Skip to main content

Die genetische und funktionelle Diversität von Böden

  • Chapter
Mikrobiologie von Böden

Part of the book series: Springer-Lehrbuch ((SLB))

  • 10k Accesses

Zusammenfassung

Bodenlandschaften mit ihren unterschiedlichen Bodentypen besitzen aufgrund der standortspezifischen klimatischen, botanischen und chemisch-physikalischen Eigenschaften eine fast endlose Anzahl und Vielfalt ökologischer Mikronischen (im Mikrometerbereich). Die heterogene Verteilung und Strukturierung der festen Phasen (Mineral- und Humuskörper), der Pflanzenwurzeln (Rhizosphären; Kap. 17), des Porenraums (Bodenlösung und Gasphase) und der bevorzugten Transportwege (preferential flow) sind Ursache dafür, dass die Mikronischen und ihre mikrobiellen Lebensgemeinschaften (hot spots) unregelmäßig mosaikartig verteilt sind. Im Allgemeinen nimmt die räumliche Heterogenität von Böden in der Reihung Waldboden > Grünland > Ackerstandort deutlich ab. Eine große räumliche (und zeitliche) Heterogenität bedeutet in der Regel eine hohe Diversität (Vielfalt) an Organismen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alef K (1991) Methodenhandbuch Bodenmikrobiologie, Ecomed, Landsberg

    Google Scholar 

  • Amann R, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169

    PubMed  CAS  Google Scholar 

  • Amann R, Schleifer KH (2001) Nucleic acid probes and their application in environmental microbiology. In: Boone DR, Castenholz RW, Garrity GM (Hrsg) Bergey’s Manual of Systematic Bacteriology, 2. Aufl. Vol 1, Springer, New York Berlin Heidelberg, S 67–82

    Google Scholar 

  • Assmuss B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A (1995). In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61: 1013–1019

    Google Scholar 

  • Bakken LR, Frostegard A (2006) Nucleic acid extraction from soil. In: Nannipieri P, Smalla K (Hrsg) Nucleic acid and proteins in soil, Springer, Berlin Heidelberg, S 49–73

    Google Scholar 

  • Bamborough L, Cummings SP (2009) The impact of increasing heavy metal stress on the diversity and structure of the bacterial and actinobacterial communities of metallophytic grassland soil. Biol Fertil Soils 45: 273–280

    CAS  Google Scholar 

  • Bardgett RD, Usher MB, Hopkins DW (2005) Biological diversity and function in soils. Cambridge University Press, Cambridge

    Google Scholar 

  • Bent SJ, Pierson JD, Forney LJ (2007) Measuring species richness based on microbial community fingerprints: The emperor has no clothes. Appl Environ Microbiol 73: 2399–2401

    PubMed  CAS  Google Scholar 

  • Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microb Ecol 40: 85–95

    CAS  Google Scholar 

  • Bossio DA, Scow KM, Gunapala N, Graham KJ (1998) Determination of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microb Ecol 36: 1–12

    PubMed  CAS  Google Scholar 

  • Bouvier T, Paul A, Giorgio A del (2003) Factors influencing the detection of bacterial cells using fluorescence in situ hybridisation (FISH): A quantitative review of published reports. FEMS Microbiol Ecol 44: 3–15

    PubMed  CAS  Google Scholar 

  • Bürgmann H, Pesaro M, Widmer F, Zeyer J (2001) A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Meth 45: 7–20

    Google Scholar 

  • Coleman JR, Culley DE, Chrisler WB, Brockman FJ (2007) mRNA-targeted fluorescent in situ hybridization (FISH) of gram-negative bacteria without template amplification or tyramide signal amplification. J Microb Meth 71: 246–255

    CAS  Google Scholar 

  • Curtis TP (2006) Microbial ecologists: It’s time to go large. Nature Rev Microbiol 4: 488

    CAS  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99: 10494–10499

    PubMed  CAS  Google Scholar 

  • Davis KER, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculation size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71: 826–834

