Skip to main content

Microbial Production of Alginates: Physiology and Process Aspects

  • Chapter
  • First Online:
Alginates: Biology and Applications

Part of the book series: Microbiology Monographs ((MICROMONO,volume 13))

Abstract

Presently, most of the alginate produced commercially is still obtained from algae, although it is subjected to variations in quality and quantity due to changes of climate and sources. Alginate can also be biotechnologically produced by species of two families of heterotrophic bacteria, Pseudomonas and Azotobacter. Efforts have been made in the past to produce alginate-like polymers from these bact­eria. The association of virulence with alginate production in most Pseudomonas spp. has made Azotobacter vinelandii the most promising candidate for the industrial production of alginate. Nevertheless, for specific and well-defined applications, especially in biomedical and pharmaceutical fields, the production of Pseudomonas alginate has attracted increasing attention. Microbial alginate production has been widely investigated in batch, fed-batch, and continuous cultures. This chapter summ­arizes current knowledge of physiology and process aspects in view of potential industrial production of microbial alginate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkawash MA, Soothill JS, Schiller NL (2006) Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114(2):131–138

    Article  PubMed  CAS  Google Scholar 

  • Amici E, Tetradis-Meris G, Pulido de Torrres C, Jousse F (2008) Alginate gelation in microfluidic channels. Food Hydrocolloids 22:97–104

    Article  CAS  Google Scholar 

  • Annison G, Couperwhite I (1986a) Influence of calcium on alginate production and composition in continuous cultures of Azotobacter vinelandii. Appl Microbiol Biotechnol 25:55–61

    Article  CAS  Google Scholar 

  • Annison G, Couperwhite I (1986b) Effect of limiting substrate concentration, growth rate and aeration on alginate composition and production by Azotobacter vinelandii in continuous culture. Food Hydrocolloids 1(2):101–111

    Article  CAS  Google Scholar 

  • Anwar H, Strap JL, Costerton JW (1992) Establishment of aging biofilms: possible mechanisms of bacterial resistance to antimicrobial therapy. Antimicrob Agent Chemother 36:1347–1351

    CAS  Google Scholar 

  • Bayer AS, Eftekhar F, Tu J, Nast CC, Speert DP (1990) Oxygen-dependent up- regulation of mucoid exopolysaccharide (alginate) production in Pseudomonas aeruginosa. Infect Immun 58(5):1344–1349

    PubMed  CAS  Google Scholar 

  • Boiardi JL (1994) Metabolic cost of nitrogen incorporation by N2-fixing Azotobacter vinelandii is affected by the culture pH. Biotechnol Lett 16(11):1195–1198

    Article  CAS  Google Scholar 

  • Boyd A, Chakrabarty AM (1995) Pseudomonas aeruginosa biofilms: Role of the alginate exopolysaccharide. J Ind Microbiol 15:162–168

    Article  PubMed  CAS  Google Scholar 

  • Brivonese A, Sutherland WI (1989) Polymer production by a mucoid strain of Azotobacter vinelandii in batch culture. Appl Microbiol Biotechnol 30:97–102

    Article  CAS  Google Scholar 

  • Chang WS, van de Mortel M, Nielsen L, Nino de Guzman G, Li X, Halverson LJ (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 89(22):8290–8299

    Article  CAS  Google Scholar 

  • Chen WP, Chen JY, Chang SC, Su CL (1985) Bacterial alginate produced by a mutant of Azotobacter vinelandii. Appl Environ Microbiol 49(3):543–546

    PubMed  CAS  Google Scholar 

  • Clementi F, Fantozzii P, Mancini F, Moresi M (1995) Optimal conditions for alginate production by Azotobacter vinelandii. Enz Microbiol Technol 17(11):983–988

    Article  CAS  Google Scholar 

  • Clementi F, Crudele MA, Parente E, Mancini M, Moresi M (1999) Production and characterisation of alginate from Azotobacter vinelandii. J Sci Food Agric 79:602–610

    Article  CAS  Google Scholar 

  • Couperwhite I, McCallum MF (1974) The influence of EDTA on the composition of alginate synthesized by Azotobacter vinelandii. Arch Microbiol 97:73–80

    Article  CAS  Google Scholar 

  • Croft L, Beatson SA, Whitchurch CB, Huang B, Blakeley RL, Mattick JS (2000) An interactive web-based Pseudomonas aeruginosa genome database: Discovery of new genes, pathways and structures. Microbiology 146:2351–2364

