Skip to main content

Environmental Selection Pressures Shaping the Pulmonary Surfactant System of Adult and Developing Lungs

  • Chapter
  • First Online:
Cardio-Respiratory Control in Vertebrates

Abstract

Pulmonary surfactant is comprised of lipids and proteins. Environmental variables — temperature, pressure and hypoxia — represent powerful evolutionary selection pressures that have shaped the evolution of the system in adult and developing lungs. We review how the composition, structure and function of surfactant changes dramatically in response to temperature. Physical forces, e.g. stretching of the alveolar basement membrane, fluid distension of the lung during development, or cyclical compression and relaxation of the lipid film also affect the secretion, maturation and physical function of surfactant. Here we also review how high hydrostatic pressures experienced by diving mammals influence the molecular, biochemical, cellular and physiological characteristics of surfactant. Also, hypoxia predominantly exerts its effect on maturation of the surfactant lipids and proteins via the endocrine system in developing organisms. However, the influence of hypoxia on the adult surfactant system is unknown. We summarise the major discoveries concerning how temperature, pressure and hypoxia have influenced the pulmonary surfactant system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman RA, Prange HD (1972) Oxygen diffusion across a sea turtle (Chelonia mydas) eggshell. Comp Biochem Physiol A 43:905–909.

    Article  CAS  Google Scholar 

  • Bachofen H, Schürch S (2001) Alveolar surface forces and lung architecture. Comp Biochem Physiol A 129(1):183–193.

    Article  CAS  Google Scholar 

  • Barros RC, Zimmer ME, Branco LG, Milsom WK (2001) Hypoxic metabolic response of the golden-mantled ground squirrel. J Appl Physiol 91(2):603–612.

    PubMed  CAS  Google Scholar 

  • Belov GV, Arbuzov AA, Davydov VT (1985) Comparative evaluation of the physical methods for studying the pulmonary surfactant system during exposure to acute hypoxia. Biulleten' eksperimental'noi biologii i meditsiny 99(5):542–545.

    PubMed  CAS  Google Scholar 

  • Benson BJ, Kitterman JA, Clements JA, Mescher EJ, Tooley WH (1983) Changes in phospholipid composition of lung surfactant during development in the fetal lamb. Biochim Biophys Acta 753:83–88.

    PubMed  CAS  Google Scholar 

  • Blacker HA, Orgeig S, Daniels CB (2004) Hypoxic control of the development of the surfactant system in the chicken: evidence for physiological heterokairy. Am J Physiol Regul Integr Comp Physiol 287(2):R403–R410.

    Article  PubMed  CAS  Google Scholar 

  • Braems GA, Han VK, Challis JR (1998) Gestational age-dependent changes in the levels of mRNAs encoding cortisol biosynthetic enzymes and IGF-II in the adrenal gland of fetal sheep during prolonged hypoxemia. J Endocrinol 159(2):257–264.

    Article  PubMed  CAS  Google Scholar 

  • Braems GA, Yao LJ, Inchley K, Brickenden A, Han VK, Grolla A, Challis JR, Possmayer F (2000) Ovine surfactant protein cDNAs: use in studies on fetal lung growth and maturation after prolonged hypoxemia. Am J Physiol 278(4):L754–764.

    CAS  Google Scholar 

  • Chander A, Viswanathan R, Venkitasubramanian TA (1975) Effect of acute hypobaric hypoxia on 32-P incorporation into phospholipids of alveolar surfactant, lung, liver and plasma of rat. Environ Physiol Biochem 5(1):27–36.

    PubMed  CAS  Google Scholar 

  • Chapman D (1973) Physical chemistry of phospholipids. In: Ansell GB, Dawson RMC, Hawthorne JN (eds) Form and function of phospholipids. Elsevier, Amsterdam, pp 117–141.

    Google Scholar 

  • Chapman D (1975) Phase transitions and fluidity characteristics of lipids and cell membranes. Quart Rev Biophys 8(2):185–235.

