Skip to main content

Remediation of Heavy Metal Contaminated Tropical Land

  • Chapter
  • First Online:
Soil Heavy Metals

Part of the book series: Soil Biology ((SOILBIOL,volume 19))

Abstract

Since the Industrial Revolution, human activities have resulted into the eventual release of huge amounts of chemicals (organic/inorganic) into the tropical environment, either deliberately for agricultural and industrial purposes, or accidentally through the mishandling of chemicals. The release of heavy metals into the terrestrial ecosystem is a major problem. The tropical ecosystem is the largest in the world, and has a high population density. Soil acidity is a major problem in this ecosystem, and this soil acidity means that metals can be easily mobilized, causing a serious risk to the terrestrial environment. Heavy metals in soil pose a serious ecological risk as these metals cannot be degraded or permanently removed from the land. The development of methods for the in situ remediation of heavy metal contaminated soils is needed to make such soils acceptable for agriculture.

In this chapter, various methods of remediating heavy metal contaminated land are described. It is known that microorganisms are present in almost every environment on Earth and that they are capable of degrading and minimizing a broad range of toxic chemicals. In general, in situ bioremediation and/or phytoremediation are suitable methods for reclaiming heavy metal contaminated sites. However, the numerous classes and types of these chemicals apart from the soil structure complicate the removal of many toxic metals from the environment. As an alternative, an ecological approach has been developed involving the use of plants to clean up or remediate soils contaminated with toxic metals. A group of plants termed “hyperaccumulators” are considered to be the best candidates for taking up toxic metals, transporting them, and accumulating them. Biotechnological applications, especially transgenic plants, probably hold the most promise for augmenting agricultural production. However, the application of these technologies to the agriculture of tropical regions containing the largest areas of low productivity, where they are most needed, remains a major challenge. Some of the most important issues that need to be considered to ensure that plant biotechnology is effectively transferred to the developing world are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aickin RM, Dean ACR, Cheetham AK, Skarnulis AJ (1979) Electron microscope studies on the uptake of lead by a Citrobacter sp. Microbios Lett 9:7–15

    Google Scholar 

  • Hartemink AE (2004) Soils of the tropics. Geoderma 123:373–375

    Article  Google Scholar 

  • Alkorta I (2004) Plants against the global epidemic of arsenic poisoning. Environ Int 30(7):949–951

    Article  PubMed  CAS  Google Scholar 

  • Alloway BJ, Jackson AP (1991) The behavior of heavy metals in sewage sludge amended soils. Sci Total Environ 100:151–176

    Article  PubMed  CAS  Google Scholar 

  • Asatiani NV (2004) Effect of chromium (VI) action on Arthrobacter oxydans. Curr Microbiol 49:321–326

    Article  PubMed  CAS  Google Scholar 

  • Bååth EÅ, Frostegård D-R, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64:238–245

    PubMed  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metalic elements. a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49

    Article  Google Scholar 

  • Bañuelos GS (2000) Phytoextraction of selenium from soils irrigated with selenium-laden effluent. Plant Soil 224:251–258

    Article  Google Scholar 

  • Barker AV, Bryson GM (2002) Bioremediation of Heavy Metals and Organic Toxicants by Composting. Mini-Review Sci World J 2:407–420

    CAS  Google Scholar 

  • Beti WR, Cunningham SD (1993) Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev Biol 29:207–212

    Article  Google Scholar 

  • Black H (1995) Absorbing possibilities: phytoremediation. Environ Health Respect 103:1106–1108

    CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. New York, Wiley, pp 53–70

    Google Scholar 

  • Böckl M, Blay K, Fischer K, Mommertz S, Filser J (1998) Colonisation of a copper- decontaminated soil by micro- and mesofauna. Appl Soil Ecol 9(1–3):489–494

    Article  Google Scholar 

  • Bogomolov DM, Chen SK, Parmelee RW, Subler S, Edwards CA (1996) An ecosystem approach to soil toxicity testing: a study of copper contamination in laboratory soil microcosms. Appl Soil Ecol 4:95–105

    Article  Google Scholar 

  • Brenes E, Pearson RW (1973) Soil Sci 116:295–302

    Article  CAS  Google Scholar 

  • Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493

    Article  CAS  Google Scholar 

  • Brim H (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol Jan 18:85–90

    Article  CAS  Google Scholar 

  • Brooks RR (1994) Plants and chemical elements: biochemistry, uptake, tolerance and toxicity. In: Gargo ME (ed) VCH Verlagsgesellsschaft. Weinheim, Germany, pp 88–105

    Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 1:359–362

    Article  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J 59:125–133

    Article  CAS  Google Scholar 

  • Bubb JM, Lester JN (1991) The impact of heavy metals on lowland rivers and the implications for man and the environment. Sci Total Env 100:207–233

    Article  CAS  Google Scholar 

  • Burns RG, Rogers S, McGhee I (1996) Remediation of inorganics and organics in industrial and urban contaminated soils. In: Naidu R, Kookana RS, Oliver DP, Rogers S, McLaughlin MJ (eds) Contaminants and the soil environment in the Australia pacific region. Kluwer, London, pp 361–410

    Google Scholar 

  • Buringh P, Van Haenst HD, Staring Y (1975) J Exp Bot 24:1189–1195

    Google Scholar 

  • Cataldo DA, Wildung RE (1978) Soil and plant factors influencing the accumulation of heavy metals by plants. Environ Health perspect 27:149–159

    Article  PubMed  CAS  Google Scholar 

  • Chaney RL, Li YM, Angle JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M (2000) Improving metal hyperaccumulation wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Banelos G (eds) Phytoremediation of contaminated soil and water. Boca Raton, FL, Lewis Publishers, pp 129–158

    Google Scholar 

  • Chaudhry TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation – focusing on accumulator plants that remediate metalcontaminated soils. Australian J Ecotoxicol 4:37–51

    CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their role in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed  CAS  Google Scholar 

  • Crowley DE, Wang YC, Reid CPP, Szansiszlo PJ (1991) Mechanism of iron acquisition from siderophores by microorganisms and plants. Plant and Soil 130:179–198

    Article  CAS  Google Scholar 

  • Cunningham S (1995) In Proceedings/Abstracts of the Fourteenth Annual Symposium, Current Topics in Plant Biochemistry – Physiology and Molecular Biology Columbia, April 19–22:47–48

    Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    PubMed  CAS  Google Scholar 

  • Cunningham SD, Shann JR, Crowley D, Anderson TA (1997) Phytoremediation of contaminated water and soil. In: Krueger EL, Anderson TA, Coats JP (eds) Phytoremediation of soil and water contaminants. American Chemical Society, Washington, DC

    Google Scholar 

  • Cunningham CJ, Philip JC (2000) Comparison of bioaugmentation and biostimulation in ex situ treatment of diesel contaminated soil. Land Contamination and Reclamation, University of Edinburgh, Scotland. de Maíz y Trigo

    Google Scholar 

  • Dierberg FE, DeBusk TA, Goule NA (1987) In Reddy KB and Smith WH (Ed.) Aquatic Plants for Water Treatment and Resource Recovery. Florida, Magnolia Publishing Inc, pp. 497–504

    Google Scholar 

  • Dumestre A, Sauve S, McBride M, Baveye P, Berthelin J (1999) Copper speciation and microbial activity in long-term contaminated soils. Arch Environ Contam Toxicol 36:124–131

    Article  PubMed  CAS  Google Scholar 

  • Dunal R (1988) Management and fertilization of upland crops in the tropics. In Wang Y (Ed.). Nanjing, China: Nanjing Institute of Soil Science:1–5

    Google Scholar 

  • Dushenkov D (2003) Trends in phytoremediation of radionuclides. Plant and Soil 249:167–175

    Article  CAS  Google Scholar 

  • Dushenkov S, Vasudev D, Kapolnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997) Environ Sci Technol 31:3468–3476

    Article  CAS  Google Scholar 

  • Environmental Research, Office of Science, US Department of Energy. What is bioremediation 2003. 9

    Google Scholar 

  • Evanko Cynthia R, Dzombak DA(1997) Remediation of Metals-Contaminated Soil and Groundwater, GWRTAC, October. www.gwrtac.org

  • Farago ME, Parsons PJ (1994) The effects of various platinum metal species on the water plant Eichhornia crassipes (MART). Chem Spec Bioavail 6:1–12

    CAS  Google Scholar 

  • Federal Remediation Technologies Roundtable (FRTR) (2000) In-situ biological treatment.remediation technologies screening matrix and reference guide, version 4.0. www.frtr.gov/matrix2/section4/4_1.html. 2004/04/07