    PubMed  CAS  Google Scholar 

  • Deavin L, Jarman TR, Lawson CJ, Richelato RC, Slocombe S (1977) The production of alginic acid by Azotobacter vinelandii in batch and continuous culture. In: Sanford PA, Laskin A (eds) Extracellular microbial polysaccharides. American Chemical Society, Washington, pp 14–26

    Chapter  Google Scholar 

  • Deckwer W-D (1992) Bubble column reactors. Wiley, Chichester

    Google Scholar 

  • Díaz-Barrera A, Peña C, Galindo E (2007) The oxygen transfer rate influences the molecular mass of the alginate produced by Azotobacter vinelandii. Appl Microbiol Biotechnol 76(4):903–910

    Article  PubMed  CAS  Google Scholar 

  • Doggett RG, Harrison GM, Stillwell RM, Wallis ES (1966) An atypical Pseudomonas aeruginosa associated with cystic fibrosis of the pancreas. J Pediatr 68:215–221

    Article  Google Scholar 

  • Dussap C-G, Gros J-B (1985) Power input, KLa values in pneumatically agitated fermentors with extracellular microbial polysaccharides. In: Biotechnologie 85, Europe, pp 691–692

    Google Scholar 

  • Duyvis M, Wassink H, Haaker H (1998) Nitrogenase of Azotobacter vinelandii: kinetic analysis of the Fe protein redox cycle. Biochemistry 37:17345–17354

    Article  PubMed  CAS  Google Scholar 

  • Ferrala NF, Westervelt P, Mabbott GA, Fekete FA (1986) Relation between extracellular polysaccharide production and medium iron concentration in nitrogen fixing Azotobacter chrococcum B-8. Abstr Annu Meet Am Soc Microbiol 86:Meeting K-143

    Google Scholar 

  • Fett WF, Wells JM, Cescutti P, Wijey C (1995) Identification of exopolysaccharides produced by fluorescent pseudomonads associated with commercial mushroom (Agaricus bisporus) production. Appl Environ Microbiol 61:513–517

    PubMed  CAS  Google Scholar 

  • Fialh AM, Zielinski NA, Fett WF, Chakrabarty AM, Berry A (1990) Distribution of alginate gene sequences in the Pseudomonas rRNA homology group I-Azomonas-Azotobacter lineage of superfamily B procaryotes. Appl Environ Microbiol 56:436–443

    Google Scholar 

  • Fyfe JAM, Govan JRW (1983) Synthesis, regulation and biological function of bacterial alginate. Prog Ind Microbiol 18:45–83

    CAS  Google Scholar 

  • Galindo E, Peña C, Núñez C, Segura D, Espín G (2007) Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microb Cell Fact 6:7

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Ochoa F, Gomez E (2005) Prediction of gas-liquid mass transfer coefficient in sparged stirred tank bioreactors. Biotechnol Bioeng 92(6):761–772

    Article  PubMed  CAS  Google Scholar 

  • Goh CH, Heng PW, Huang EP, Li BK, Chan LW (2008) Interactions of antimicrobial compounds with cross-linking agents of alginate dressings. J Antimicrob Chemother 62(1):105–108

    Article  PubMed  CAS  Google Scholar 

  • Gorin JPA, Spencer TJF (1966) Exocellular alginic acid from Azotobacter vinelandii. Can J Chem 44:993–998

    Article  CAS  Google Scholar 

  • Gottschalk G (1988) Fixation of molecular nitrogen. In: Gottschalk G (ed) Bacterial metabolism, vol 10. Springer, Berlin, pp 318–326

    Google Scholar 

  • Govan JR, Deretic V (1996) Microbial pathogensis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60(3):539–574

    PubMed  CAS  Google Scholar 

  • Govan JR, Fyfe MJA (1978) Mucoid Pseudomonas aerugionosa and cystic fibrosis: resistance of the mucoid form to carbencillin, flucloxacillin and tobramycin and the isolation of mucoid variants in vitro. J Antimicrob Chemother 4:233–240

    Article  PubMed  CAS  Google Scholar 

  • Haddock BA, Jones CW (1977) Bacterial respiration. Bacteriol Rev 41(1):47–99

    PubMed  CAS  Google Scholar 

  • Hammad AMM (1998) Evaluation of alginate encapsulated Azotobacter chroococcum as a phage-resistant and an effective inoculum. J Basic Microbiol 1:9–16

