Skip to main content

Effect of Heavy Metals on Saprotrophic Soil Fungi

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 19))

Abstract

Heavy metals represent an important group of soil pollutants that contribute to the formation of specific “toxic” habitats characterized by alterations in the relative abundances of soil bacteria and fungi, changes in fungal community composition, and interference with environmental processes of soil organic matter transformation. They also contribute to the heterogeneity of soil, forming microhabitats that are toxic to varying degrees within the soil ecosystem or soil profile. Saprotrophic fungi are especially sensitive to heavy metals since they rely heavily on extracellular enzymes for nutrient acquisition (ligninolytic, cellulolytic, and hemicellulolytic enzymes, as well as several others), and these enzymes are often a target of heavy metal toxicity. To cope with heavy metal toxicity, fungi have evolved a set of response mechanisms that limit the toxicity of the metal to their cells. In addition, saprotrophic and mycorrhizal fungi are also the biogenic agents of metal mobilization from minerals and immobilization into novel, mycogenic minerals, such as metal oxalates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akerblom S, Bååth E, Bringmark L, Bringmark E (2007) Experimentally induced effects of heavy metal on microbial activity and community structure of forest mor layers. Biol Fertil Soils 44:79–91

    Google Scholar 

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl Environ Microbiol 65:2926–2933

    PubMed  CAS  Google Scholar 

  • Anderson P, Davidson CM, Littlejohn D, Ure AM, Shand CA, Cheshire MV (1997) The translocation of caesium and silver by fungi in some Scottish soils. Commun Soil Sci Plant Anal 28:635–650

    CAS  Google Scholar 

  • Arnebrant K, Bååth E, Nordgren A (1987) Copper tolerance of microfungi isolated from polluted and unpolluted forest soil. Mycologia 79:890–895

    CAS  Google Scholar 

  • Bååth E, Diaz-Ravina M, Bakken LR (2005) Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil. Microb Ecol 50:496–505

    PubMed  Google Scholar 

  • Babich H, Stotzky G (1977) Effect of cadmium on fungi and on interactions between fungiand bacteria in soil - influence of clay minerals and pH. Appl Environ Microbiol 33:1059–1066

    PubMed  CAS  Google Scholar 

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91

    CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases - occurrence and properties. FEMS Microbiol Rev 30:215–242

    PubMed  CAS  Google Scholar 

  • Baldrian P (2008a) Enzymes of saprotrophic Basidiomycetes. In: Boddy L, Frankland J, van West P (eds) Ecology of saprotrophic Basidiomycetes. Academic Press, New York, pp 19–41

    Google Scholar 

  • Baldrian P (2008b) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12

    Google Scholar 

  • Baldrian P, Gabriel J (2002a) Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol Lett 206:69–74

    PubMed  CAS  Google Scholar 

  • Baldrian P, Gabriel J (2002b) Intraspecific variability in growth response to cadmium of the wood-rotting fungus Piptoporus betulinus. Mycologia 94:428–436

    PubMed  CAS  Google Scholar 

  • Baldrian P, Gabriel J (2003a) Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol Lett 220:235–240

    PubMed  CAS  Google Scholar 

  • Baldrian P, Gabriel J (2003b) Absorption of heavy metals to microbial biomass. In: Šašek V, Glaser JA, Baveye P (eds) The utilization of bioremediation to reduce soil contamination: problems and solutions. Kluwer, Dordrecht, pp 115–126

    Google Scholar 

  • Baldrian P, Valaskova V, Merhautova V, Gabriel J (2005) Degradation of lignocellulose by Pleurotus ostreatus in the presence of copper, manganese, lead and zinc. Res Microbiol 156:670–676

    PubMed  CAS  Google Scholar 

  • Baldrian P, in der Wiesche C, Gabriel J, Nerud F, Zadrazil F (2000) Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol 66:2471–2478

    PubMed  CAS  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Guinet F, Blaudez D, Chalot M (2007) Metal induction of a Paxillus involutus metallothionein and its heterologous expression in Hebeloma cylindrosporum. New Phytol 174:151–158