    PubMed  CAS  Google Scholar 

  • Degens BP, Schipper LA, Sparling GP, Duncan LC (2001) Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol Biochem 33: 1143–1152

    CAS  Google Scholar 

  • DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: Ribosomal RNA-based probes for the identification of single cells. Science 243: 1360–1363

    PubMed  CAS  Google Scholar 

  • Dykhuizen DE (1998) Santa Rosalia revisited: Why are there so many species of bacteria? Antonie van Leeuwenhoek 73: 25–33

    PubMed  CAS  Google Scholar 

  • El-Beltagy A, Hattori T (1994) Comparative studies of bacterial populations in a grassland soil. Bull Jap Soc Microb Ecol 9: 41–73

    Google Scholar 

  • Faegri A, Torsvik VL, Goksoyr J (1977) Bacterial and fungal activities in soil: Separation of bacteria and fungi by a rapid fractionated centrifugation technique. Soil Biol Biochem 9: 105–112

    Google Scholar 

  • Garbeva P, van Veen JA, van Elsas DJ (2004) Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42: 243–270

    PubMed  CAS  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57: 2351–2359

    PubMed  CAS  Google Scholar 

  • Garrity CM, Leventhal JM, Lilburn TG (2005) Taxonomic outline of the prokaryotes. Bergey’s Manual of Systematic Bacteriology. 2. Aufl., Ausgabe 6.0. Springer, New York Berlin Heidelberg

    Google Scholar 

  • Gest H (2008) Unknowledgeables promote „unculturables“. Microbe 3: 499

    Google Scholar 

  • Gevers D, Cohan, FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, van der Peer Y, Vandamme P, Thomson FL, Swings J (2005) Re-evaluating prokaryotic species. Nature Rev Microbiol 3: 733–739

    CAS  Google Scholar 

  • Govaerts B, Mezzalama M, Unno, Sayre KD, Luna-Guido M, Vanherck K, Dendoove L, Deckers J (2007) Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity. Appl Soil Ecol 37: 18–30

    Google Scholar 

  • Handelsman J (2004) Metagenomics: Application of genomics to uncultured microorganisms. Microb Mol Biol Rev 68: 669–685

    CAS  Google Scholar 

  • Hashimoto T, Hattori T (1989) Grouping of soil bacteria by analysis of colony formation on agar plates. Biol Fertil Soils 7: 198–201

    Google Scholar 

  • Hattori T, Mitsui H, Haga H, Wakao N, Shikano S, Gorlach K, Kasahara Y, El-Beltagy A, Hattori R (1997) Advances in soil microbial ecology and the biodiversity. Antonie van Leeuwenhoek 72: 21–28

    PubMed  CAS  Google Scholar 

  • Heuer H, Smalla K (1997) Application of denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis for studying soil microbial communities. In: Elsas van DJ, Wellington EMH, Trevors JT (Hrsg) Modern soil microbiology, Marcel Dekker, New York, S 353–373

    Google Scholar 

  • Hill GT, Mitkowski NA, Aldrich-Wolfe L, Emele LR, Jurkonig DD, Maldonado-Raminez S, Lynch ST, Nelson EB (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol 15: 25–36

    Google Scholar 

  • Hirsch P (1972) Neue Methoden zur Beobachtung und Isolierung ungewöhnlicher oder wenig bekannter Wasserbakterien. Z Allg Mikrobiol 12: 203–218

    PubMed  CAS  Google Scholar 

  • Hitzel W, Ranger A, Sharma S, Insam H (1997) Separation power of the 95 substrates of the BIOLOG system determined in various soils. FEMS Microb Ecol 22: 167–174

    Google Scholar 

  • Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3: 1–8

    Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of cultureindependent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180: 4765–4774

    PubMed  CAS  Google Scholar 

  • Hughes JB, Hellmann JJ, Ricketts TH, Bohannan JM (2001) Counting the uncountable: Statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67: 4399–4406