    Article  CAS  Google Scholar 

  • Cheng JB, Goldfien A, Ballard PL, Roberts JM (1980) Glucocorticoids increase pulmonary beta-adrenergic receptors in fetal rabbit. Endocrinology 107(5):1646–1648.

    Article  PubMed  CAS  Google Scholar 

  • Cheung E, Wong N, Mortola JP (2000) Compliance of the respiratory system in newborn and adult rats after gestation in hypoxia. J Comp Physiol B 170(3):193–199.

    Article  PubMed  CAS  Google Scholar 

  • Cock ML, Albuquerque CA, Joyce BJ, Hooper SB, Harding R (2001) Effects of intrauterine growth restriction on lung liquid dynamics and lung development in fetal sheep. Am J Obstet Gynecol 184(2):209–216.

    Article  PubMed  CAS  Google Scholar 

  • Codd JR, Daniels CB, Orgeig S (2000a) Thermal cycling of the pulmonary surfactant system in small heterothermic mammals. In: Heldmeier G, Klingenspor M (eds) Life in the Cold. Eleventh International Hibernation Symposium. Springer, Berlin, pp 187–197.

    Google Scholar 

  • Codd JR, Slocombe NC, Daniels CB, Wood PG, Orgeig S Periodic fluctuations in the pulmonary surfactant system in Gould's wattled bat (Chalinolobus gouldii). Physiol Biochem Zool 73(5):605 612.

    Google Scholar 

  • Codd JR, Schürch S, Daniels CB, Orgeig S (2002) Torpor-associated fluctuations in surfactant activity in Gould's wattled bat. Biochimica et biophysica acta 1580:57–66.

    PubMed  CAS  Google Scholar 

  • Codd JR, Orgeig S, Daniels CB, Schürch S (2003) Alterations in surface activity of pulmonary surfactant in Gould's wattled bat during rapid arousal from torpor. Biochem Biophys Res Commun 308(3):463–468.

    Article  PubMed  CAS  Google Scholar 

  • Daniels CB, Orgeig S (2001) The comparative biology of pulmonary surfactant: past, present and future. Comp Biochem Physiol A 129(1):9–36.

    Article  CAS  Google Scholar 

  • Daniels CB, Orgeig S (2003) Pulmonary surfactant: the key to the evolution of air breathing. News Physiol Sci 18:151–157.

    PubMed  CAS  Google Scholar 

  • Daniels CB, Skinner CH (1994) The composition and function of surface active lipids in the goldfish swim bladder. Physiol Zool 67(5):1230–1256.

    CAS  Google Scholar 

  • Daniels CB, Barr HA, Power JHT, Nicholas TE (1990) Body temperature alters the lipid composition of pulmonary surfactant in the lizard Ctenophorus nuchalis. Exp Lung Res 16:435–449.

    Article  PubMed  CAS  Google Scholar 

  • Daniels CB, McGregor LK, Nicholas TE (1994a) The dragon's breath: a model for the dynamics of breathing and faveolar ventilation in agamid lizards. Herpetologica 50:251–261.

    Google Scholar 

  • Daniels CB, Orgeig S, Wilsen J, Nicholas TE (1994b) Pulmonary-type surfactants in the lungs of terrestrial and aquatic amphibians. Respir Physiol 95:249–258.

    Article  CAS  Google Scholar 

  • Daniels CB, Orgeig S, Smits AW (1995a) The composition and function of reptilian pulmonary surfactant. Respir Physiol 102:121–135.

    Article  CAS  Google Scholar 

  • Daniels CB, Orgeig S, Smits AW (1995b) Invited perspective: the evolution of the vertebrate pulmonary surfactant system. Physiol Zool 68(4):539–566.

    CAS  Google Scholar 

  • Daniels CB, Smits AW, Orgeig S (1995c) Pulmonary surfactant lipids in the faveolar and saccular lung regions of snakes. Physiol Zool 68(5):812–830.

