Skip to main content

Nanoparticle Technologies for Cancer Therapy

  • Chapter
  • First Online:
Drug Delivery

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 197))

Abstract

Nanoparticles as drug delivery systems enable unique approaches for cancer treatment. Over the last two decades, a large number of nanoparticle delivery systems have been developed for cancer therapy, including organic and inorganic materials. Many liposomal, polymer–drug conjugates, and micellar formulations are part of the state of the art in the clinics, and an even greater number of nanoparticle platforms are currently in the preclinical stages of development. More recently developed nanoparticles are demonstrating the potential sophistication of these delivery systems by incorporating multifunctional capabilities and targeting strategies in an effort to increase the efficacy of these systems against the most difficult cancer challenges, including drug resistance and metastatic disease. In this chapter, we will review the available preclinical and clinical nanoparticle technology platforms and their impact for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

Blood–brain barrier

DSPC:

1,2-Distearoyl-glycero-3-phosphocholine

DSPE:

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine

EggPG:

Egg yolk phosphatidylglycerol

EPR:

Enhanced Permeability and Retention effect

FDA:

Food and Drug Administration

HPMA:

N-(2-Hydroxypropyl)methacrylamide

HSPC:

Hydrogenated phosphatidylcholine from soybean lecithin

LPS:

Lipopolysaccharide

MTD:

Maximum tolerated dose

NCI:

National Cancer Institute

NIR:

Near infrared

NSCL cancer:

Non-small-cell lung cancer

PAMAM:

Polyamidoamine

PDLLA:

Poly-dl-lactic acid

PEG:

Polyethylenglycol

PLA:

Polylactic acid

PLA2:

Phospholipase A2

PLGA:

Poly(lactic-co-glycolic acid)

SEM:

Scanning electron microscope

References

  • Adler HI, Fisher WD, Cohen A, Hardigree AA (1967) Miniature Escherichia coli cells deficient in DNA. Proc Natl Acad Sci USA 57:321–326

    CAS  PubMed  Google Scholar 

  • Ahmed F, Pakunlu RI, Srinivas G, Brannan A, Bates F, Klein ML, Minko T, Discher DE (2006) Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol Pharm 3:340–350

    CAS  PubMed  Google Scholar 

  • Al-Jamal WT, Al-Jamal KT, Bomans PH, Frederik PM, Kostarelos K (2008) Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small 4:1406–1415

    CAS  PubMed  Google Scholar 

  • Alexis F, Basto P, Levy-Nissenbaum E, Radovic-Moreno AF, Zhang L, Pridgen E, Wang AZ, Marein SL, Westerhof K, Molnar LK, Farokhzad OC (2008a) HER-2-targeted nanoparticle-affibody bioconjugates for cancer therapy. ChemMedChem 3:1839–1843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008b) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alexis F, Rhee JW, Richie JP, Radovic-Moreno AF, Langer R, Farokhzad OC (2008c) New frontiers in nanotechnology for cancer treatment. Urol Oncol 26:74–85

    CAS  PubMed  Google Scholar 

  • Aliabadi HM, Shahin M, Brocks DR, Lavasanifar A (2008) Disposition of drugs in block copolymer micelle delivery systems: from discovery to recovery. Clin Pharmacokinet 47:619–634

    CAS  PubMed  Google Scholar 

  • Andresen TL, Davidsen J, Begtrup M, Mouritsen OG, Jorgensen K (2004) Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. J Med Chem 47:1694–1703

    CAS  PubMed  Google Scholar 

  • Andresen TL, Jensen SS, Kaasgaard T, Jorgensen K (2005) Triggered activation and release of liposomal prodrugs and drugs in cancer tissue by secretory phospholipase A2. Curr Drug Deliv 2:353–362

    CAS  PubMed  Google Scholar 

  • Ascierto PA, Scala S, Castello G, Daponte A, Simeone E, Ottaiano A, Beneduce G, De Rosa V, Izzo F, Melucci MT, Ensor CM, Prestayko AW, Holtsberg FW, Bomalaski JS, Clark MA, Savaraj N, Feun LG, Logan TF (2005) Pegylated arginine deiminase treatment of patients with metastatic melanoma: results from phase I and II studies. J Clin Oncol 23:7660–7668

    CAS  PubMed  Google Scholar 

  • Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem Int Ed Engl 45:8149–8152

    CAS  PubMed  Google Scholar 

  • Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070

    CAS  PubMed  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    CAS  PubMed  Google Scholar 

  • Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59:748–758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA 104:15549–15554