    PubMed  CAS  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant Litter. Springer, Berlin

    Google Scholar 

  • Berg B, Steffen KT, McClaugherty C (2007) Litter decomposition rate is dependent on litter Mn concentrations. Biogeochemistry 82:29–39

    CAS  Google Scholar 

  • Berg B, Ekbohm G, Soderstrom B, Staaf H (1991) Reduction of decomposition rates of Scots pine needle litter due to heavy metal pollution. Water Air Soil Pollut 59:165–177

    CAS  Google Scholar 

  • Berthelin J, Munier-Lamy C, Leyval C (1995) Effects of microorganisms on mobility of heavy metals in soils. In: Huang PM, Berthelin J, Bollag JM, McGill WB (eds) Metals, Other Inorganics, and Microbial Activities: Environmental Impacts of Soil Component Interactions. Lewis, Boca Raton, pp 3–17

    Google Scholar 

  • Blaudez D, Botton B, Chalot M (2000) Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology 146:1109–1117

    PubMed  CAS  Google Scholar 

  • Brunnert H, Zadrazil F (1979) Cycling of cadmium and mercury between substrate and fruiting bodies of Agrocybe aegerita (a fungal model system). Eur J Appl Microbiol Biotechnol 6:389–395

    CAS  Google Scholar 

  • Caesar-Tonthat TC, Kloeke FV, Geesey GG, Henson JM (1995) Melanin production by a filamentous soil fungus in response to copper and localization of copper sulfide by sulfide-silver staining. Appl Environ Microbiol 61:1968–1975

    PubMed  CAS  Google Scholar 

  • Canovas D, Vooijs R, Schat H, de Lorenzo V (2004) The role of thiol species in the hypertolerance of Aspergillus sp P37 to arsenic. J Biol Chem 279:51234–51240

    PubMed  CAS  Google Scholar 

  • Collin-Hansen C, Andersen RA, Steinnes E (2003) Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis. J Physique IV 107:311–314

    CAS  Google Scholar 

  • Collin-Hansen C, Andersen RA, Steinnes E (2005a) Damage to DNA and lipids in Boletus edulis exposed to metals. Mycol Res 109:1386–1396

    PubMed  CAS  Google Scholar 

  • Collin-Hansen C, Andersen RA, Steinnes E (2005b) Molecular defense systems are expressed in the king bolete (Boletus edulis) growing near metal smelters. Mycologia 97:973–983

    PubMed  CAS  Google Scholar 

  • Collin-Hansen C, Pedersen SA, Andersen RA, Steinnes E (2007) First report of phytochelatins in a mushroom: induction of phytochelatins by metal exposure in Boletus edulis. Mycologia 99:161–174

    PubMed  CAS  Google Scholar 

  • Collin-Hansen C, Yttri KE, Andersen RA, Berthelsen BO, Steinnes E (2002) Mushrooms from two metal-contaminated areas in Norway: occurrence of metals and metallothionein-like proteins. Geochem: Explor Env A 2:121–130

    CAS  Google Scholar 

  • Colpaert JV (2008) Heavy metal pollution and genetic adaptations in ectomycorrhizal fungi. In: Avery SV, Stratford M, van West P (eds) Stress in yeasts and filamentous fungi. Academic Publishers, Amsterdam, pp 157–173

    Google Scholar 

  • Cotrufo MF, Desanto AV, Alfani A, Bartoli G, Decristofaro A (1995) Effects of urban heavy metal pollution on organic matter decomposition in Quercus ilex L. woods. Environ Pollut 89:81–87

    CAS  Google Scholar 

  • Courbot M, Diez L, Ruotolo R, Chalot M, Leroy P (2004) Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl Environ Microbiol 70:7413–7417

    PubMed  CAS  Google Scholar 

  • Cuny D, Van Haluwyn C, Pesch R (2001) Biomonitoring of trace elements in air and soil compartments along the major motorway in France. Water Air Soil Pollut 125:273–289