    CAS  Google Scholar 

  • Daniels CB, Orgeig S, Smits AW, Miller JD (1996) The influence of temperature, phylogeny, and lung structure on the lipid composition of reptilian pulmonary surfactant. Exp Lung Res 22:267–281.

    Article  PubMed  CAS  Google Scholar 

  • Daniels CB, Lopatko OV, Orgeig S (1998a) Evolution of surface activity related functions of vertebrate pulmonary surfactant. Clin Exp Pharmacol Physiol 25:716–721.

    Article  CAS  Google Scholar 

  • Daniels CB, Orgeig S, Wood PG, Sullivan LC, Lopatko OV, Smits AW (1998b) The changing state of surfactant lipids: new insights from ancient animals. Am Zool 38:305–320.

    CAS  Google Scholar 

  • Daniels CB, Orgeig S, Sullivan LC, Ling N, Bennett MB, Schurch S, Val AL, Brauner CJ (2004) The origin and evolution of the surfactant system in fish: insights into the evolution of lungs and swim bladders. Physiol Biochem Zool 77(5):732–749.

    Article  PubMed  Google Scholar 

  • Doyle IR, Jones ME, Barr HA, Orgeig S, Crockett AJ, McDonald CF, Nicholas TE (1994) Composition of human pulmonary surfactant varies with exercise and level of fitness. Am J Respir Crit Care Med 149:1619–1627.

    PubMed  CAS  Google Scholar 

  • Edwards YS (2001) Stretch stimulation: its effects on alveolar type II cell function in the lung. Comp Biochem Physiol A 129(1):245–260.

    Article  CAS  Google Scholar 

  • Egberts J, Beintema-Dubbeldam A, de Boers A1987) Phosphatidylinositol and not phosphatidylglycerol is the important minor phospholipid in rhesus-monkey surfactant. Biochimca et biophysica acta 919:90–92.

    CAS  Google Scholar 

  • Foot NJ, Orgeig S, Daniels CB (2006) The evolution of a physiological system: the pulmonary surfactant system in diving mammals. Special Issue: Frontiers Comp Physiol II: Respiratory Rhythm, Pattern and Responses to Environmental Change. Respir Physiol Neurobiol 154(1–2):118–138.

    Article  PubMed  CAS  Google Scholar 

  • Foot NJ, Orgeig S, Donnellan S, Bertozzi T, Daniels CB (2007) Positive selection in the N-terminal extramembrane domain of lung surfactant protein C. (SP-C) in marine mammals. J Mol Evol 65(1):12–22.

    Article  PubMed  CAS  Google Scholar 

  • Gagnon R, Challis J, Johnston L, Fraher L (1994) Fetal endocrine responses to chronic placental embolization in the late-gestation fetus. Am J Obstet Gynecol 3:929–938.

    Google Scholar 

  • Gagnon R, Langridge J, Inchley K, Murotsuki J, Possmayer F (1999) Changes in surfactant-associated protein mRNA profile in growth-restricted fetal sheep. Am J Physiol 276(3 Pt 1):L459–465.

    PubMed  CAS  Google Scholar 

  • Geiser F, Baudinette RV (1990) The relationship between body mass and rate of rewarming from hibernation and daily torpor in mammals. J Exp Biol 151:349–359.

    PubMed  CAS  Google Scholar 

  • Godfrey GK (1968) Body-temperatures and torpor in Sminthopsis crassicaudata and S. larapinta (Marsupialia-Dasyuridae). J Zool 156:499–511.

    Article  Google Scholar 

  • Goerke J (1998) Pulmonary surfactant: functions and molecular composition. Biochimica et Biophysica Acta 1408:79–89.

    PubMed  CAS  Google Scholar 

  • Goerke J, Clements JA (1985) Alveolar surface tension and lung surfactant. In: Macklem PT, Mead J (eds) Handbook of Physiology, Section 3: The Respiratory System. Vol III: Mechanics of Breathing, Part I. American Physiological Society, Washington DC, pp 247–260.