    CAS  PubMed  Google Scholar 

  • Bertin PA, Gibbs JM, Shen CK, Thaxton CS, Russin WA, Mirkin CA, Nguyen ST (2006) Multifunctional polymeric nanoparticles from diverse bioactive agents. J Am Chem Soc 128:4168–4169

    CAS  PubMed  Google Scholar 

  • Bierie B, Moses HL (2006) Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520

    CAS  PubMed  Google Scholar 

  • Bissell MJ, Labarge MA (2005) Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell 7:17–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boddy AV, Plummer ER, Todd R, Sludden J, Griffin M, Robson L, Cassidy J, Bissett D, Bernareggi A, Verrill MW, Calvert AH (2005) A phase I and pharmacokinetic study of paclitaxel poliglumex (XYOTAX), investigating both 3-weekly and 2-weekly schedules. Clin Cancer Res 11:7834–7840

    CAS  PubMed  Google Scholar 

  • Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649–1659

    CAS  PubMed  Google Scholar 

  • Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651

    CAS  PubMed  Google Scholar 

  • Cairns R, Papandreou I, Denko N (2006) Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol Cancer Res 4:61–70

    CAS  PubMed  Google Scholar 

  • Campone M, Rademaker-Lakhai JM, Bennouna J, Howell SB, Nowotnik DP, Beijnen JH, Schellens JH (2007) Phase I and pharmacokinetic trial of AP5346, a DACH-platinum-polymer conjugate, administered weekly for three out of every 4 weeks to advanced solid tumor patients. Cancer Chemother Pharmacol 60:523–533

    CAS  PubMed  Google Scholar 

  • Castor TP (2005) Phospholipid nanosomes. Curr Drug Deliv 2:329–340

    CAS  PubMed  Google Scholar 

  • Cedervall T, Lynch I, Foy M, Berggard T, Donnelly SC, Cagney G, Linse S, Dawson KA (2007a) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed Engl 46:5754–5756

    CAS  PubMed  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007b) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055

    CAS  PubMed  Google Scholar 

  • Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    CAS  PubMed  Google Scholar 

  • Chan JM, Zhang L, Yuet KP, Liao G, Rhee JW, Langer R, Farokhzad OC (2009) PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 30:1627–1634

    CAS  PubMed  Google Scholar 

  • Chen Y, Huang L (2008) Tumor-targeted delivery of siRNA by non-viral vector: safe and effective cancer therapy. Expert Opin Drug Deliv 5:1301–1311

    CAS  PubMed  Google Scholar 

  • Cheng Y, CS A, Meyers JD, Panagopoulos I, Fei B, Burda C (2008) Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 130:10643–10647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chithrani BD, Chan WC (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550

    CAS  PubMed  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    CAS  PubMed  Google Scholar 

  • Couvreur P, Kante B, Roland M, Speiser P (1979) Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J Pharm Sci 68:1521–1524

    CAS  PubMed  Google Scholar 

  • Cullis PR, Chonn A (1998) Recent advances in liposome technologies and their applications for systemic gene delivery. Adv Drug Deliv Rev 30:73–83

    PubMed  Google Scholar 

  • Davis M (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6:659–668

    CAS  PubMed  Google Scholar 

  • Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3:1023–1035

    CAS  PubMed  Google Scholar 

  • Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    CAS  PubMed  Google Scholar 

  • Decuzzi P, Ferrari M (2006) The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27:5307–5314

    CAS  PubMed  Google Scholar 

  • Decuzzi P, Ferrari M (2008) Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials 29:377–384

    CAS  PubMed  Google Scholar 

  • Decuzzi P, Gentile F, Granaldi A, Curcio A, Causa F, Indolfi C, Netti P, Ferrari M (2007) Flow chamber analysis of size effects in the adhesion of spherical particles. Int J Nanomedicine 2:689–696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Decuzzi P, Lee S, Bhushan B, Ferrari M (2005) A theoretical model for the margination of particles within blood vessels. Ann Biomed Eng 33:179–190

    CAS  PubMed  Google Scholar 

  • Decuzzi P, Pasqualini R, Arap W, Ferrari M (2009) Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 26:235–243

    CAS  PubMed  Google Scholar 

  • Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, Tao C, De T, Beals B, Dykes D, Noker P, Yao R, Labao E, Hawkins M, Soon-Shiong P (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12:1317–1324

    CAS  PubMed  Google Scholar 

  • Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA 105:17356–17361

    CAS  PubMed  Google Scholar 

  • Discher BM, Won YY, Ege DS, Lee JC, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284:1143–1146

    CAS  PubMed  Google Scholar 

  • Euliss LE, DuPont JA, Gratton S, DeSimone J (2006) Imparting size, shape, and composition control of materials for nanomedicine. Chem Soc Rev 35:1095–1104