    Article  Google Scholar 

  • Holdal HK, Svanem IG, Gimmestad M, Valla S (2000) Mannuronan C-5 epimerases and cellular differentiation of Azotobacter vinelandii. Environ Microbiol 2(1):27–38

    Article  Google Scholar 

  • Horan NJ, Jarman TR, Dawes EA (1981) Effects of carbon source and inorganic phosphate concentration on the production of alginic acid by a mutant of Azotobacter vinelandii and on the enzyme involved in its biosynthesis. J Gen Microbiol 127:185–191

    CAS  Google Scholar 

  • Horan NJ, Jarman TR, Dawes EA (1983) Studies on some enzymes of alginic acid biosynthesis in Azotobacter vinelandii grown in continuous culture. J Gen Microbiol 129:2985–2990

    CAS  Google Scholar 

  • Jackson KD, Starkey M, Kremer S, Parsek MR, Wozniak DJ (2004) Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186:4466–4475

    Article  PubMed  CAS  Google Scholar 

  • Jarman TR, Deavin I, Slocombe S, Righelato RC (1978) Investigation of the effect of environmental conditions on the rate of exopolysaccharides synthesis in Azotobacter vinelandii. J Gen Microbiol 107:59–64

    CAS  Google Scholar 

  • Kachlany SC, Levery SB, Kim JS, Reuhs BL, Lion LW, Ghiorse WC (2001) Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7. Environ Microbiol 3:774–784

    Article  PubMed  CAS  Google Scholar 

  • Kidambi PS, Sundin GW, Palmer AD, Chakrabarty MA, Bender LC (1995) Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 61(6):2172–2179

    PubMed  CAS  Google Scholar 

  • Kim EJ, Sabra W, Zeng AP (2003) Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1. Microbiology 149(9):2627–2634

    Article  PubMed  CAS  Google Scholar 

  • Klimek J, Ollis DF (1980) Extracellular microbial polysaccharides: kinetics of Pseudomonas sp, Azotobacter vinelandii and Aureobasidium pullulans batch fermentations. Biotechnol Bioeng 22:2321–2342

    Article  CAS  Google Scholar 

  • Krieg DP, Bass JA, Mattingly SJ (1986) Aeration selects for mucoid phenotype of Pseudomonas aeruginosa. J Clin Microbiol 24(6):986–990

    PubMed  CAS  Google Scholar 

  • Kuhla J, Oelze J (1988) Dependence of nitrogenase switch-off upon oxygen stress on the nitrogenase activity in Azotobacter vinelandii. J Bacteriol 170(11):5325–5329

    PubMed  CAS  Google Scholar 

  • Laue H, Schenk A, Li H, Lambertsen L, Neu TR, Molin S, Ullrich MS (2006) Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae. Microbiology 152(10):2909–2918

    Article  PubMed  CAS  Google Scholar 

  • Lebrun L, Junter G-A, Jouenne T, Mignot L (1994) Exopolysaccharide production by free and immobilized microbial cultures. Enzyme Microb Technol 16:1048–1054

    Article  CAS  Google Scholar 

  • Leitäo JH, Sa-Correia I (1997) Oxygen dependant upregulation of transcription of alginate genes algA, algC and algD in Pseudomonas aeruginosa. Res Microbiol 148:37–43

    Article  PubMed  Google Scholar 

  • Lichtl RJ, Bazin MO, Hall D (1997) The biotechnology of hydrogen production by Nostoc flaelliforme grown under chemostat conditions. Appl Microbiol Biotechnol 47:701–707

    Article  CAS  Google Scholar 

  • Linker A, Jones RS (1966) A polysaccharide resembling alginic acid from a Pseudomonas microorganism. Nature 204:187–188

    Article  Google Scholar 

  • Linkerhägner K, Oelze J (1995) Cellular ATP level and nitrogenase switchoff upon oxygen stress in chemostat cultures of Azotobacter vinelandii. J Bacteriol 177(18):5289–5293

    PubMed  Google Scholar 

  • Linkerhägner K, Oelze J (1997) Nitrogenase activity and regeneration of the cellular ATP pool in Azotobacter vinelandii adapted to different oxygen concentrations. J Bacteriol 179(4):1362–1367

    PubMed  Google Scholar 

  • Liu JK, Lee FT, Lin CS, Yao XT, Davenport JW, Wong TY (1995) Alternative function of the electron transport system in Azotobacter vinelandii: Removal of excess reductant by the cytochrome d pathway. Appl Environ Microbiol 61(11):3998–4003