    Google Scholar 

  • Gross I, Ballard PL (1997) Hormonal therapy for prevention of respiratory distress syndrome. In: Polin RA, Fox WW (eds) Fetal and Neonatal Physiology. Saunders, Philadelphia, pp 1314–1321.

    Google Scholar 

  • Gross TL, Sokol RJ, Wilson MV, Kuhnert PM, Hirsch V (1981) Amniotic fluid phosphatidylglycerol: a potentially useful predictor of intrauterine growth retardation. The Environment. Elsevier, London, pp 253–266.

    Google Scholar 

  • Heath D, Smith P, Harris P (1976) Clara cells in the llama. Exp Cell Biol 44(2):73–82.

    PubMed  CAS  Google Scholar 

  • Hegde KS, Kumar R, Krishna B, Nayar HS. (1980) Alveolar macrophages and pulmonary surfactant of altitude-raised rats. Aviation Space Environ Med 51(7):700–703.

    CAS  Google Scholar 

  • Hooper SB, Wallace MJ (2004) Physical, endocrine and growth factors in lung development. In: Harding R, Pinkerton KE, Plopper CG (eds) The Lung: Development, Aging and the Environment. Academic, London, pp 131–148.

    Google Scholar 

  • Hosken DJ, Withers PC (1997) Temperature regulation and metabolism of an Australian bat, Chalinolobus gouldii (Chiroptera: Vespertilionidae) when euthermic and torpid. J Comp Physiol B 167:71–80.

    Article  PubMed  CAS  Google Scholar 

  • Hosken DJ, Withers PC (1999) Metabolic physiology of euthermic and torpid lesser long-eared bats, Nyctophilus geoffroyi (Chirpotera:Vespertilionidae). J Mammal 80(1):42–52.

    Article  Google Scholar 

  • Jobe AH, Ikegami M (2000) Lung development and function in preterm infants in the surfactant treatment era. Annu Rev Physiol 62(1):825–846.

    Article  PubMed  CAS  Google Scholar 

  • Johnston SD, Daniels CB (2001) Development of the pulmonary surfactant system in non-mammalian amniotes. Comp Biochem Physiol A 129(1):49–63.

    Article  CAS  Google Scholar 

  • Johnston SD, Orgeig S, Lopatko OV, Daniels CB (2000) Development of the pulmonary surfactant system in two oviparous vertebrates. Am J Physiol 278(2):R486–R493.

    CAS  Google Scholar 

  • Johnston SD, Daniels CB, Booth DT (2001) Development of the pulmonary surfactant system in the green sea turtle, Chelonia mydas. Respir Physiol 126(1):75–84.

    Article  PubMed  CAS  Google Scholar 

  • Johnston SD, Daniels CB, Cenzato D, Whitsett JA, Orgeig S. (2002a) The pulmonary surfactant system matures upon pipping in the freshwater turtle, Chelydra serpentina. J Exp Biol 205(3):415–425.

    Google Scholar 

  • Johnston SD, Starrs AP, Daniels CB, Orgeig S (2002b) Ontogeny of the pulmonary surfactant and antioxidant enzyme systems in the viviparous lizard, Tiliqua rugosa. Physiol Biochem Zool 75(3):260–272.

    Article  CAS  Google Scholar 

  • Kooyman GL (1989) Diving Physiology: Marine Mammals. In: Wood SC (ed) Comparative Pulmonary Physiology: Current Concepts. Marcel Dekker, New York, pp 721–734.

    Google Scholar 

  • Lang CJ, Daniels CB, Orgeig S (2005a) New insights into the thermal dynamics of the surfactant system from warm and cold animals. In: Nag K (ed) Lung Surfactant Function and Disorder. Taylor and Francis, Boca Raton, pp 17–57.

    Google Scholar 

  • Lang CJ, Postle AD, Orgeig S, Possmayer F, Bernhard W, Panda AK, Jürgens KD, Milsom WK, Nag K, Daniels CB (2005b) Dipalmitoylphosphatidylcholine is not the major surfactant phospholipid species in all mammals. Am J Physiol Regul, Integr Comp Physiol 289:R1426–R1439.