    PubMed  CAS  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72: 1719–1728

    PubMed  CAS  Google Scholar 

  • Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the division Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68: 2391–2396

    PubMed  CAS  Google Scholar 

  • Jianping X (2006) Microbial ecology in the age of genomics and metagenomics: Concepts, tools, and recent advances. Mol Ecol 15: 1713–1731

    Google Scholar 

  • Kennedy AC (1999) Bacterial diversity in agroecosystems. Agric Ecosyst Environ 74: 65–76

    Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56: 211–236

    PubMed  CAS  Google Scholar 

  • Keller M, Zengler K (2004) Tapping into microbial diversity. Nature Rev Microbiol 2: 141–150

    CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT (2004) Methods of studying soil microbial diversity. J Microbiol Meth 58: 169–188

    CAS  Google Scholar 

  • Konopka A, Oliver L, Turco RF (1998) The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb Ecol 35: 103–11

    PubMed  CAS  Google Scholar 

  • Kowalchuk GA, Drigo B, Yergeau E, van Veen JA (2006) Assessing bacteria and fungal community structure in soil using ribosomal RNA and other structural gene markers. In: Nappipieri P, Smalla K (Hrsg) Nucleic acids and proteins in soil, Springer, Berlin Heidelberg, S 159–188

    Google Scholar 

  • Krsek M, Gaze WH, Morris NZ, Wellington MH (2006) Gene detection, expression and related enzyme activity in soil. In: Nannipieri P, Smalla K (Hrsg) Nucleic acids and proteins in soil, Springer, Berlin Heidelberg, S 217–255

    Google Scholar 

  • Leberberg J (2006) The microbe’s contribution to biology – 50 years after. Intern Microbiol 9: 155–156

    Google Scholar 

  • Liles MR, Maske BF, Bintrim SB, Handelsman J, Goodman RM (2003) A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl Environ Microbiol 69: 2682–2691

    Google Scholar 

  • Liu W, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63: 4516–4522

    PubMed  CAS  Google Scholar 

  • Lorch HJ, Benckiser G, Ottow JCG (1995) Basic methods for counting microorganisms in soil and water. In: Alef K, Nannipieri P (Hrsg) Methods in applied soil microbiology and biochemistry, Academic Press, London San Diego New York, S 146–161

    Google Scholar 

  • Lunn M, Sloan WT, Curtis TP (2004) Estimating bacteria diversity from clone libraries with flat rank abundance distribution. Environ Microbiol 6: 1081–1085

    PubMed  CAS  Google Scholar 

  • Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA Extraction from soils: Old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67: 2354–2359

    PubMed  CAS  Google Scholar 

  • Mazolla M (2004) Assessment and management of soil microbial community structure for disease suppression. Annu Rev Phytopathol 42: 35–59

    Google Scholar 

  • McCain AL, Glover LA, Prosser JI (2001) Numerical analysis of grassland bacterial community structure under different land management regimes by using 16S ribosomal DNAsequence data and denaturing gradient electrophoresis banding patterns. Appl Environ Microbiol 67: 4554–4559

    Google Scholar 

  • Miller DN, Bryant JE, Madsen EL, Ghiorse WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65: 4715–4724

    PubMed  CAS  Google Scholar 

  • Mühlhardt C (2006) Der Experimentator: Molekularbiologie/ Genomics, 5. Aufl. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Muyzer G, Waal ECD, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695–700

    PubMed  CAS  Google Scholar 

  • Myers RT, Zak DR, White DC, Peacock A (2001) Landscapelevel patterns of microbial community composition and substrate use in upland forest ecosystems. Soil Sci Soc Am J 65: 359–367

    CAS  Google Scholar 

  • Nakatsu CH, Torsvik V, Ovreas L (2000) Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci Soc Am J 64: 1382–1388

    CAS  Google Scholar 

  • Nannipieri P, Ascher M, Ceccherini L, Land L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54: 655–670