    PubMed  CAS  Google Scholar 

  • Luedeking R, Piret EL (1959) A kinetic study of lactic acid fermentation. Batch process at controlled pH. J Biochem Microbial Technol Eng 1:393–431

    Article  CAS  Google Scholar 

  • Ma S, Selvaraj U, Ohman DE, Quarless R, Hassett DJ, Wazniak DJ (1998) Phosphorylation-independent activity of the response regulators AlgB and AlgR in promoting alginate biosynthesis in Mucoid Pseudomonas aeruginosa. J Bacteriol 180(4):956–968

    PubMed  CAS  Google Scholar 

  • Mancini M., Moresi M, Sappino F (1996). Rheological behaviour of aqueous dispersions of algal sodium alginates. J Food Eng 28:238–295

    Article  Google Scholar 

  • Margaritis A, Pace GW (1985) Microbial polysaccharides. In: Blanch HW, Drew S, Wang DIC (eds) Comprehensive biotechnology, vol 3. Pergmann, Oxford, pp 1005–1044

    Google Scholar 

  • Martin DR (1973) Mucoid variation in Pseudomonas aeruginosa induced by the action of phage. J Med Microbiol 6:111–118

    Article  PubMed  CAS  Google Scholar 

  • Mathee K, Ciofu O, Sternberg C, Lindum PW, Campbell JIA, Jensen P, Johnsen A, Givskov M, Ohman DE, Molin S, Hoiby N, Kharazmi A (1999) Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: A mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357

    Article  PubMed  CAS  Google Scholar 

  • McNeil B, Harvey LM (1993) Viscous fermentation products. Crit Rev Biotechnol 13(4):275–304

    Article  CAS  Google Scholar 

  • Moshiri F, Crouse BR, Johnson MK, Maier RJ (1995) The nitrogenase protective FeSII protein of Azotobacter vinelandii: Over expression, characterisation and crystallisation. Biochemistry 34:12973–12982

    Article  PubMed  CAS  Google Scholar 

  • Noguez R, Segura D, Moreno S, Hernandez A, Juarez K, Espín G (2008) Enzyme I, NPr and IIA(Ntr) are involved in regulation of the poly-beta-hydroxybutyrate biosynthetic genes in Azotobacter vinelandii. J Mol Microbiol Biotechnol 15:244–254

    Article  PubMed  CAS  Google Scholar 

  • Nunez C, Moreno S, Soberon-Chavez G, Espin G (1999) The Azotobacter vinelandii response regulator AlgR is essential for cyst formation. J Bacteriol 181(1):141–148

    PubMed  CAS  Google Scholar 

  • Obika H, Sakakibara J, Kobayashi Y (1993) Direct control of the constituent ratio in a wide range in alginate produced by Azotobacter vinelandii. Biosci Biotechnol Biochem 57(2):332–333

    Article  CAS  Google Scholar 

  • Okabe E, Nakayima M, Murooka H, Nisizawa K (1981) Investigation of carbon and phosphorous sources in cultural media of a selected strain of alginate producing Azotobacter vinelandii. J Ferment Technol 59(1):1–7

    CAS  Google Scholar 

  • Osman SF, Fett WF, Fishman ML (1986) Exopolysaccharides of the phytopathogen Pseudomonas syringae pv. glycinea. J Bacteriol 166:66–71

    PubMed  CAS  Google Scholar 

  • Parente E, Crudele MA, Aquino M, Clementi F (1998) Alginate production by Azotobacter vinelandii DSM576 in batch fermentation. J Ind Microbiol Biotechnol 20:171–176

    Article  CAS  Google Scholar 

  • Pena C, Campos N, Galindo E (1997) Evolution of alginate molecular weight distributions, broth viscosity and morphology of Azotobacter vinelandii cultured in shake flasks. Appl Microbiol Biotechnol 48:510–515

    Article  CAS  Google Scholar 

  • Pena C, Trujillo-Roldan MA, Galindo E (2000) Influence of dissolved oxygen tension and agitation speed on alginate production and its molecular weight in cultures of Azotobacter vinelandii. Enzyme Microb Technol 27:390–398

    Article  PubMed  CAS  Google Scholar 

  • Peña C, Galindo E, Díaz M (2002) Effectiveness factor in biological external convection: study in high viscosity systems. J Biotechnol 95(1):1–12

    Article  PubMed  Google Scholar 

  • Pena C, Milla M, Galindo E (2008). Production of alginate by Azotobacter vinelandii in a stirred fermentor simulating the evolution of power input observed in shake flasks. Process Biochem 43:775–778