    Article  CAS  Google Scholar 

  • Langman C, Orgeig S, Daniels CB (1996) Alterations in composition and function of surfactant associated with torpor in Sminthopsis crassicaudata. Am J Physiol 271:R437–R445.

    PubMed  CAS  Google Scholar 

  • Larking PW (1999) Cancer and low levels of plasma cholesterol: the relevance of cholesterol precursors and products to incidence of cancer. Prevent Med 29(5):383–390.

    Article  CAS  Google Scholar 

  • Lau MJ, Keough KMW (1981) Lipid composition of lung and lung lavage fluid from map turtles (Malaclemys geographica) maintained at different environmental temperatures. Can J Biochem 59:208–219.

    Article  PubMed  CAS  Google Scholar 

  • Lechner AJ, Winston DC, Bauman JE (1986) Lung mechanics, cellularity, and surfactant after prenatal starvation in guinea pigs. J Appl Physiol 60(5):1610–1614.

    PubMed  CAS  Google Scholar 

  • Liamtsev VG, Arbuzov AA (1981) Surfactant system of rat lungs in acute hypoxic hypoxia. Biulleten' eksperimental'noi biologii i meditsiny 92(11):612–614.

    PubMed  CAS  Google Scholar 

  • Liggins GC (1969) Premature delivery of foetal lambs infused with glucocorticoids. Endocrinology 45:515–523.

    Article  CAS  Google Scholar 

  • Lin Y, Lechner AJ (1991) Surfactant content and type II cell development in fetal guinea pig lungs during prenatal starvation. Pediatr Res 29:288–291.

    Article  PubMed  CAS  Google Scholar 

  • Lopatko OV, Orgeig S, Daniels CB, Palmer D (1998) Alterations in the surface properties of lung surfactant in the torpid marsupial Sminthopsis crassicaudata. J Appl Physiol 84(1):146–156.

    PubMed  CAS  Google Scholar 

  • Lopatko OV, Orgeig S, Palmer D, Schürch S, Daniels CB (1999) Alterations in pulmonary surfactant after rapid arousal from torpor in the marsupial Sminthopsis crassicaudata. J Appl Physiol 86(6):1959–1970.

    PubMed  CAS  Google Scholar 

  • Maniscalco WM, Shapiro DL (1983) Effects of dexamethasone on beta-adrenergic receptors in fetal lung explants. Pediatr Res 17(4):274–277.

    Article  PubMed  CAS  Google Scholar 

  • Mason RJ, Voelker DR (1998) Regulatory mechanisms of surfactant secretion. Biochimica et Biophysica Acta 1408:226–240.

    PubMed  CAS  Google Scholar 

  • McGregor LK, Daniels CB, Nicholas TE (1993) Lung ultrastructure and the surfactant-like system of the central netted dragon, Ctenophorus nuchalis. Copeia 1993:326–333.

    Article  Google Scholar 

  • Melling J, Keough KMW (1981) Major phospholipids from the lung and lung lavage fluid from warm- and cold-acclimated Richardson's ground squirrels (Spermophilus richardsoni). Comp Biochem Physiol B 69:797–802.

    Article  Google Scholar 

  • Miller NJ (2005) The evolution of a physiological system: the pulmonary surfactant system in diving mammals. PhD thesis. Environmental Biology, University of Adelaide, Adelaide, Australia.

    Google Scholar 

  • Miller NJ, Daniels CB, Costa DP, Orgeig S (2004) Control of pulmonary surfactant secretion in adult California sea lions. Biochem Biophys Res Commun 313(3):727–732.

    Article  PubMed  CAS  Google Scholar 

  • Miller NJ, Postle AD, Schürch S, Schoel WM, Daniels CB, Orgeig S (2005) The development of the pulmonary surfactant system in California sea lions. Comp Biochem Physiol A 141(2):191–199.

    Article  CAS  Google Scholar 

  • Miller NJ, Daniels CB, Schürch S, Schoel WM, Orgeig S (2006a) The surface activity of pulmonary surfactant from diving mammals. Respir Physiol Neurobiol 150:220–232.

