar 

  • Nichols D (2007) Cultivation gives context to the microbial ecologist. FEMS Microbiol Ecol 60:351–357

    PubMed  CAS  Google Scholar 

  • Niklinska M, Chodak M, Laskowski R (2006) Pollution-induced community tolerance of microorganisms from forest soil organic layers polluted with Zn or Cu. Appl Soil Ecol 32:265–272

    Google Scholar 

  • Norris PR, Clark DA, Owen JP, Waterhouse S (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142:775–783

    PubMed  CAS  Google Scholar 

  • Nortcliff S (2002) Standardisation of soil quality attributes. Agric Ecosyst Environ 88:161–168

    Google Scholar 

  • Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102:157–161

    PubMed  CAS  Google Scholar 

  • Olson JB, Steppe TF, Litaker RW, Paerl HW (1998) N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microb Ecol 36:231–238

    PubMed  CAS  Google Scholar 

  • Osborn AM, Moore ER, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50

    PubMed  CAS  Google Scholar 

  • Pankhurst CE, Hawke BG, McDonald HJ, Kirkby CA, Buckerfield JC, Michelsen P, O’Brien KA, Gupta VVSR, Doube BM (1995) Evaluation of soil biological properties as potential bioindicators of soil health. Austr J Experim Agricult 35:1015–1028

    Google Scholar 

  • Pennanen T, Frostegård Å, Fritze H, Bååth E (1996) Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forest. Appl Environ Microbiol 62:420–428

    PubMed  CAS  Google Scholar 

  • Pérez De Mora A, Burgos P, Madejon E, Cabrera F, Jaeckel P, Schloter M (2006) Microbial community structure and function in a soil contaminated by heavy metals: Effects of plant growth and different amendments. Soil Biol Biochem 38:327–341

    Google Scholar 

  • Petersen SO, Henriksen K, Blackburn K, King GM (1991) A comparison of phospholipid and chloroform fumigation analysis of biomass in soil: potentials and limitations. FEMS Microbiol Ecol 15:257–268

    Google Scholar 

  • Petersen SO, Frohne PS, Kennedy AC (2002) Dynamics of a soil microbial community under spring wheat. Soil Sci Soc Am J 66:826–833

    CAS  Google Scholar 

  • Philippot L, Cregut M, Chèneby D, Bressan M, Dequiet S, Martin-Laurent F, Ranjard L, Lemanceau P (2008) Effect of primary mild stresses on resilience and resistance of the nitrate reducer community to a subsequent severe stress. FEMS Microbiol Lett 285:51–73

    PubMed  CAS  Google Scholar 

  • Pierce FJ, Lal R (1991) Soil management in the 21st century. In: Lal R, Pierce FJ (eds) Soil management for sustainability. Soil and Water Conservation Society, Ankeny, IA, pp 175–189

    Google Scholar 

  • Ponder FP, Tadros M (2002) Phospholipid fatty acids in forest soil four years after organic matter removal and soil compaction. Appl Soil Ecol 19:173–182

    Google Scholar 

  • Rajapaksha RMCP, Tobor-Kapłon MA, Bååth E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70:2966–2973

    PubMed  CAS  Google Scholar 

  • Ranjard L, Nazaret S, Gourbière F, Thioulouse J, Linet P, Richaume A (2006) A soil microscale study to reveal the heterogeneity of Hg(II) impact on indigenous bacteria by quantification of adapted phenotypes and analysis of community DNA fingerprints. FEMS Microbiol Ecol 31:107–115

    Google Scholar 

  • Ratledge C, Wilkinson SG (1988) Microbial lipids. Academic Press, London

    Google Scholar 

  • Rencher AC (2002) Methods of mulivariante data. Wiley, New york, p 708

    Google Scholar 

  • Renella G, Menchb M, Leliec D, Pietramellara G, Aschera J, Ceccherinia MT, Landia L, Nannipieria P (2004) Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils. Soil Biol Biochem 36:443–451

    CAS  Google Scholar 

  • Renella G, Mench M, Gelsomin A, Landi L, Nannipieri P (2005) Functional activity and microbial community structure in soils amended with bimetallic sludges. Soil Biol Biochem 37:1498–1506

    CAS  Google Scholar 

  • Ritz K (2007) The plate debate: cultivable communities have no utility in contemporary environmental microbial ecology. FEMS Microbiol Ecol 60:358–362