    CAS  PubMed  Google Scholar 

  • Fan H (2008) Nanocrystal-micelle: synthesis, self-assembly and application. Chem Commun (Camb) 28:1383–1394

    Google Scholar 

  • Farokhzad OC (2008) Nanotechnology for drug delivery: the perfect partnership. Expert Opin Drug Deliv 5:927–929

    CAS  PubMed  Google Scholar 

  • Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006a) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 103:6315–6320

    CAS  PubMed  Google Scholar 

  • Farokhzad OC, Dimitrakov JD, Karp JM, Khademhosseini A, Freeman MR, Langer R (2006b) Drug delivery systems in urology–getting "smarter". Urology 68:463–469

    PubMed Central  PubMed  Google Scholar 

  • Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672

    CAS  PubMed  Google Scholar 

  • Farokhzad OC, Karp JM, Langer R (2006c) Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 3:311–324

    CAS  PubMed  Google Scholar 

  • Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58:1456–1459

    CAS  PubMed  Google Scholar 

  • Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20

    CAS  PubMed  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5: 161–171

    CAS  PubMed  Google Scholar 

  • Ferrari M (2008) Nanogeometry: beyond drug delivery. Nat Nanotechnol 3:131–132

    CAS  PubMed  Google Scholar 

  • Fesik SW (2005) Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5:876–885

    CAS  PubMed  Google Scholar 

  • Fidler IJ (1995) Modulation of the organ microenvironment for treatment of cancer metastasis. J Natl Cancer Inst 87:1588–1592

    CAS  PubMed  Google Scholar 

  • Fidler IJ (2003) The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 3:453–458

    CAS  PubMed  Google Scholar 

  • Florence AT, Hussain N (2001) Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Adv Drug Deliv Rev 50(Suppl 1):S69–S89

    CAS  PubMed  Google Scholar 

  • Fox JL (2000) Researchers discuss NIH's nanotechnology initiative. Nat Biotechnol 18:821

    CAS  PubMed  Google Scholar 

  • Freitas RA Jr (2005) What is nanomedicine? Dis Mon 51:325–341

    PubMed  Google Scholar 

  • Galon J, Fridman WH, Pages F (2007) The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res 67:1883–1886

    CAS  PubMed  Google Scholar 

  • Gao J, Liang G, Cheung JS, Pan Y, Kuang Y, Zhao F, Zhang B, Zhang X, Wu EX, Xu B (2008) Multifunctional yolk-shell nanoparticles: a potential MRI contrast and anticancer agent. J Am Chem Soc 130:11828–11833

    CAS  PubMed  Google Scholar 

  • Gao K, Huang L (2008) Nonviral methods for siRNA delivery. Mol Pharm 6:651–658

    Google Scholar 

  • Gary DJ, Puri N, Won YY (2007) Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release 121:64–73

    CAS  PubMed  Google Scholar 

  • Gentile F, Chiappini C, Fine D, Bhavane RC, Peluccio MS, Cheng MM, Liu X, Ferrari M, Decuzzi P (2008a) The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J Biomech 41:2312–2318

    CAS  PubMed  Google Scholar 

  • Gentile F, Curcio A, Indolfi C, Ferrari M, Decuzzi P (2008b) The margination propensity of spherical particles for vascular targeting in the microcirculation. J Nanobiotechnology 6:9

    PubMed Central  PubMed  Google Scholar 

  • Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7:1041–1053

    CAS  PubMed  Google Scholar 

  • Gratton SE, Napier ME, Ropp PA, Tian S, DeSimone JM (2008a) Microfabricated particles for engineered drug therapies: elucidation into the mechanisms of cellular internalization of PRINT particles. Pharm Res 25:2845–2852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gratton SE, Pohlhaus PD, Lee J, Guo J, Cho MJ, Desimone JM (2007) Nanofabricated particles for engineered drug therapies: a preliminary biodistribution study of PRINT nanoparticles. J Control Release 121:10–18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008b) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–11618

    CAS  PubMed  Google Scholar 

  • Greco F, Vicent MJ (2008) Polymer–drug conjugates: current status and future trends. Front Biosci 13:2744–2756

    CAS  PubMed  Google Scholar 

  • Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Muller RH (2000) 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18:301–313

    CAS  PubMed  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    CAS  PubMed  Google Scholar 

  • Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, Langer R, Farokhzad OC (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA 105:2586–2591