    Article  CAS  Google Scholar 

  • Miller NJ, Postle AD, Koster G, Orgeig S, Daniels CB (2006b) The composition of pulmonary surfactant from diving mammals. Respir Physiol Neurobiol 152(2):152–168.

    Article  CAS  Google Scholar 

  • Minior VK, Divon MY (1998) Fetal growth restriction at term: myth or reality? Obstet Gynecol 92(1):57–60.

    Article  PubMed  CAS  Google Scholar 

  • Nardo L, Hooper SB, Harding R (1995) Lung hypoplasia can be reversed by short-term obstruction of the trachea in fetal sheep. Pediat Res 38(5):690–696.

    Article  PubMed  CAS  Google Scholar 

  • Nicolaides KH, Economides DL, Soothill PW (1989) Blood gases, pH, and lactate in appropriate- and small-for-gestational-age fetuses. Am J Obstet Gynecol 161(4):996–1001.

    PubMed  CAS  Google Scholar 

  • Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148(3):929–936.

    PubMed  CAS  Google Scholar 

  • Orgeig S, Daniels CB (1995) The evolutionary significance of pulmonary surfactant in lungfish (Dipnoi). Am J Respir Cell Mol Biol 13:161–166.

    PubMed  CAS  Google Scholar 

  • Orgeig S, Daniels CB (2001) The roles of cholesterol in pulmonary surfactant: insights from comparative and evolutionary studies. Comp Biochem Physiol A 129(1):75–89.

    Article  CAS  Google Scholar 

  • Orgeig S, Daniels CB (2004) Effects of aging, disease and the environment on the pulmonary surfactant system. In: Harding R, Pinkerton K, Plopper C (eds) The Lung: Development, Aging and the Environment. Academic, London, pp 363–375.

    Google Scholar 

  • Orgeig S, Daniels CB, Smits AW (1994) The composition and function of the pulmonary surfactant system during metamorphosis in the tiger salamander Ambystoma tigrinum. J Comp Physiol B 164:337–342.

    Article  PubMed  CAS  Google Scholar 

  • Orgeig S, Barr HA, Nicholas TE (1995) Effect of hyperpnea on the cholesterol to disaturated phospholipid ratio in alveolar surfactant of rats. Exp Lung Res 21:157–174.

    Article  PubMed  CAS  Google Scholar 

  • Orgeig S, Daniels CB, Sullivan LC (2004) Development of the pulmonary surfactant system. In: Harding R, Pinkerton K, Plopper C (eds) The Lung: Development, Aging and the Environment. Academic, London, pp 149–167.

    Google Scholar 

  • Orgeig S, Bernhard W, Biswas SC, Daniels CB, Hall SB, Hetz SK, Lang CJ, Maina JN, Panda AK, Perez-Gil J, Possmayer F, Veldhuizen RA, Yan W (2007) The anatomy, physics, and physiology of gas exchange surfaces: is there a universal function for pulmonary surfactant in animal respiratory structures? Integr Comp Biol 47(4):610–627.

    Article  PubMed  Google Scholar 

  • Owens JA, Kind KL, Carbone F, Robinson JS, Owens PC (1994) Circulating insulin-like growth factors-I and -II and substrates in fetal sheep following restriction of placental growth. J Endocrinol 140(1):5–13.

    Article  PubMed  CAS  Google Scholar 

  • Panda AK, Nag K, Harbottle RR, Rodriguez-Capote K, Veldhuizen RA, Petersen NO, Possmayer F (2004) Effect of acute lung injury on structure and function of pulmonary surfactant films. Am J Respir Cell Mol Biol 30(5):641–650.

    Article  PubMed  CAS  Google Scholar 

  • Possmayer F (2004) Physicochemical aspects of pulmonary surfactant. In: Polin RA, Fox WW, Abman SH (eds) Fetal and Neonatal Physiology. Saunders, Philadelphia, pp 1014–1034.