    PubMed  CAS  Google Scholar 

  • Roselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67

    Google Scholar 

  • Rother JA, Millbank JW, Thornton I (1982) Seasonal fluctuations in nitrogen fixation (acetylene reduction) by free-living bacteria in soils contaminated with cadmium, lead and zinc. J Soil Sci 33:101–113

    CAS  Google Scholar 

  • Rutgers M, Breure AM (1999) Risk assessment, microbial communities, and pollution-induced community tolerance. Human Ecol Risk Assess 5:661–670

    CAS  Google Scholar 

  • Rutgers M, Wouterse M, Boivin ME, Calhoa F, Pampura T, Naumova N (2003) Bacterial and fungal communities in contaminated soil of the Kola Peninsula (Russia). In: Proceedings of the International Symposium on Structure and Function of Soil Microbiota, Marburg, P062

    Google Scholar 

  • Sandaa RA, Torsvik V, Enger Ø, Daae FL, Castberg T, Hahn D (1999) Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol Ecol 30:237–251

    PubMed  CAS  Google Scholar 

  • Sandaa RA, Torsvik V, Enger Ø (2001) Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biol Biochem 33:287–295

    CAS  Google Scholar 

  • Schindler DW (1990) Experimental perturbations of whole lakes as tests of hypotheses concerning ecosystem structure and function. Oikos 57:25–41

    Google Scholar 

  • Seybold CA, Herrick JE, Brejda JJ (1999) Soil resilience: a fundamental component of soil quality. Soil Sci 164:224–234

    CAS  Google Scholar 

  • Singh BK, Nazaries L, Munro S, Anderson I, Campbell CD (2006) Use of multiplex terminal restriction fragment length polymorphism for rapid and simultaneous analysis of different components of the soil microbial community. Appl Environ Microbiol 72:7278–7285

    PubMed  CAS  Google Scholar 

  • Smit E, Leeflang P, Wernars K (1997) Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol Ecol 23:249–261

    CAS  Google Scholar 

  • Smith JL, Paul EA (1990) The significance of soil microbial biomass estimations. In: Bollag JM, Strotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York, pp 357–396

    Google Scholar 

  • Smith MS, Tiedje JM (1979) Phases of denitrification following oxygen depletion in soil. Soil Biol Biochem 11:261–267

    CAS  Google Scholar 

  • Smolders E, Brans K, Coppens F, Merckx R (2001) Potential nitrification rate as a tool for screening toxicity in metal-contaminated soils. Environm Toxicol Chem 20:2469–2474

    CAS  Google Scholar 

  • Society for Ecological Restoration International Science & Policy Working Group (2004) The SER International Primer on ecological restoration. http://www.ser.org & Tucson: Society for Ecological Restoration International

  • Sparling GP (1992) Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Aust J Soil Res 30:195–207

    CAS  Google Scholar 

  • Sparling GP (1997) Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 97–119

    Google Scholar 

  • Speir TW, Ross DJ (2002) Hydrolytic enzyme activities to assess soil degradation and recovery. In: Burns RG, DickRP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, Inc., New York, pp 403–431

    Google Scholar 

  • Speir TW, Kettles HA, Parshotam A, Searle PL, Vlaar LNC (1995) A simple kinetic approach to derive the ecological dose value, ED50, for the assessment of Cr(VI) toxicity to soil biological properties. Soil Biol Biochem 27:801–810

    CAS  Google Scholar 

  • Speir TW, Kettles HA, Parshotam A, Searle PL, Vlaar LNC (1999) Simple kinetic approach to determine the toxicity of As[V] to soil biological properties. Soil Biol Biochem 31:705–713

    CAS  Google Scholar 

  • Spiegelman D, Whissell G, Greer CW (2005) A survey of the methods for the characterization of microbial consortia and communities. Can J Microbiol 51:355–386

    PubMed  CAS  Google Scholar 

  • Stahl PD, Parkin TB (1996) Relationship of soil ergosterol concentration and fungal biomass. Soil Biol Biochem 28:847–855

    CAS  Google Scholar 

  • Steger K, Jarvis Å, Smårs S, Sundh I (2003) Comparison of signature lipid methods to determine microbial community structure in compost. J Microbiol Methods 55:371–382

    PubMed  CAS  Google Scholar 

  • Stuczynski TI, McCarty GW, Siebielec G (2003) Response of soil microbiological activities to cadmium, lead, and zinc salt amendments. J Environ Qual 32:1346–1355