    Google Scholar 

  • Niemi RM, Heiskanen I, Wallenius K, Lindström K (2001) Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J Microbiol Meth 45: 155–165

    Google Scholar 

  • Nüsslein K, Tiedje JM (1999) Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl Environ Microbiol 65: 3622–3626

    PubMed  Google Scholar 

  • Olsen RA, Bakken LR (1987) Viability of soil bacteria: Optimizing of plate-counting technique and comparison between total counts and plate counts within different size groups. Microb Ecol 13: 59–74

    Google Scholar 

  • Oros-Sichler M, Costa R, Heuer H, Smalla K (2007) Molecular fingerprinting techniques to analyze soil microbial communities. In: Elsas van JD, Jansson JK, Trevors JT (Hrsg) Modern soil microbiology, 2. Aufl. CRC, Boca Raton London New York, S 356–386

    Google Scholar 

  • Ovreas L (2000) Population and community level approaches for analysing microbial diversity in natural environments. Ecol Lett 3: 236–251

    Google Scholar 

  • Ovreas L, Torsvik V (1998) Microbial diversity and community structure in two different agricultural soil communities. Microb Ecol 36: 303–315

    PubMed  CAS  Google Scholar 

  • Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microb Ecol 9: 1–55

    CAS  Google Scholar 

  • Palleroni NJ (1997) Prokaryotic diversity and the importance of culturing. Antonie van Leeuwenhoek 72: 1–19

    Google Scholar 

  • Pankhurst CE, Yu S, Hawke BG, Harch BD (2001) Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biol Fertil Soils 33: 204–217

    CAS  Google Scholar 

  • Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P (2009) Extracellular DNA in soil and sediment: Fate and ecological relevance. Biol Fertil Soils 45: 219–238

    CAS  Google Scholar 

  • Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbonsource utilization profiles – a critique. FEMS Microbiol Ecol 42: 1–14

    PubMed  CAS  Google Scholar 

  • Prosser JI (2002) Molecular and functional diversity in soil microorganisms. Plant Soil 244: 9–17

    CAS  Google Scholar 

  • Ramsey PW, Rilling MC, Feris KP, Holben WE, Gannon JE (2006) Choice of methods for soil microbial community analysis: PLFA maximises power compared to CLPP and PCR-based approaches. Pedobiologia 50: 275–280

    CAS  Google Scholar 

  • Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57: 369–394

    PubMed  Google Scholar 

  • Reineke A (2004) Gentechnik: Grundlagen, Methoden und Anwendungen, Ulmer, Stuttgart

    Google Scholar 

  • Rheims H, Rainey FA, Stackebrandt (1996) A molecular approach to search for diversity among bacteria in the environment. J Industr Microbiol 17: 159–169

    CAS  Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: Genomic analysis of microbial communities. Annu Rev Genet 38: 525–552

    PubMed  CAS  Google Scholar 

  • Roose-Amsaleg CL, Garnier-Siliam E, Harry M (2001) Extraction and purification of microbial DNA from soil and sediment samples. Appl Soil Ecol 18: 47–60

    Google Scholar 

  • Rosselló-Mora R, Amann R (2001) The species concept for prokaryotes. FEMS Microbiol Rev 25: 39–67

    PubMed  Google Scholar 

  • Ruppel S, Torsvik V, Daae FL, Ovreas L, Rühlmann J (2007) Nitrogen availability decreases prokaryotic diversity in sandy soils. Biol Fertil Soils 43: 449–459

    CAS  Google Scholar 

  • Saano A, Tas S, Pippola K, van Elsas JD (1995) Extraction and analysis of microbial DNA from soil. In: Trevors JT, van Elsas JD. Nucleic acids in the environment, Springer, Berlin Heidelberg New York, S 49–68

    Google Scholar 

  • Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4: 654–666

    PubMed  CAS  Google Scholar 

  • Schinner F, Öhlinger R, Kandeler E, Margesin R (1993) Bodenbiologische Arbeitsmethoden, 2. Aufl. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schinner F, Öhlinger R, Kandeler E, Margesin R (1995) Methods in soil biology, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schleifer KH, Ludwig W, Amann R (1992) Gensonden und ihre Anwendung in der Mikrobiologe. Naturwiss 79: 213–219

    PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2006) Towards a census of bacteria in soil. PloS Comp Biol 2: 1–16

    Google Scholar 

  • Schmid M, Rothballer M, Hartmann A (2007) Analysis of microbial communities in soil microhabitats using fluorescence in situ hybridisation. In: Elsas, van DJ, Jansson JK, Trevors JT (Hrsg) Modern soil microbiology, 2. Aufl. CRC, Boca Raton London New York, S 317–335

    Google Scholar 

  • Schutter ME, Dick RP (2000) Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci Soc Am J 64: 1659–1668

    CAS  Google Scholar 

  • Setälä H, Berg MP, Jones TH (2005) Trophic structure and functional redundancy in soil communities. In: Bardgett RD, Usher MB, Hopkins DW (Hrsg) Biological diversity and functions in soils, Cambridge Univ. Press, Cambridge, S 236–249

    Google Scholar 

  • Sharma S, Aneja MK, Schloter M (2007) Functional characterization of soil microbial communities by messenger RNA analysis. In: Elsas van JD, Jansson JK, Trevors JT (Hrsg) Modern soil microbiology, 2. Aufl. CRC, Boca Raton London New York, S 337–354

    Google Scholar 

  • Sjöling S, Stafford W, Cowan DA (2007) Soil metagenomics: Exploring and exploiting the soil microbial gene pool. In: Elsas van DJ, Jannson JK, Trevors JT (Hrsg) Modern soil microbiology, 2. Aufl. CRC, Boca Raton London New York, S 410–434

    Google Scholar 

  • Smalla K, van Elsas JD (2009) The soil environment. In: Lin WT, Jansson J (Hrsg) Environmental molecular microbiology, Horizon Scientific Press, Norwich (im Druck)

    Google Scholar 

  • Smalla K, Wachtendorf U, Heuer H, Liu WT, Forney L (1998) Analysis of BIOLOG GN substrate utilization patterns by microbial communities. Appl Environ Microbiol 64: 1220–1225

    PubMed  CAS  Google Scholar 

  • Stackebrandt E (2007) Forces shaping bacterial systematics. Microbe 2: 283–287

    Google Scholar 

  • Steinberger Y, Zelles L, Bai QY, von Lützow M, Munch JC (1999) Phospholipid fatty acid profiles as indicators for the microbial community structure in soils along a climate transect in the Judean desert. Biol Fertil Soils 28: 292–300

    CAS  Google Scholar 

  • Stres B, Tiedje JM (2006) New frontiers in soil microbiology: How to link structure and function of microbial communities? In: Nannipieri P, Smalla K (Hrsg) Nucleic acid and proteins in soil, Springer, Berlin Heidelberg, S 22

    Google Scholar 

  • Tiedje JM, Asuming-Brempong S, Nüsslein K, Marsch TL, Flynn TL (1999) Opening the black box of soil microbial diversity. Appl Soil Ecol 13: 109–122

    Google Scholar 

  • Torsvik V, Daae FL, Sandaa RA, Ovreas L (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64: 53–62

    PubMed  CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990a) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56: 782–787

    CAS  Google Scholar 

  • Torsvik V, Ovreas L (2007) Microbial phylogeny and diversity in soil. In: Van Elsas JD, Jansson JK, Trevors JT (Hrsg) Modern soil microbiology, 2. Aufl. CRC, Boca Raton London New York, S 24–51

    Google Scholar 

  • Torsvik V, Ovreas L, Thingstad TF (2002) Prokaryotic diversity – magnitude, dynamics, and controlling factors. Science 296: 1064–1066

    PubMed  CAS  Google Scholar 

  • Torsvik V, Sorheim R, Goksoyr J (1996) Total bacterial diversity in soil and sediment communities – a review. J Industr Microbiol 17: 170–178