    Google Scholar 

  • Possmayer F, Nag K, Rodriguez K, Qanbar R, Schurch S (2001) Surface activity in vitro: role of surfactant proteins. Comp Biochem Physiol A 129(1):209–220.

    Article  CAS  Google Scholar 

  • Potter S, Orgeig S, Donnellan S, Daniels CB (2007) Purifying selection drives the evolution of surfactant protein C (SP-C) independently of body temperature regulation in mammals. Comp Biochem Physiol D 2(2):165–176.

    Google Scholar 

  • Presti FT, Pace RJ, Chan SI (1982) Cholesterol phospholipid interaction in membranes. 2. Stoichiometry and molecular packing of cholesterol-rich domains. Biochemistry 21:3831–3835.

    Article  PubMed  CAS  Google Scholar 

  • Prevost MC, Vieu C, Douste Blazy L (1980) Hypobaric hypoxia on pulmonary wash fluid of rats. Respiration 40(2):76–80.

    Article  PubMed  CAS  Google Scholar 

  • Rau GA, Vieten G, Haitsma JJ, Freihorst J, Poets CF, Ure BM, Bernhard W (2004) Surfactant in newborn compared to adolescent pigs: adaptation to neonatal respiration. Am J Respir Cell Mol Biol 30(5):694–701.

    Article  PubMed  CAS  Google Scholar 

  • Rees S, Ng J, Dickson K, Nicholas T, Harding R (1991) Growth retardation and the development of the respiratory system in fetal sheep. Early Hum Dev 26(1):13–27.

    Article  PubMed  CAS  Google Scholar 

  • Rooney SA (2004) Regulation of surfactant-associated phospholipid synthesis and secretion. In: Polin RA, Fox WW, Abman SH (eds) Fetal and Neonatal Physiology. Saunders, Philadelphia, pp 1042–1054.

    Google Scholar 

  • Schürch S, Bachofen H, Possmayer F (2001) Surface activity in situ, in vivo, and in the captive bubble surfactometer. Comp Biochem Physiol A 129(1):195–207.

    Article  Google Scholar 

  • Sekhon HS, Thurlbeck WM (1995) Lung growth in hypobaric normoxia, normobaric hypoxia, and hypobaric hypoxia in growing rats.1. Biochemistry. J Appl Physiol 78(1):124–131.

    PubMed  CAS  Google Scholar 

  • Sekhon HS, Thurlbeck WM (1996) Time course of lung growth following exposure to hypobaria and/or hypoxia in rats. Respir Physiol 105(3):241–252.

    Article  PubMed  CAS  Google Scholar 

  • Smits AW, Orgeig S, Daniels CB (1994) Surfactant composition and function in lungs of air-breathing fishes. Am J Physiol 266:R1309–R1313.

    PubMed  CAS  Google Scholar 

  • Snyder JM (2004) Regulation of alveolarization. In: Polin RA, Fox WW, Abman SH (eds) Fetal and Neonatal Physiology. Saunders, Philadelphia, pp 794–801.

    Google Scholar 

  • Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68.

    Article  PubMed  CAS  Google Scholar 

  • Spicer JI, Burggren WW (2003) Development of physiological regulatory systems: altering the timing of crucial events. Zoology 106(2):91–99.

    Article  PubMed  Google Scholar 

  • Spicer JI, Rundle SD (2007) Plasticity in the timing of physiological development: physiological heterokairy — what is it, how frequent is it, and does it matter? Comp Biochem Physiol A: Mol Integr Physiol 148(4):712–719.

    Article  CAS  Google Scholar 

  • Spragg RG, Ponganis PJ, Marsh JJ, Rau GA, Bernhard W (2004) Surfactant from diving aquatic mammals. J Appl Physiol 96(5):1626–1632.

    Article  PubMed  CAS  Google Scholar 

  • Starrs AP, Orgeig S, Daniels CB, Davies M, Lopatko OV (2001) Antioxidant enzymes in the developing lungs of egg-laying and metamorphosing vertebrates. J Exp Biol 204(Pt 22):3973–3981.