    CAS  PubMed  Google Scholar 

  • Guo X, MacKay JA, Szoka FC Jr (2003) Mechanism of pH-triggered collapse of phosphatidylethanolamine liposomes stabilized by an ortho ester polyethyleneglycol lipid. Biophys J 84:1784–1795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamaguchi T, Kato K, Yasui H, Morizane C, Ikeda M, Ueno H, Muro K, Yamada Y, Okusaka T, Shirao K, Shimada Y, Nakahama H, Matsumura Y (2007) A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 97:170–176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hawkins MJ, Soon-Shiong P, Desai N (2008) Protein nanoparticles as drug carriers in clinical medicine. Adv Drug Deliv Rev 60:876–885

    CAS  PubMed  Google Scholar 

  • Heath TD, Fraley RT, Papahdjopoulos D (1980) Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab')2 to vesicle surface. Science 210:539–541

    CAS  PubMed  Google Scholar 

  • Heidel JD, Yu Z, Liu JY, Rele SM, Liang Y, Zeidan RK, Kornbrust DJ, Davis ME (2007) Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci USA 104:5715–5721

    CAS  PubMed  Google Scholar 

  • Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100:13549–13554

    CAS  PubMed  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612

    CAS  PubMed  Google Scholar 

  • Homsi J, Simon GR, Garrett CR, Springett G, De Conti R, Chiappori AA, Munster PN, Burton MK, Stromatt S, Allievi C, Angiuli P, Eisenfeld A, Sullivan DM, Daud AI (2007) Phase I trial of poly-L-glutamate camptothecin (CT-2106) administered weekly in patients with advanced solid malignancies. Clin Cancer Res 13:5855–5861

    CAS  PubMed  Google Scholar 

  • Jain KK (2008) Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract 17:89–101

    CAS  PubMed  Google Scholar 

  • James JS (1995a) DOXIL approved by FDA. AIDS Patient Care 9:306

    Google Scholar 

  • James JS (1995b) DOXIL approved for KS. AIDS Treat News 236:6

    Google Scholar 

  • Jensen SS, Andresen TL, Davidsen J, Hoyrup P, Shnyder SD, Bibby MC, Gill JH, Jorgensen K (2004) Secretory phospholipase A2 as a tumor-specific trigger for targeted delivery of a novel class of liposomal prodrug anticancer etherlipids. Mol Cancer Ther 3:1451–1458

    CAS  PubMed  Google Scholar 

  • Jiang W, Kim BY, Rutka JT, Chan WC (2007) Advances and challenges of nanotechnology-based drug delivery systems. Expert Opin Drug Deliv 4:621–633

    CAS  PubMed  Google Scholar 

  • Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldofner N, Scholz R, Deger S, Wust P, Loening SA, Jordan A (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia 21:637–647

    CAS  PubMed  Google Scholar 

  • Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldofner N, Scholz R, Jordan A, Loening SA, Wust P (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–1661

    PubMed  Google Scholar 

  • Jorgensen K, Davidsen J, Mouritsen OG (2002) Biophysical mechanisms of phospholipase A2 activation and their use in liposome-based drug delivery. FEBS Lett 531:23–27

    CAS  PubMed  Google Scholar 

  • Juliano R, Alam MR, Dixit V, Kang H (2008) Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res 36:4158–4171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaneda Y (2000) Virosomes: evolution of the liposome as a targeted drug delivery system. Adv Drug Deliv Rev 43:197–205

    CAS  PubMed  Google Scholar 

  • Kawasaki ES, Player A (2005) Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine 1:101–109

    CAS  PubMed  Google Scholar 

  • Kelly JY, DeSimone JM (2008) Shape-specific, monodisperse nano-molding of protein particles. J Am Chem Soc 130:5438–5439

    CAS  PubMed  Google Scholar 

  • Kester M, Heakal Y, Fox T, Sharma A, Robertson GP, Morgan TT, Altinoglu EI, Tabakovic A, Parette MR, Rouse S, Ruiz-Velasco V, Adair JH (2008) Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Lett 8:4116–4121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim D, Lee ES, Oh KT, Gao ZG, Bae YH (2008) Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small 4:2043–2050

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim DW, Kim SY, Kim HK, Kim SW, Shin SW, Kim JS, Park K, Lee MY, Heo DS (2007a) Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 18:2009–2014

    PubMed  Google Scholar 

  • Kim JS, Rieter WJ, Taylor KM, An H, Lin W, Lin W (2007b) Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging. J Am Chem Soc 129:8962–8963

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim K, Lee M, Park H, Kim JH, Kim S, Chung H, Choi K, Kim IS, Seong BL, Kwon IC (2006) Cell-permeable and biocompatible polymeric nanoparticles for apoptosis imaging. J Am Chem Soc 128:3490–3491

    CAS  PubMed  Google Scholar 

  • Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Wan Kim S, Seo MH (2001) In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release 72: 191–202