  • Ford T, Mitchell (1992) Microbial transport of toxic metals. In Environmental Microbiology, Wiley-Liss, pp. 83–101

    Google Scholar 

  • Food and Agriculture Organization (FAO) (1991) World Soil Resources Report 66 Freedman B, Hutchinson TC (1980) Can J Bot 58:1722–1736

    Google Scholar 

  • Gadd GM (1990) Metal tolerance. In: Clive E (ed) Microbiology of extreme environments. Open Univ Press, London, pp 178–207

    Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  PubMed  CAS  Google Scholar 

  • Gareia M (1984) J Soil Sci 138:147–152

    Article  Google Scholar 

  • Gaymard F (1998) Identification and disruption of a plant shaker-like outward channel involved in K + release into the xylem sap. Cell 94:647–655

    Article  PubMed  CAS  Google Scholar 

  • Gerard E, Echevarria G, Sterckeman T, Morel JLP (2000) Availability of Cd to three plant species varying in accumulation pattern. J Environ Qual 29:1117–1123

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    Article  PubMed  CAS  Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY, Raskin I (1999) Use of Plant root for phytoremediation and molecular farming. Proc Natl Acad Sci USA 96:5973–5977

    Article  PubMed  CAS  Google Scholar 

  • Goyer RA (1996) Toxic effects of metals. In: Klaassen CD (ed) Casarett & Doull’s toxicology: basic science of poisons. McGraw-Hill, New York

    Google Scholar 

  • Grill E, Winnacker L, Zenk HM (1987) Phytochelatins, the heavy-metal- binding peptides of plants, are synthesized from Glutathione by a specific – glutamylcysteine dipeptidyl transpeptidase (Phytochelatin Synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  Google Scholar 

  • Haug A (1984) Molecular aspects of aluminium toxicity. CRC Crit Rev Plant Sci 1:345–373

    Article  CAS  Google Scholar 

  • Hawkes SJ (1997) What Is a Heavy Metal? J Chem Edu 74:1374

    Article  CAS  Google Scholar 

  • Helsen L, VD BE, Broeck KVD, Vandecasteele C (1997) Low temperature pyrolysis of CCA-treated wood waste: chemical determination and statistical analysis of metal input and output; mass balances. Waste Manag 17:79–86

    Article  CAS  Google Scholar 

  • Henry JR (2000) In an overview of phytoremediation of lead and mercury. NNEMS Report. Washington DC, pp. 3–9

    Google Scholar 

  • Hetland MD, Gallagher JR, Daly DJ, Hassett DJ, Heebink LV (2001) Processing of plants used to phytoremediate lead-contaminated sites. In: Leeson A, Foote EA, Banks MK, Magar VS (eds) Phytoremediation, wetlands, and sediments, the sixth International in situ and on-site bioremediation symposium, San Diego, California, 4–7 June. Battelle Press, Columbus, Richland, pp 129–136

    Google Scholar 

  • Hinchman R, Negri C (1997) Hytoremediation becoming quite “Poplar”- Haz. Waste Consult 15(3):1–16

    Google Scholar 

  • Hirsch RE (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    Article  PubMed  CAS  Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead contaminated soils-Role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–806

    Article  CAS  Google Scholar 

  • Iyer PVR, Rao TR, Grover PD (2002) Biomass thermochemical characterization, 3rd edn. p. 38.

    Google Scholar 

  • Karley AJ, Leigh RA, Sanders D (2000) Where do all the ions go? the cellular basis of differential ion accumulation in leaf cells. Trends Plant Sci 5:465–470

    Article  PubMed  CAS  Google Scholar 

  • Kelly JJ, Tate RL (1998) Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter. J Environ Qual 27:609–617

    Article  CAS  Google Scholar 

  • Kelly JJ, Häggblom MM, Tate RL (2003) Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biol Fertil Soils 38:65–67

    Article  CAS  Google Scholar 

  • Kennedy IR (1986) The impact on the environment of nitrogen and sulfur cycling. In Kennedy IR (Ed.). Cambridge, UK, Cambridge Univ Press, pp. 34–92

    Google Scholar 

  • Kennish MJ (1992) Ecology of estuaries: anthropogenic effects. CRC Press, Boca Raton, FL, p 494

    Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kinnersely AM (1993) Plant Growth Regulation 12:207–217

    Article  Google Scholar 

  • Kochian L (1996) In International Phytoremediation Conference, Southborough, MA. May 8–10