    CAS  Google Scholar 

  • Darlington AB, Rauser WE (1988) Cadmium alters the growth of the ectomycorrhizal fungus Paxillus involutus - a new growth model accounts for changes in branching. Can J Bot 66:225–229

    CAS  Google Scholar 

  • Dighton J (2003) Fungal Interactions with Humans. In: Dighton J (ed) Fungi in ecosystem processes. Marcel Dekker, New York, pp 323–390

    Google Scholar 

  • Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895

    CAS  Google Scholar 

  • Farnet AM, Tagger S, Le Petit J (1999) Effects of copper and aromatic inducers on the laccases of the white-rot fungus Marasmius quercophilus. Compt Rend Acad Sci Ser III-Life Sci 322:499–503

    CAS  Google Scholar 

  • Fogarty RV, Tobin JM (1996) Fungal melanins and their interactions with metals. Enzyme Microb Technol 19:311–317

    PubMed  CAS  Google Scholar 

  • Fomina M, Ritz K, Gadd GM (2000) Negative fungal chemotropism to toxic metals. FEMS Microbiol Lett 193:207–211

    PubMed  CAS  Google Scholar 

  • Fomina M, Ritz K, Gadd GM (2003) Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycol Res 107:861–871

    PubMed  CAS  Google Scholar 

  • Frankenberger WT, Tabatabai MA (1991) Factors affecting L-asparaginase activity in soils. Biol Fertil Soils 11:1–5

    CAS  Google Scholar 

  • Frey B, Stemmer M, Widmer F, Luster J, Sperisen C (2006) Microbial activity and community structure of a soil after heavy metal contamination in a model forest ecosystem. Soil Biol Biochem 38:1745–1756

    CAS  Google Scholar 

  • Fritze H, Perkiomaki J, Saarela U, Katainen R, Tikka P, Yrjala K, Karp M, Haimi J, Romantschuk M (2000) Effect of Cd-containing wood ash on the microflora of coniferous forest humus. FEMS Microbiol Ecol 32:43–51

    PubMed  CAS  Google Scholar 

  • Frostegard A, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617

    PubMed  CAS  Google Scholar 

  • Frostegard A, Tunlid A, Bååth E (1996) Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol Biochem 28:55–63

    CAS  Google Scholar 

  • Gabriel J, Capelari M, Rychlovský P, Krenželok M, Zadražil F (1996) Influence of cadmium on the growth of Agrocybe perfecta and two Pleurotus spp. and translocation from polluted substrate and soil to fruitbodies. Toxicol Environ Chem 56:141–146

    CAS  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60

    CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    PubMed  CAS  Google Scholar 

  • Gadd GM, Ramsay L, Crawford JW, Ritz K (2001) Nutritional influence on fungal colony growth and biomass distribution in response to toxic metals. FEMS Microbiol Lett 204:311–316

    PubMed  CAS  Google Scholar 

  • Gardea-Torresdey JL, Cano-Aguilera I, Webb R, Gutierrez-Corona F (1997) Enhanced copper adsorption and morphological alterations of cells of copper-stressed Mucor rouxii. Environ Toxicol Chem 16:435–441

    CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    CAS  Google Scholar 

  • Goetghebeur M, Kermasha S, Kensley J, Metche M (1995) Purification and characterization of copper-metallothionein from Aspergillus niger by affinity chromatography. Biotechnol Appl Biochem 22:315–325

    PubMed  CAS  Google Scholar 

  • Hattori H (1991) Influence of cadmium on decomposition of glucose and cellulose in soil. Soil Sci Plant Nutr 37:39–45

    CAS  Google Scholar 

  • Hattori H (1992) Influence of heavy metals on soil microbial activities. Soil Sci Plant Nutr 38:93–100

    CAS  Google Scholar 

  • Hinojosa MB, Carreira JA, Garcia-Ruiz R, Dick RP (2005) Microbial response to heavy metal-polluted soils: Community analysis from phospholipid-linked fatty acids and ester- linked fatty acids extracts. J Environ Qual 34:1789–1800