    CAS  PubMed  Google Scholar 

  • Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, Kim NK, Bang YJ (2004) Phase I and pharmacokinetic study of Genexol-PM, a Cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10:3708–3716

    CAS  PubMed  Google Scholar 

  • Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268:235–237

    CAS  PubMed  Google Scholar 

  • Kocer A (2007) A remote controlled valve in liposomes for triggered liposomal release. J Liposome Res 17:219–225

    CAS  PubMed  Google Scholar 

  • Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR Jr (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65:5317–5324

    CAS  PubMed  Google Scholar 

  • Langer R (1998) Drug delivery and targeting. Nature 392:5–10

    CAS  PubMed  Google Scholar 

  • Langer R, Folkman J (1976) Polymers for the sustained release of proteins and other macromolecules. Nature 263:797–800

    CAS  PubMed  Google Scholar 

  • Lanza G, Winter P, Cyrus T, Caruthers S, Marsh J, Hughes M, Wickline S (2006) Nanomedicine opportunities in cardiology. Ann N Y Acad Sci 1080:451–465

    CAS  PubMed  Google Scholar 

  • Lee CC, MacKay JA, Frechet JM, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526

    CAS  PubMed  Google Scholar 

  • Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, Rha SY, Lee MY, Ro J (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108:241–250

    CAS  PubMed  Google Scholar 

  • Leserman LD, Barbet J, Kourilsky F, Weinstein JN (1980) Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature 288:602–604

    CAS  PubMed  Google Scholar 

  • Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC (2008) Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol 26:442–449

    CAS  PubMed  Google Scholar 

  • Li C (2002) Poly(L-glutamic acid)–anticancer drug conjugates. Adv Drug Deliv Rev 54:695–713

    CAS  PubMed  Google Scholar 

  • Li C, Wallace S (2008) Polymer–drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev 60:886–898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li SD, Huang L (2008a) Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 5:496–504

    CAS  PubMed  Google Scholar 

  • Li SD, Huang L (2008b) Targeted delivery of siRNA by nonviral vectors: lessons learned from recent advances. Curr Opin Investig Drugs 9:1317–1323

    CAS  PubMed  Google Scholar 

  • Liggins RT, Burt HM (2002) Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv Drug Deliv Rev 54:191–202

    CAS  PubMed  Google Scholar 

  • Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett 7:914–920

    CAS  PubMed  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270

    CAS  PubMed  Google Scholar 

  • Luten J, van Nostrum CF, De Smedt SC, Hennink WE (2008) Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Control Release 126:97–110

    CAS  PubMed  Google Scholar 

  • MacDiarmid JA, Mugridge NB, Weiss JC, Phillips L, Burn AL, Paulin RP, Haasdyk JE, Dickson KA, Brahmbhatt VN, Pattison ST, James AC, Al Bakri G, Straw RC, Stillman B, Graham RM, Brahmbhatt H (2007) Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell 11:431–445

    CAS  PubMed  Google Scholar 

  • Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    CAS  PubMed  Google Scholar 

  • Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR Jr (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7:572–579

    CAS  PubMed  Google Scholar 

  • Majoros IJ, Thomas TP, Mehta CB, Baker JR Jr (2005) Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J Med Chem 48:5892–5899

    CAS  PubMed  Google Scholar 

  • Matsumura Y (2008) Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev 60:899–914

    CAS  PubMed  Google Scholar 

  • Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M, Watanabe N (2004) Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 91:1775–1781

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCarthy TD, Karellas P, Henderson SA, Giannis M, O'Keefe DF, Heery G, Paull JR, Matthews BR, Holan G (2005) Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol Pharm 2:312–318

    CAS  PubMed  Google Scholar 

  • Minko T, Kopeckova P, Pozharov V, Jensen KD, Kopecek J (2000) The influence of cytotoxicity of macromolecules and of VEGF gene modulated vascular permeability on the enhanced permeability and retention effect in resistant solid tumors. Pharm Res 17:505–514

    CAS  PubMed  Google Scholar 

  • Moghimi SM (2006) Recent developments in polymeric nanoparticle engineering and their applications in experimental and clinical oncology. Anticancer Agents Med Chem 6:553–561

    CAS  PubMed  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    CAS  PubMed  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. Faseb J 19:311–330

    CAS  PubMed  Google Scholar 

  • Montet X, Weissleder R, Josephson L (2006) Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 17:905–911