    PubMed  CAS  Google Scholar 

  • Staub NC (1983) Alveolar flooding and clearance. Am Rev Respir Dis 127:545–551.

    Google Scholar 

  • Sullivan LC, Daniels CB, Phillips ID, Orgeig S, Whitsett JA (1998) Conservation of surfactant protein A: evidence for a single origin for vertebrate pulmonary surfactant. J Exp Zool B Mol Dev Evol 46:131–138.

    CAS  Google Scholar 

  • Sullivan LC, Orgeig S, Daniels CB (2003) Invited perspective: the role of extrinsic and intrinsic factors in the evolution of the control of pulmonary surfactant maturation during the development in the amniotes. Physiol Biochem Zool 76(3):281–295.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Tabata R, Okawa K (1978) Studies of factors influencing lung stability: biochemical changes of pulmonary surfactant and morphological changes of terminal air spaces in the developing rat. J Exp Med 48:345–353.

    CAS  Google Scholar 

  • Suzuki S, Noda M, Sugita M, Ono S, Koike K, Fujimura S (1999) Impairment of transalveolar fluid transport and lung Na(+)-K(+)-ATPase function by hypoxia in rats. J Appl Physiol 87(3):962–968.

    PubMed  CAS  Google Scholar 

  • Torday JS, Sanchez-Esteban J, Rubin LP (1998) Paracrine mediators of mechanotransduction in lung development. Am J Med Sci 316(3):205–208.

    Article  PubMed  CAS  Google Scholar 

  • Tyson JE, Kennedy K, Broyles S, Rosenfeld CR (1995) The small-for-gestational-age infant: accelerated or delayed pulmonary maturation? Increased or decreased survival? Pediatrics 95(4):534–538.

    PubMed  CAS  Google Scholar 

  • Van Breukelen F, Martin SL (2002) Invited Review: Molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J Appl Physiol 92(6):2640–2647.

    PubMed  CAS  Google Scholar 

  • Wallace MJ, Hooper SB, Harding R (1995) Effects of elevated fetal cortisol concentrations on the volume, secretion and reabsorption of lung liquid. Am J Physiol 269:R881–R887.

    PubMed  CAS  Google Scholar 

  • Winter JSD (2004) Fetal and neonatal adrenocortical physiology. In: Polin RA, Fox WW, Abman SH (eds) Fetal and Neonatal Physiology. Saunders, Philadelphia, pp 1915–1925.

    Google Scholar 

  • Wood JR, Wood FE (1979) Artificial incubation of green sea turtle eggs (Chelonia mydas). Proc World Maricul Soc 10:215–221.

    Article  Google Scholar 

  • Wood PG, Daniels CB, Orgeig S (1995) Functional significance and control of release of pulmonary surfactant in the lizard lung. Am J Physiol 269:R838–R847.

    PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13(5):555–556.

    PubMed  CAS  Google Scholar 

  • Yang Z, Swanson WJ, Vacquier VD (2000) Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Mol Biol Evol 17:1446–1455.

    PubMed  CAS  Google Scholar 

  • Zaitseva KK, Skorik VI, Shliapnikova SA (1981) State of pulmonary surfactant and ultrastructure of the aerohematic barrier in acute hypoxia. The Anatomical Rec A Disc Mol Cell Evol Biol 17(10):1446–1455.

    Google Scholar 

  • Zhang J (2000) Rates of conservative and radical nonsynonymous nucleotide substitutions in mammalian nuclear genes. J Mol Evol 50(1):56–68.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Australian Research Council (ARC) for financial support and acknowledge the contributions of our postgraduate students over the past 20 years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Orgeig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Orgeig, S., Daniels, C.B. (2009). Environmental Selection Pressures Shaping the Pulmonary Surfactant System of Adult and Developing Lungs. In: Glass, M., Wood, S. (eds) Cardio-Respiratory Control in Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93985-6_10

Download citation

Publish with us

Policies and ethics