    PubMed  CAS  Google Scholar 

  • Hiroki M (1992) Effects of heavy metal contamination on soil microbial population. Soil Sci Plant Nutr 38:141–147

    CAS  Google Scholar 

  • Chander K, Dyckmans J, Hoeper H, Joergensen RG, Raubuch M (2001a) Long-term effects on soil microbial properties of heavy metals from industrial exhaust deposition. J Plant Nutr Soil Sci 164:657–663

    CAS  Google Scholar 

  • Chander K, Dyckmans J, Joergensen RG, Meyer B, Raubuch M (2001b) Different sources of heavy metals and their long-term effects on soil microbial properties. Biol Fertil Soils 34:241–247

    CAS  Google Scholar 

  • Jacob C, Courbot ML, Martin F, Brun A, Chalot M (2004) Transcriptomic responses to cadmium in the ectomycorrhizal fungus Paxillus involutus. FEBS Lett 576:423–427

    PubMed  CAS  Google Scholar 

  • Jacob C, Courbot M, Brun A, Steinman HM, Jacquot JP, Botton B, Chalot M (2001) Molecular cloning, characterization and regulation by cadmium of a superoxide dismutase from the ectomycorrhizal fungus Paxillus involutus. Eur J Biochem 268:3223–3232

    PubMed  CAS  Google Scholar 

  • Jellison J, Connolly J, Goodell B, Doyle B, Illman B, Fekete F, Ostrofsky A (1997) The role of cations in the biodegradation of wood by the brown rot fungi. Int Biodeter Biodegrad 39:165–179

    CAS  Google Scholar 

  • Johansson EM, Fransson PMA, Finlay RD, van Hees PAW (2008) Quantitative analysis of exudates from soil-living basidiomycetes in pure culture as a response to lead, cadmium and arsenic stress. Soil Biol Biochem 40:2225–2236

    CAS  Google Scholar 

  • Johnson D, Hale B (2004) White birch (Betula papyrifera Marshall) foliar litter decomposition in relation to trace metal atmospheric inputs at metal-contaminated and uncontaminated sites near Sudbury, Ontario and Rouyn-Noranda, Quebec, Canada. Environ Pollut 127:65–72

    PubMed  CAS  Google Scholar 

  • Jongmans AG, vanBreemen N, Lundstrom U, vanHees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud PA, Olsson M (1997) Rock-eating fungi. Nature 389:682–683

    CAS  Google Scholar 

  • Kähkönen MA, Lankinen P, Hatakka A (2008) Hydrolytic and ligninolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi. Chemosphere 72:708–714

    PubMed  Google Scholar 

  • Kalac P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281

    CAS  Google Scholar 

  • Kandeler E, Tscherko D, Bruce KD, Stemmer M, Hobbs PJ, Bardgett RD, Amelung W (2000) Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol Fertil Soils 32:390–400

    CAS  Google Scholar 

  • Kelly JJ, Haggblom M, Tate RL (1999) Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biol Biochem 31:1455–1465

    CAS  Google Scholar 

  • Kelly JJ, Haggblom MM, Tate RL (2003) Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biol Fertil Soils 38:65–71

    CAS  Google Scholar 

  • Kendrick WB (1962) Soil fungi of a copper swamp. Can J Microbiol 8:639–647

    CAS  Google Scholar 

  • Khan M, Scullion J (2000) Effect of soil on microbial responses to metal contamination. Environ Pollut 110:115–125

    PubMed  CAS  Google Scholar 

  • Kneer R, Kutchan TM, Hochberger A, Zenk MH (1992) Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin. Arch Microbiol 157:305–310

    PubMed  CAS  Google Scholar 

  • Kuperman RG, Carreiro MM (1997) Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biol Biochem 29:179–190

    CAS  Google Scholar 

  • Lebedeva EV, Nazarenko AV, Kozlova IV, Tomilin BA (1999) Influence of increasing concentrations of copper on soil micromycetes. Mikol i Fitopatol 33:257–263