    CAS  Google Scholar 

  • Torsvik V, Salte K, Sorheim R, Goksoyr J (1990b) Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl Environ Microbiol 56: 776–781

    CAS  Google Scholar 

  • Trevors JT, Lee H, Cook S (1992) Direct extraction of DNAfrom soil. Microb Releases 1: 111–115

    CAS  Google Scholar 

  • Ulrich A, Becker R (2006) Soil parent material is a key determinant of the bacterial community structure in arable soils. FEMS Microb Ecol 56: 430–443

    CAS  Google Scholar 

  • Wackernagel W (2006) The various sources and the fate of nucleic acids in soil. In: Nannipieri P, Smalla K (Hrsg) Nucleic acids and proteins in soil, Springer, Berlin Heidelberg, S 117–139

    Google Scholar 

  • Wagner M, Amann R (1996) Die Anwendung von in situ-Hybridisierungssonden zur Aufklärung von Struktur und Dynamik der mikrobiellen Biozönosen in der Abwasserreinigung. In: Lemmer H, Griebe T, Flemming HC (Hrsg) Ökologie der Abwasserorganismen, Springer, Berlin Heidelberg, S 81–92

    Google Scholar 

  • Weider LJ, Elser JJ, Crease TJ, Mateos M, Cotner JB (2005) The functional significance of ribosomal (r)DNA variation: Impacts on the evolutionary ecology of organisms. Annu Rev Ecol Evol Syst 36: 219–242

    Google Scholar 

  • Widmer F, Fließbach A, Laczkó E, Schulze-Aurich J, Zeyer J (2001) Assessing soil biological characteristics: A comparison of bulk soil community DNA-, PLFA-, and Biolog™ - analyses. Soil Biol Biochem 33: 1029–1036

    CAS  Google Scholar 

  • Widmer F, Rasche F, Hartmann M, Fließbach A (2006) Community structures and substrate utilization of bacteria in soil from organic and conventional farming systems of the DOK long-tern field experiment. Appl Soil Ecol 33: 294–307

    Google Scholar 

  • Williamson WM, Wardle DA (2007) The soil microbial community response when plants are subjected to water stress and defoliation disturbance. Appl Soil Ecol 37: 139–149

    Google Scholar 

  • Winding A, Hendriksen NB (1997) Biolog substrate utilization assay for metabolic fingerprint of soil bacteria: Incubation effects. In: Insam H, Rangger A (Hrsg) Microbial communities: Functional versus structural approaches, Springer, Berlin Heidelberg New York, S 195–205

    Google Scholar 

  • Wintzingerode F von, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: Pitfalls of PCR-based analyses. FEMS Microbiol Rev 21: 213–229

    Google Scholar 

  • Yao H, He, Z, Wilson MJ, Campbell CD (2000) Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb Ecol 40: 223–237

    PubMed  CAS  Google Scholar 

  • Zak JC, Willig, MR, Moorhead DL, Wildman (1994) Functional diversity of microbial communities: A quantitative approach. Soil Biol Biochem 26: 1101–1108

    Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: A review. Biol Fertil Soils 29: 111–129

    CAS  Google Scholar 

  • Zengler K (2008) Accessing uncultivated microorganisms: From the environment to organisms and genomes and back, ASM Press, Washington DC, 320 S

    Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of divers composition. Appl Environ Microbiol 62: 316–322

    PubMed  CAS  Google Scholar 

  • Zinger L, Gury J, Giraud F, Krivobok S, Gielly L (2007) Improvements of polymerase chain reaction and capillary electrophoresis single-strand conformation polymorphism methods in microbial ecology: Toward a high-throughput method for microbial diversity in soil. Microb Ecol 54: 203–2166

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ottow, J. (2011). Die genetische und funktionelle Diversität von Böden. In: Mikrobiologie von Böden. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00824-5_4

Download citation

Publish with us

Policies and ethics