    CAS  PubMed  Google Scholar 

  • Morgan TT, Muddana HS, Altinoglu EI, Rouse SM, Tabakovic A, Tabouillot T, Russin TJ, Shanmugavelandy SS, Butler PJ, Eklund PC, Yun JK, Kester M, Adair JH (2008) Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett 8(12):4108–4115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami T, Tsuchida K (2008) Recent advances in inorganic nanoparticle-based drug delivery systems. Mini Rev Med Chem 8:175–183

    CAS  PubMed  Google Scholar 

  • Murphy EA, Majeti BK, Barnes LA, Makale M, Weis SM, Lutu-Fuga K, Wrasidlo W, Cheresh DA (2008) Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci USA 105:9343–9348

    CAS  PubMed  Google Scholar 

  • Myc A, Douce TB, Ahuja N, Kotlyar A, Kukowska-Latallo J, Thomas TP, Baker JR Jr (2008) Preclinical antitumor efficacy evaluation of dendrimer-based methotrexate conjugates. Anticancer Drugs 19:143–149

    CAS  PubMed  Google Scholar 

  • Najlah M, D'Emanuele A (2007) Synthesis of dendrimers and drug-dendrimer conjugates for drug delivery. Curr Opin Drug Discov Devel 10:756–767

    CAS  PubMed  Google Scholar 

  • Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:2427–2430

    CAS  PubMed  Google Scholar 

  • Nyman DW, Campbell KJ, Hersh E, Long K, Richardson K, Trieu V, Desai N, Hawkins MJ, Von Hoff DD (2005) Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J Clin Oncol 23:7785–7793

    CAS  PubMed  Google Scholar 

  • Overall CM, Kleifeld O (2006) Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6:227–239

    CAS  PubMed  Google Scholar 

  • Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin L (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183

    CAS  PubMed  Google Scholar 

  • Park H, Yang J, Seo S, Kim K, Suh J, Kim D, Haam S, Yoo KH (2008) Multifunctional nanoparticles for photothermally controlled drug delivery and magnetic resonance imaging enhancement. Small 4:192–196

    CAS  PubMed  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    CAS  PubMed  Google Scholar 

  • Peppas NA (2004) Intelligent therapeutics: biomimetic systems and nanotechnology in drug delivery. Adv Drug Deliv Rev 56:1529–1531

    CAS  PubMed  Google Scholar 

  • Peracchia MT, Harnisch S, Pinto-Alphandary H, Gulik A, Dedieu JC, Desmaele D, d'Angelo J, Muller RH, Couvreur P (1999) Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles. Biomaterials 20:1269–1275

    CAS  PubMed  Google Scholar 

  • Porche DJ (1996) Liposomal doxorubicin (Doxil). J Assoc Nurses AIDS Care 7:55–59

    CAS  PubMed  Google Scholar 

  • Posey JA 3rd, Saif MW, Carlisle R, Goetz A, Rizzo J, Stevenson S, Rudoltz MS, Kwiatek J, Simmons P, Rowinsky EK, Takimoto CH, Tolcher AW (2005) Phase 1 study of weekly polyethylene glycol-camptothecin in patients with advanced solid tumors and lymphomas. Clin Cancer Res 11:7866–7871

    CAS  PubMed  Google Scholar 

  • Pridgen EM, Langer R, Farokhzad OC (2007) Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomed 2:669–680

    CAS  Google Scholar 

  • Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I, Patri AK, Thomas T, Mule J, Baker JR Jr (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19:1310–1316

    CAS  PubMed  Google Scholar 

  • Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99:1095–1106

    CAS  PubMed  Google Scholar 

  • Rice JR, Gerberich JL, Nowotnik DP, Howell SB (2006) Preclinical efficacy and pharmacokinetics of AP5346, a novel diaminocyclohexane-platinum tumor-targeting drug delivery system. Clin Cancer Res 12:2248–2254

    CAS  PubMed  Google Scholar 

  • Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine–challenge and perspectives. Angew Chem Int Ed Engl 48:872–897

    CAS  PubMed  Google Scholar 

  • Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM (2005) Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 127:10096–10100

    CAS  PubMed  Google Scholar 

  • Rosen H, Abribat T (2005) The rise and rise of drug delivery. Nat Rev Drug Discov 4:381–385

    CAS  PubMed  Google Scholar 

  • Salvador-Morales C, Gao W, Ghatalia P, Murshed F, Aizu W, Langer R, Farokhzad OC (2009a) Multifunctional nanoparticles for prostate cancer therapy. Expert Rev Anticancer Ther 9:211–221

    CAS  PubMed  Google Scholar 

  • Salvador-Morales C, Zhang L, Langer R, Farokhzad OC (2009b) Immunocompatibility properties of lipid–polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 30:2231–2240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawaki A, Yamao K (2004) Imatinib mesylate acts in metastatic or unresectable gastrointestinal stromal tumor by targeting KIT receptors–a review. Cancer Chemother Pharmacol 54(Suppl 1): S44–S49