    CAS  Google Scholar 

  • Lerch K (1980) Copper metallothionein, a copper binding protein from Neurospora crassa. Nature 284:368–370

    PubMed  CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    CAS  Google Scholar 

  • Lorenz N, Hintemann T, Kramarewa T, Katayama A, Yasuta T, Marschner P, Kandeler E (2006) Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biol Biochem 38:1430–1437

    CAS  Google Scholar 

  • Macdonald CA, Campbell CD, Bacon JR, Singh BK (2008) Multiple profiling of soil microbial communities identifies potential genetic markers of metal-enriched sewage sludge. FEMS Microbiol Ecol 65:555–564

    PubMed  CAS  Google Scholar 

  • Macdonald CA, Singh BK, Peck JA, van Schaik AP, Hunter LC, Horswell J, Campbell CD, Speir TW (2007) Long-term exposure to Zn-spiked sewage sludge alters soil community structure. Soil Biol Biochem 39:2576–2586

    CAS  Google Scholar 

  • Magyarosy A, Laidlaw RD, Kilaas R, Echer C, Clark DS, Keasling JD (2002) Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Appl Microbiol Biotechnol 59:382–388

    PubMed  CAS  Google Scholar 

  • Meisch HU, Schmitt JA (1986) Characterization studies on cadmium-mycophosphatin from the mushroom Agaricus macrosporus. Environ Health Perspect 65:29–32

    PubMed  CAS  Google Scholar 

  • Mejstrik V, Lepšová A (1993) Applicability of fungi to the monitoring of environmental pollution by heavy metals. In: Market B (ed) Plants as biomonitors. VCH Verlagsgesellschaft, Weinheim, pp 365–378

    Google Scholar 

  • Miersch J, Tschimedbalshir M, Barlocher F, Grams Y, Pierau B, Schierhorn A, Krauss GJ (2001) Heavy metals and thiol compounds in Mucor racemosus and Articulospora tetracladia. Mycol Res 105:883–889

    CAS  Google Scholar 

  • Mo MH, Chen WM, Su HY, Zhang KQ, Duan CQ, He DM (2006) Heavy metal tolerance of nematode-trapping fungi in lead-polluted soils. Appl Soil Ecol 31:11–19

    Google Scholar 

  • Mullen MD, Wolf DC, Beveridge TJ, Bailey GW (1992) Sorption of heavy metals by the soil fungi Aspergillus niger and Mucor rouxii. Soil Biol Biochem 24:129–135

    CAS  Google Scholar 

  • Müller AK, Westergaard K, Christensen S, Sorensen SJ (2001) The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiol Ecol 36:11–19

    PubMed  Google Scholar 

  • Necker U, Kunze C (1986) Incubation rxperiments on nitrogen mineralization by fungi and bacteria in metal amended soil. Angew Bot 60:81–93

    CAS  Google Scholar 

  • Nguyen-Viet H, Gilbert D, Mitchell EAD, Badot PM, Bernard N (2007) Effects of experimental lead pollution on the microbial communities associated with Sphagnum fallax (Bryophyta). Microb Ecol 54:232–241

    PubMed  CAS  Google Scholar 

  • Nordgren A, Bååth E, Soderstrom B (1983) Microfungi and microbial activity along a heavy metal gradient. Appl Environ Microbiol 45:1829–1837

    PubMed  CAS  Google Scholar 

  • Nordgren A, Kauri T, Bååth E, Soderstrom B (1986) Soil microbial activity, mycelial lengths and physiological groups of bacteria in a heavy metal polluted area. Environ Pollut Ser A Ecol Biol 41:89–100

    CAS  Google Scholar 

  • Olayinka A, Babalola GO (2001) Effects of copper sulphate application on microbial numbers and respiration, nitrifier and urease activities, and nitrogen and phosphorus mineralization in an alfisol. Biol Agric Hortic 19:1–8

    Google Scholar 

  • Ott T, Fritz E, Polle A, Schutzendubel A (2002) Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiol Ecol 42:359–366