    Google Scholar 

  • Koppolua L, Agblover FA, Clements LD (2003) Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part II Lab-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass Bioenergy 25:651–663

    Article  CAS  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  Google Scholar 

  • Lal R, Sanchez PA (Eds.) (1992) Myths and Science of Soils of the Tropics. SSSA Special Publication, vol 29. SSSA-ASA, Madison

    Google Scholar 

  • Lambert M, Pierzynski G, Erickson L, Schnoor J (1997) Remediation of Lead, Zinc, and Cadmium-contaminated soils. In: Hester R, Harrison R (eds) Contaminated land and its reclamation. Royal Soc Chem, Cambridge, pp 91–102

    Chapter  Google Scholar 

  • Liao JP, Lin XG, Cao ZH, Shi YQ, Wong MH (2003) Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment. Chemosphere 50:847–853

    Article  PubMed  CAS  Google Scholar 

  • Lopes AS, Cox FR (1977) Soil Sci Am J 41:743–747

    Article  Google Scholar 

  • Lovley DR (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286

    Article  PubMed  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kenelley ED (2001) Bioremediation: a fern that hyperaccumulates arsenic. Nature 409:579

    Article  PubMed  CAS  Google Scholar 

  • Macaskie LE, Dean ACR, Cheetam AK (1987) Cadmium accumulation by a Citrobacter sp. The chemical nature of the accumulated metal precipitate and its location on the bacterial cells. J Gen Microbiol 133:539–547

    CAS  Google Scholar 

  • Belén Hinojosa M, Carreira JA, García-Ruíz R, Dick RP (2005) Microbial response to heavy metal polluted soils-community analysis from phospholipid-linked fatty acids and ester-linked fatty acids extracts. J Environ Qual 34:1789–1800

    Article  PubMed  CAS  Google Scholar 

  • Mench MJ, Didier VL, Loffler M, Gomez A, Masson P (1994) J Environ Qual 23:785–792

    Article  Google Scholar 

  • Michael G (2001) “Rainforest Climate”, http://passporttoknowledge.com/rainforest/GEOsystem/Rainforests/climate.html

  • Mohapatra PK (2006) Text book of environmental biotechnology. IK International Publishing House Pvt. Ltd. ISBN 81-88237-54-X, pp. 357–394

    Google Scholar 

  • McNeil KR, Waring S (1992) Contaminated land treatment technologies. In: Rees JF (ed) Society of chemical industry. Elsevier, London, pp 143–159

    Google Scholar 

  • Mueller B, Rock S, Gowswami Dib, Ensley D (1999) Phytoremediation decision tree- prepared by – Interstate technology and regulatory cooperation work Group, pp. 1–36

    Google Scholar 

  • Musgrove S (1991) In: Proceedings of the International Conference on Land Reclamation, University of Wales. Elsevier Science Publication, Essex, UK

    Google Scholar 

  • National Research Council (2003) Rittmann Bruce, Alvarez-Cohen, Lisa Bedient, B Philip, Brown A Richard, Chapelle H Francis. In situ bioremediation. When does it work? p. 13

    Google Scholar 

  • Natural and Accelerated Bioremediation Research (NABIR) (2003) Program, office of Biological and Environmental Research, Office of Science, US Department of Energy. What is bioremediation p. 9

    Google Scholar 

  • Nicks L, Chambers MF (1994) Nickel farm. Discover September, p. 19

    Google Scholar 

  • North NN (2004) Change in bacterial community structure during in situ biostimulation of subsurface sediment contaminated with uranium and nitrate. Appl Environ Microbiol (Aug) 70:4911–4920

    Article  CAS  Google Scholar 

  • Obed S, Kenneth A (2002) Soil bioremediation: In-situ vs. Ex-situ (Costs, benefits, and effects). WSP and Göteborg Energi 2002

    Google Scholar 

  • Ow DW (1996) Heavy metal tolerance genes-prospective tools for bioremediation. Res Conserv Recycling 18:135–149

    Article  Google Scholar 

  • Pandey S, Ceballos H, Granados G, Knapp E (1994) Stress tolerance breeding: maize that resist insects, drought, low nitrogen and acidic soils. In: Edmeades GE, Deutsch JA (eds) Maize program, a special report. Centro Internacional de Mejoramiento de Maíz y Trigo, Mexico, DF