    Article  CAS  Google Scholar 

  • Post E, Golecki RJ, Oelze J (1982) Morphological and ultrastructural variations in Azotobacter vinelandii growing in oxygen-controlled continuous culture. Arch Microbiol 133:75–82

    Article  Google Scholar 

  • Post E, Kleiner D, Oelze J (1983) Whole cell respiration and nitrogenase activities in Azotobacter vinelandii growing in oxygen controlled continuous culture. Arch Microbiol 134:68–72

    Article  PubMed  CAS  Google Scholar 

  • Postgate JR (1971) Nitrogen fixation by free-living microbes. In: Postgate JR (ed) The chemistry and biochemistry of nitrogen fixation, vol 5. Plenum, London, pp 161–187

    Google Scholar 

  • Postgate JR (1974) Evolution within nitrogen fixing systems. Symp Soc Gen Microbiol 24:263–242

    CAS  Google Scholar 

  • Priester JH, Olson SG, Webb SM, Neu MP, Hersman LE, Holden PA (2006) Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol 72:1988–1996

    Article  PubMed  CAS  Google Scholar 

  • Pritt B, O’Brien L, Winn W (2007) Mucoid Pseudomonas in cystic fibrosis. Am J Clin Pathol 128(1):32–34

    Article  PubMed  Google Scholar 

  • Qiu D, Eisinger VM, Head NE, Pier GB, Yu HD (2008) ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa. Microbiology 154(7):2119–2130

    Article  PubMed  CAS  Google Scholar 

  • Remminghorst U, Rehm BH (2006) In vitro alginate polymerization and the functional role of Alg8 in alginate production by Pseudomonas aeruginosa. Appl Environ Microbiol 72(1):298–305

    Article  PubMed  CAS  Google Scholar 

  • Reyes C, Peña C, Galindo E (2003) Reproducing shake flasks performance in stirred fermentors: production of alginates by Azotobacter vinelandii. J Biotechnol 105:189–198

    Article  PubMed  CAS  Google Scholar 

  • Sabra WA (1998) Microaerophilic production of alginate by Azotobacter vinelandii. Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig, Braunschweig, http://www.biblio.tu-bs.de/ediss/data/19990415a/19990415a.html

  • Sabra WA, Hassan M (2008) Exopolysaccharide yield as a kinetic parameter for the statistical optimization of EPS production by Klebsiella pneumoniae biotechnology. ASCI 7(1):27–34

    CAS  Google Scholar 

  • Sabra WA, Zeng A-P, Sabry S, Omar S, Deckwer W-D (1999) Effect of phosphate and oxygen concentrations on alginate production and stoichiometry of metabolism of Azotobacter vinelandii under microaerobic conditions. Appl Microbiol Biotechnol 52:773–780

    Article  CAS  Google Scholar 

  • Sabra WA, Zeng A-P, Lünsdorf H, Deckwer W-D (2000) Function and variation of alginate production in Azotobacter vinelandii under nitrogen fixation conditions. Appl Environ Microbiol 66(9):4037–4044

    Article  PubMed  CAS  Google Scholar 

  • Sabra WA, Zeng A-P, Deckwer W-D (2001) Bacterial alginate: Physiology, product quality and process aspects. Appl Microbiol Biotechnol 56:315–325

    Article  PubMed  CAS  Google Scholar 

  • Sabra WA, Kim E-J, Zeng A-P (2002) Physiological responses of Pseudomonas aeruginosa PA01 to oxidative stress in controlled microaerobic and aerobic cultures. Microbiology 148:3195–3202

    PubMed  CAS  Google Scholar 

  • Sabra WA, Lünsdorf H, Zeng A-P (2003) Alterations in the formation of lipopolysaccharide and membrane vesicles on the surface of Pseudomonas aeruginosa PAO1 under oxygen stress conditions. Microbiology 149:2789–2795

    Article  PubMed  CAS  Google Scholar 

  • Sato SS, Mukataka H, Kataoka, Takahashi J (1984) Effects of pressure and dissolved oxygen concentration on growth of Pseudomonas aeruginosa. J Ferment Technol 62(1):71–75

    CAS  Google Scholar 

  • Saude N, Junter G-A (2002) Production and molecular weight characteristics of alginate from free and immobilized-cell cultures of Azotobacter vinelandii. Process Biochem 37:895–900