    PubMed  CAS  Google Scholar 

  • Pennanen T (2001) Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH - a summary of the use of phospholipid fatty acids, Biolog (R) and H-3-thymidine incorporation methods in field studies. Geoderma 100:91–126

    CAS  Google Scholar 

  • Pennanen T, Frostegard A, Fritze H, Bååth E (1996) Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl Environ Microbiol 62:420–428

    PubMed  CAS  Google Scholar 

  • Poddubny AV, Khristoforova NK, Kovekovdova LT (1998) Macromycetes as indicators of environmental pollution by heavy metals. Mikol i Fitopatol 32:47–51

    Google Scholar 

  • Rajapaksha R, Tobor-Kaplon MA, Bååth E (2004) Metal toxicity affects fungal and bacterial activities in soil differently. Appl Environ Microbiol 70:2966–2973

    PubMed  CAS  Google Scholar 

  • Rizzo DM, Blanchette RA, Palmer MA (1992) Biosorption of metal ions by Armillaria rhizomorphs. Can J Bot 70:1515–1520

    CAS  Google Scholar 

  • Ross IS (1993) Membrane transport processes and response to exposure to heavy metals. In: Jennings DH (ed) Stress tolerance in fungi. Marcel Dekker, New York, pp 97–125

    Google Scholar 

  • Ruhling A, Soderstrom B (1990) Changes in fruitbody production of mycorrhizal and litter- decomposing macromycetes in heavy metal polluted coniferous forests in North Sweden. Water Air Soil Pollut 49:375–387

    Google Scholar 

  • Sayer JA, Raggett SL, Gadd GM (1995) Solubilization of insoluble metal compounds by soil fungi - development of a screening method for solubilizing ability and metal tolerance. Mycol Res 99:987–993

    CAS  Google Scholar 

  • Sayer JA, Cotter-Howells JD, Watson C, Hillier S, Gadd GM (1999) Lead mineral transformation by fungi. Curr Biol 9:691–694

    PubMed  CAS  Google Scholar 

  • Stefanowicz AM, Niklinska M, Laskowski R (2008) Metals affect soil bacterial and fungal functional diversity differently materials and methods. Environ Toxicol Chem 27:591–598

    PubMed  CAS  Google Scholar 

  • Svoboda L, Havlickova B, Kalac P (2006) Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chem 96:580–585

    CAS  Google Scholar 

  • Tuomela M, Steffen KT, Kerko E, Hartikainen H, Hofrichter M, Hatakka A (2005) Influence of Pb contamination in boreal forest soil on the growth and ligninolytic activity of litter-decomposing fungi. FEMS Microbiol Ecol 53:179–186

    PubMed  CAS  Google Scholar 

  • Turnau K (1991) Tbe influence of cadmium dust on fungi in a Pino-Quercetum forest. Ekologia Polska 39:39–57

    CAS  Google Scholar 

  • Tuszynska S, Davies D, Turnau K, Ashford AE (2006) Changes in vacuolar and mitochondrial motility and tubularity in response to zinc in a Paxillus involutus isolate from a zinc-rich soil. Fungal Genet Biol 43:155–163

    PubMed  CAS  Google Scholar 

  • Yamamoto H, Tatsuyama K, Uchiwa T (1985) Fungal flora of soil polluted with copper. Soil Biol Biochem 17:785–790

    CAS  Google Scholar 

  • Zarb J, Walters DR (1995) Polyamine biosynthesis in the ectomycorrhizal fungus Paxillus involutus exposed to zinc. Lett Appl Microbiol 21:93–95

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Ministry of Education, Youth and Sports of the Czech Republic (Project LC06066) and from the Ministry of Agriculture of the Czech Republic (Project QH72216) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Baldrian .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baldrian, P. (2010). Effect of Heavy Metals on Saprotrophic Soil Fungi. In: Soil Heavy Metals. Soil Biology, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02436-8_12

Download citation

Publish with us

Policies and ethics