    Google Scholar 

  • Pan WP, Richards GN (1990) Volatile products of oxidative pyrolysis of wood: influence of metal ions. J Anal Appl Pyrolysis 17:261–273

    Article  CAS  Google Scholar 

  • Pennanen T, Frostegård A, Fritze H, Bååth E (1996) Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forest. Appl Environ Microbiol 62:420–428

    PubMed  CAS  Google Scholar 

  • Pinkart HC, Ringelberg DB, Piceno YM, Macnaughton SJ, White DC (2002) Biochemical approaches to biomass measurements and community structure analysis. In CJ Hurst RL Crawford GR, pp. 101–113

    Google Scholar 

  • Preston GM (2004) Plant perceptions of plant growth-promoting Pseudomonas. Philos Trans R Soc Lond B Biol Sci 359:907–918

    Article  PubMed  CAS  Google Scholar 

  • Qian JH, Zayed A, Zhu YL, Terry NP (1999) Phytoaccumulation of trace elements by wetland plants. Uptake and accumulation of ten trace elements by twelve plant species. J Environ Qual 28:1448–1455

    Article  CAS  Google Scholar 

  • Rajapaksha RMCP, Tobor-Kaplon MA, Bååth E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70:2966–2973

    Article  PubMed  CAS  Google Scholar 

  • Rajendran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41(9):935–944

    PubMed  CAS  Google Scholar 

  • Rashmi K (2004) Bioremediation of 60Co from simulated spent decontamination solutions. Sci Total Environ 328:1–14

    Article  PubMed  CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S, Salt D (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48

    Article  PubMed  CAS  Google Scholar 

  • Reed DT (1999) Radiotoxicity of plutonium in NTA-degrading Chelatobacter heintzii cell suspensions. Biodegradation 10:251–260

    Article  PubMed  CAS  Google Scholar 

  • Reed DT, Tasker IR, Cunnane JC, Vandegrift GF (1992) Environmental remediation removing organic and metal ion pollutants. In Vandgrift GF Reed DT and Tasker IR (Eds.) American Chemical Society, Washington DC, pp. 1–19

    Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    Article  CAS  Google Scholar 

  • Richards GN, Zheng G (1991) Influence of metal ions and of salts on products from pyrolysis of wood: applications to thermochemical processing of newsprint and biomass. J Anal Appl Pyrolysis 21:133–146

    Article  CAS  Google Scholar 

  • Rulkens WH, Tichy R, Grotenhuis JTC (1998) Remediation of polluted soil and sediment: perspectives and failures. Water Sci Technol 37:27–35

    CAS  Google Scholar 

  • Saxena P, Bhattacharyya AK, Mathur N (2006) Nickel tolerance and accumulation by filamentous fungi from sludge of metal finishing industry BioMicroWorld-2005 special issue”, edited by Antonio Méndez-Vilas. Geomicrobiol J (Special Issue) 23:333–340

    CAS  Google Scholar 

  • Saxena P, Bhattacharyya AK (2006) Soil amendment with sludge generated from metal finishing industries and its impact on metabolic quotient. Modern multidisciplinary applied microbiology. Exploiting microbes and their interactions ISBN 3-527-31611-6 http://www.formatex.org/biomicroworld2005/files/contents.pdf

  • Saxena P, Bhattacharyya AK (2005) environment risk assessment of hazardous waste generating smallscale metal finishing industries, India: a case Study. 20th International Conference on Solid Waste Tech and Management, Philadelphia, PA, USA. April 3–6, 2005

    Google Scholar 

  • Saxena P, Bhattacharyya AK (2005) Inventorisation of environmental risk associated with hazardous waste generated in small scale industrial area of Delhi, India. Headwater control VI: hydrology, ecology and water resources in headwaters. Bergen, Norway, 20–23 JUNE 2005

    Google Scholar 

  • Sadowsky MJ (1999) In Phytoremediation: Past promises and future practices – Proceedings of the 8th International Symposium on Microbial Ecology. Halifax, Canada:1–7

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Blaylock M, Nanda Kumar PBA, Dushenkov V, Ensley BD, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Pickering IJ, Prince RC, Gleba D, Dushenkov S, Smith RD, Raskin I (1997) Metal accumulation by aquacultured seedlings of Indian mustard. Environ Sci Technol 31:1636–1644

    Article  CAS  Google Scholar 

  • Sharma PD (2007) Ecol Environ. Rastogi Publication, New Delhi. ISBN ISBN 978-81-7133-905-1