    CAS  PubMed  Google Scholar 

  • Schneider GF, Subr V, Ulbrich K, Decher G (2009) Multifunctional cytotoxic stealth nanoparticles. A model approach with potential for cancer therapy. Nano Lett 9:636–642

    CAS  PubMed  Google Scholar 

  • Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159

    CAS  PubMed  Google Scholar 

  • Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK, Pham K, McNichols RJ, Coleman CL, Payne JD (2009) Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res 69:1659–1667

    CAS  PubMed  Google Scholar 

  • Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436:568–572

    CAS  PubMed  Google Scholar 

  • Shin J, Anisur RM, Ko MK, Im GH, Lee JH, Lee IS (2009) Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew Chem Int Ed Engl 48:321–324

    CAS  PubMed  Google Scholar 

  • Siclari VA, Guise TA, Chirgwin JM (2006) Molecular interactions between breast cancer cells and the bone microenvironment drive skeletal metastases. Cancer Metastasis Rev 25:621–633

    CAS  PubMed  Google Scholar 

  • Singer JW (2005) Paclitaxel poliglumex (XYOTAX, CT-2103): a macromolecular taxane. J Control Release 109:120–126

    CAS  PubMed  Google Scholar 

  • Singer JW, Baker B, De Vries P, Kumar A, Shaffer S, Vawter E, Bolton M, Garzone P (2003) Poly-(L)-glutamic acid-paclitaxel (CT-2103) [XYOTAX], a biodegradable polymeric drug conjugate: characterization, preclinical pharmacology, and preliminary clinical data. Adv Exp Med Biol 519:81–99

    CAS  PubMed  Google Scholar 

  • Sinha R, Kim GJ, Nie S, Shin DM (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5:1909–1917

    CAS  PubMed  Google Scholar 

  • Soepenberg O, de Jonge MJ, Sparreboom A, de Bruin P, Eskens FA, de Heus G, Wanders J, Cheverton P, Ducharme MP, Verweij J (2005) Phase I and pharmacokinetic study of DE-310 in patients with advanced solid tumors. Clin Cancer Res 11:703–711

    CAS  PubMed  Google Scholar 

  • Sood P, Thurmond KB 2nd, Jacob JE, Waller LK, Silva GO, Stewart DR, Nowotnik DP (2006) Synthesis and characterization of AP5346, a novel polymer-linked diaminocyclohexyl platinum chemotherapeutic agent. Bioconjug Chem 17:1270–1279

    CAS  PubMed  Google Scholar 

  • Strebhardt K, Ullrich A (2008) Paul Ehrlich's magic bullet concept: 100 years of progress. Nat Rev Cancer 8:473–480

    CAS  PubMed  Google Scholar 

  • Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162

    CAS  PubMed  Google Scholar 

  • Sudimack JJ, Guo W, Tjarks W, Lee RJ (2002) A novel pH-sensitive liposome formulation containing oleyl alcohol. Biochim Biophys Acta 1564:31–37

    CAS  PubMed  Google Scholar 

  • Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234

    CAS  PubMed  Google Scholar 

  • Tejada-Berges T, Granai CO, Gordinier M, Gajewski W (2002) Caelyx/Doxil for the treatment of metastatic ovarian and breast cancer. Expert Rev Anticancer Ther 2:143–150

    CAS  PubMed  Google Scholar 

  • Thanou M, Duncan R (2003) Polymer–protein and polymer–drug conjugates in cancer therapy. Curr Opin Investig Drugs 4:701–709

    CAS  PubMed  Google Scholar 

  • Thevenot J, Troutier AL, David L, Delair T, Ladaviere C (2007) Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids. Biomacromolecules 8:3651–3660

    CAS  PubMed  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    CAS  PubMed  Google Scholar 

  • Tribler L, Jensen LT, Jorgensen K, Brunner N, Gelb MH, Nielsen HJ, Jensen SS (2007) Increased expression and activity of group IIA and X secretory phospholipase A2 in peritumoral versus central colon carcinoma tissue. Anticancer Res 27:3179–3185

    CAS  PubMed  Google Scholar 

  • Tseng YC, Mozumdar S, Huang L (2009) Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev 61:721–731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsukioka Y, Matsumura Y, Hamaguchi T, Koike H, Moriyasu F, Kakizoe T (2002) Pharmaceutical and biomedical differences between micellar doxorubicin (NK911) and liposomal doxorubicin (Doxil). Jpn J Cancer Res 93:1145–1153