    PubMed  CAS  Google Scholar 

  • Taylor JP, Wilson B, Mills MS, Burns RG (2002) Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol Biochem 34:387–401

    CAS  Google Scholar 

  • Tiedje JM, Asuming-Brempong S, Nusslein K, Marsh TL, Flynn SJ (1999) Openining the black box of soil microbial diversity. Appl Soil Ecol 13:109–122

    Google Scholar 

  • Tobor-Kaplan MA, Bloem J, Römkens PFA, Ruiter PCD (2006) Functional stability of microbial communities in contaminated soils near a zinc smelter (Budel, the Netherlands). Ecotoxicol 15:187–195

    Google Scholar 

  • Tollefson TS, McKercher RB (1983) The degradation of 14C-labelled phosphatidyl choline in soil. Soil Biol Biochem 15:145–148

    CAS  Google Scholar 

  • Tonin C, Vandenkoornhuyse P, Joner EJ, Straczeck J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168

    CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL, Sorheim R, Michalsen J, Salte K (1994) Use of DNA analysis to determine the diversity of microbial communities. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. Wiley, Chichester, pp 39–48

    Google Scholar 

  • Torsvik V, Sørheim R, Goksøyr J (1996) Total bacterial diversity in soil and sediment communities – a review. J Indust Microbiol 17:170–178

    CAS  Google Scholar 

  • Torsvik V, Daae FL, Sandaa RA, Ovreas L (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotech 64:53–62

    CAS  Google Scholar 

  • Turpeinen R, Kairesalo T, Häggblom MM (2004) Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiol Ecol 47:39–50

    PubMed  CAS  Google Scholar 

  • van Beelen P, Doelman P (1997) Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediment. Chemosphere 34:455–499

    Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    CAS  Google Scholar 

  • Vásquez-Murrieta MS, Cruz-Mondragón C, Trujillo-Tapia N, Herrera-Arreola G, Govaerts B, Van-Cleemput O, Dendooven L (2006) Nitrous oxide production of heavy metal contaminated soil. Soil Biol Biochem 38:931–940

    Google Scholar 

  • Vestal JR, White DC (1989) Lipid analysis in microbial ecology. Quantitative approaches to the study of microbial communities. Bioscience 39:535–541

    PubMed  CAS  Google Scholar 

  • Vinebrooke RD, Schindler DW, Findlay DL, Turner MA, Paterson M, Milis KH (2003) Trophic dependence of ecosystem resistance and species compensation in experimentally acidified lake 302S Canada. Ecosystems 6:101–113

    Google Scholar 

  • Visser S, Parkinson D (1992) Soil biological criteria as indicators of soil quality: soil microorganisms. Am J Altern Agri 7:33–37

    Google Scholar 

  • Volkov J, Wolinsky M, Dunbar J (2006) Comment on “Computational improvements reveal great bacterial diversity and high metal toxicity in soil”. Science 313:918a

    Google Scholar 

  • Wallenstein MD, Weintraub MN (2008) Emerging tools for measuring and modelling the in-situ activity of soil extracellular enzymes. Soil Biol Biochem. doi:10.1016/j.soilbio.2008.01.024

    Google Scholar 

  • Wardle DA, Ghani A (1995) A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol Biochem 27:1601–1610

    CAS  Google Scholar 

  • Winding A, Hund-Rinke K, Rutgers M (2005) The use of microorganism in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:230–248

    PubMed  CAS  Google Scholar 

  • Yakovchenko V, Sikora LJ, Kaufman DD (1996) A biologically based indicator of soil quality. Biol Fertil Soils 21:245–251

    Google Scholar 

  • Yang Y, Campbell CD, Clark L, Camerson CM, Paterson E (2006) Microbial indicators of heavy metal contamination in urban and rural soils. Chemosph 63:1942–1952

    CAS  Google Scholar 

  • Yao HY, Xu JM, Huang CY (2003) Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils. Geoderma 115:139–148

    CAS  Google Scholar 

  • Young TP, Petersen DA, Clary JJ (2005) The ecology of restoration: Historical links, emerging issues and unexplored realms. Ecol Lett 8:662–673

    Google Scholar 

  • Zelles L (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275–294

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Belén Hinojosa .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hinojosa, M.B., García-Ruiz, R., Carreira, J.A. (2010). Utilizing Microbial Community Structure and Function to Evaluate the Health of Heavy Metal Polluted Soils. In: Soil Heavy Metals. Soil Biology, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02436-8_9

Download citation

Publish with us

Policies and ethics