    Google Scholar 

  • Shi W, Becker J, Bischoff M, Turco RF, Konopka AE (2002) Association of microbial community composition and activity with lead, chromium, and hydrocarbon contamination. Appl Environ Microbiol 68:3859–3866

    Article  PubMed  CAS  Google Scholar 

  • Sigg L (1987) Surface chemical aspects of the distribution and fate of metal ions in Lakes. In: Stumn W (ed) Aquatic surface chemistry: chemical processes at the particle-water interface. Wiley, New York

    Google Scholar 

  • Simeonova DD (2004) Microplate screening assay for the detection of arsenite-oxidizing and arsenate-reducing bacteria. FEMS Microbiol Lett 237:249–253

    Article  PubMed  CAS  Google Scholar 

  • Singh SP, Ghosh M (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    CAS  Google Scholar 

  • Singh SP, Ghosh M (2003) A Comparative study on effect of cadmium, chromium and lead on seed germination of weed and accumulator plant species. Indian J Environ Protec 23:513–518

    CAS  Google Scholar 

  • Smith B (1993) Remediation update funding the remedy. Waste Manage Environ 4:24–30

    Google Scholar 

  • Subhas KS, Irvine RL (1998) Bioremediation: fundamentals and applications. Technomic Publishing, Volume I, pp. 283–290

    Google Scholar 

  • Sung K (2004) Plant aided bioremediation in the vadose zone: model development and applications. J Contam Hydrol 73:65–98

    Article  PubMed  CAS  Google Scholar 

  • USEPA (2000) Introduction to phytoremediation, National Risk Management Research Laboratory, Office of Research and Development, EPA/600/R-99/107, February 2000

    Google Scholar 

  • The United States Environmental Protection Agency (USEPA) (2001) Remediation case studies. Federal Remediation Technology Roundtable. Report 542-F-01-032

    Google Scholar 

  • The United States Environmental Protection Agency (USEPA) (2003) Underground storage tanks. www.epa.gov/swerust1/ustsystm/erpdoc.pdf. 2004/01/16

  • USEPA (2004) Cleaning up the Nation’s waste sites: markets and technology trends. EPA 542-R-04-015

    Google Scholar 

  • US President’s Advisory Committee Report (1967), pp. 20–45

    Google Scholar 

  • Vala AK (2004) Tolerance and accumulation of hexavalent chromium by two seaweed associated Aspergilli. Mar Pollut Bull 48:983–985

    Article  PubMed  CAS  Google Scholar 

  • Van Zwieten L, Rust J, Kingston T, Merrington G, Morris S (2004) Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils. Sci Total Environ 329:29–41

    Article  PubMed  CAS  Google Scholar 

  • Von Uexküll HR, Mutert E (1995) Plant Soil 171:1–15

    Article  Google Scholar 

  • Van Schoonhoven A, Voysest O (1980) Bean Production Problems in the Tropic In Schwartz M and Pastor-Corrales J (Eds.) (Centro Internacional de Agricultura Tropical, Cali, Colombia), 2nd Edn. pp. 33–58

    Google Scholar 

  • Vassil AD, Kapulnik Y, Raskin I, Salt DE (1998) The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol 117:447–491

    Article  PubMed  CAS  Google Scholar 

  • Wood P (1997) Remediation methods for contaminated sites. In: Hester R, Harrison R (eds) Contaminated land and its reclamation. Royal Soc Chem, Cambridge, pp 47–71

    Google Scholar 

  • Williams GM (1988) Land Disposal of Hazardous waste. Engineering and Environmental issues. pp. 37–48

    Google Scholar 

  • World’s largest Map store, World Vegetation (Terrestrial Biomes) Map by The http://www.maps.com/ref_map.aspx?pid=12881

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to their B.Tech (Biotech) 2008 students, Vijyendra, Gaurav, Preetika, Raman, Prachy, Aparna, Anant, and Harsh, for providing updates on knowledge and research in this field. We are also thankful to Major General K.K. Ohri (AVSM, Retd.), Mr. Aseem Chauhan (C-VI), and Prof. Suprabhat Ray, Director, Research, for encouraging us and for their discussions on this subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Saxena .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saxena, P., Misra, N. (2010). Remediation of Heavy Metal Contaminated Tropical Land. In: Soil Heavy Metals. Soil Biology, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02436-8_19

Download citation

Publish with us

Policies and ethics