    CAS  PubMed  Google Scholar 

  • Uchegbu IF (2006) Pharmaceutical nanotechnology: polymeric vesicles for drug and gene delivery. Expert Opin Drug Deliv 3:629–640

    CAS  PubMed  Google Scholar 

  • Uchino H, Matsumura Y, Negishi T, Koizumi F, Hayashi T, Honda T, Nishiyama N, Kataoka K, Naito S, Kakizoe T (2005) Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer 93:678–687

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Vlerken LE, Amiji MM (2006) Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv 3:205–216

    PubMed  Google Scholar 

  • van Vlerken LE, Duan Z, Little SR, Seiden MV, Amiji MM (2008) Biodistribution and pharmacokinetic analysis of Paclitaxel and ceramide administered in multifunctional polymer-blend nanoparticles in drug resistant breast cancer model. Mol Pharm 5:516–526

    PubMed Central  PubMed  Google Scholar 

  • Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, Thomson AH, Murray LS, Hilditch TE, Murray T, Burtles S, Fraier D, Frigerio E, Cassidy J (1999) Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin Cancer Res 5:83–94

    CAS  PubMed  Google Scholar 

  • Venugopal J, Prabhakaran MP, Low S, Choon AT, Zhang YZ, Deepika G, Ramakrishna S (2008) Nanotechnology for nanomedicine and delivery of drugs. Curr Pharm Des 14:2184–2200

    CAS  PubMed  Google Scholar 

  • Verma A, Uzun O, Hu Y, Hu Y, Han HS, Watson N, Chen S, Irvine DJ, Stellacci F (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7:588–595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vial F, Rabhi S, Tribet C (2005) Association of octyl-modified poly(acrylic acid) onto unilamellar vesicles of lipids and kinetics of vesicle disruption. Langmuir 21:853–862

    CAS  PubMed  Google Scholar 

  • Visaria R, Bischof JC, Loren M, Williams B, Ebbini E, Paciotti G, Griffin R (2007) Nanotherapeutics for enhancing thermal therapy of cancer. Int J Hyperthermia 23:501–511

    CAS  PubMed  Google Scholar 

  • Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, Bischof JC (2006) Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery. Mol Cancer Ther 5:1014–1020

    CAS  PubMed  Google Scholar 

  • Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR, Farokhzad OC (2008a) Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 8:1063–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang G, Uludag H (2008) Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opin Drug Deliv 5:499–515

    CAS  PubMed  Google Scholar 

  • Wang L, Bai J, Li Y, Huang Y (2008b) Multifunctional nanoparticles displaying magnetization and near-IR absorption. Angew Chem Int Ed Engl 47:2439–2442

    CAS  PubMed  Google Scholar 

  • Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138

    CAS  PubMed  Google Scholar 

  • Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY (2007) Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 59:491–504

    CAS  PubMed  Google Scholar 

  • Wong HL, Bendayan R, Rauth AM, Xue HY, Babakhanian K, Wu XY (2006a) A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer–lipid hybrid nanoparticle system. J Pharmacol Exp Ther 317:1372–1381

    CAS  PubMed  Google Scholar 

  • Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z, Erhan SZ, Wu XY (2006b) A new polymer–lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 23:1574–1585

    CAS  PubMed  Google Scholar 

  • Zamboni WC (2008) Concept and clinical evaluation of carrier-mediated anticancer agents. Oncologist 13:248–260

    CAS  PubMed  Google Scholar 

  • Zetter BR (2008) The scientific contributions of M. Judah Folkman to cancer research. Nat Rev Cancer 8:647–654

    CAS  PubMed  Google Scholar 

  • Zhang L, Chan JM, Gu FX, Rhee JW, Wang AZ, Radovic-Moreno AF, Alexis F, Langer R, Farokhzad OC (2008a) Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2:1696–1702

    CAS  PubMed  Google Scholar 

  • Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008b) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769

    CAS  PubMed  Google Scholar 

  • Zhang L, Radovic-Moreno AF, Alexis F, Gu FX, Basto PA, Bagalkot V, Jon S, Langer RS, Farokhzad OC (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2:1268–1271

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health Grants CA119349 and EB003647 and a Koch-Prostate Cancer Foundation Award in Nanotherapeutics. EMP is supported by a National Defense Science and Engineering Graduate Fellowship (NDSEG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid C. Farokhzad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alexis, F., Pridgen, E.M., Langer, R., Farokhzad, O.C. (2010). Nanoparticle Technologies for Cancer Therapy. In: Schäfer-Korting, M. (eds) Drug Delivery. Handbook of Experimental Pharmacology, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00477-3_2

Download citation

Publish with us

Policies and ethics