    Article  CAS  Google Scholar 

  • Saude N, Chèze-Lange H, Beunard D, Dhulster P, Guillochon D, Cazé A-M, Morcellet M, Junter GA (2002) Alginate production by Azotobacter vinelandii in a membrane bioreactor. Process Biochem 38:273–278

    Article  CAS  Google Scholar 

  • Savalgi V, Savalgi V (1992) Alginate production by Azotobacter vinelandii in batch culture. J Gen Appl Microbiol 38:641–645

    Article  Google Scholar 

  • Schenk A, Weingart H, Ullrich MS (2008) The alternative sigma factor AlgT, but not alginate synthesis, promotes in planta multiplication of Pseudomonas syringae pv. glycinea. Microbiology 154(2):413–421

    Article  CAS  Google Scholar 

  • Schurr MJ, Martin DW, Mudd MH, Deretic V (1994) Gene cluster controlling conversion to alginate-overproducing phenotype in Pseudomonas aeruginosa: functional analysis in a heterologous host and role in the instability of mucoidy. J Bacteriol 176(11):3375–3382

    PubMed  CAS  Google Scholar 

  • Seanez G, Pena C, Galindo E (2001) High CO2 affects alginate production and prevents polymer degradation in cultures of Azotobacter vinelandii. Enzyme Microbial Technol 29:535–540

    Article  CAS  Google Scholar 

  • Skjak-Braek G (1992) Alginate: biosynthesis and some structure function relationships relevant to biomedical and biotechnological applications. Biochem Soc Trans 20(1):27–33

    PubMed  CAS  Google Scholar 

  • Stehling EG, Silveira WD, Leite Dda S (2008) Study of biological characteristics of Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis and from patients with extra-pulmonary infections. Braz J Infect Dis 12(1):86–88

    Article  PubMed  Google Scholar 

  • Steigedal M, Sletta H, Moreno S, Maerk M, Christensen BE, Bjerkan T, Ellingsen TE, Espìn G, Ertesvåg H, Valla S (2008) The Azotobacter vinelandii AlgE mannuronan C-5-epimerase family is essential for the in vivo control of alginate monomer composition and for functional cyst formation. Environ Microbiol 10(7):1760–1770

    Article  PubMed  CAS  Google Scholar 

  • Suh IS, Schumpe A, Deckwer WD (1992) Xanthan production in bubble column and air- lift reactors. Biotechnol Bioeng 39(1):85–94

    Article  PubMed  CAS  Google Scholar 

  • Trujillo-Roldan M, Pena C, Ramirez OT, Galindo E (2001) Effect of oscillating dissolved oxygen tension on the production of alginate by Azotobacter vinelandii. Biotechnol Prog 17:1042–1048

    Article  PubMed  CAS  Google Scholar 

  • Trujillo-Roldán MA, Peña C, Galindo E (2003) Components in the inoculum determine the kinetics of Azotobacter vinelandii cultures and the molecular weight of its alginate. Biotechnol Lett 25(15):1251

    Article  PubMed  Google Scholar 

  • Wagner VE, Iglewski BH (2008) P. aeruginosa Biofilms in CF infection. Clin Rev Allergy Immunol 35:124–134

    Article  PubMed  CAS  Google Scholar 

  • Wood LF, Leech AJ, Ohman DE (2006) Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of sigma (AlgT) and the AlgW and Prc proteases. Mol Microbiol 62(2):412–426

    Article  PubMed  CAS  Google Scholar 

  • Xu KD, Stewart PS, Xia F, Huang C-T, McFeters GA (1998) Spatial physiological heteroginicity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64(10):4035–4039

    PubMed  CAS  Google Scholar 

  • Young JM, Park DC (2007) Probable synonymy of the nitrogen-fixing genus Azotobacter and the genus Pseudomonas. Int J Syst Evol Microbiol 57(12):2894–2901

    Article  PubMed  CAS  Google Scholar 

  • Young M (1983) Microbial polysaccharide. In comprehensive biotechnology, vol 3. Pergamon, Toronto, pp 1005–1044

    Google Scholar 

  • Yuan LL, Li YQ, Wang Y, Zhang XH, Xu YQ (2008) Optimization of critical medium components using response surface methodology for phenazine-1-carboxylic acid production by Pseudomonas sp. M-18Q. J Biosci Bioeng 105(3):232–237

    Article  CAS  Google Scholar 

  • Zhang ZY, Zhong JJ (2004) Scale-up of centrifugal impeller bioreactor for hyperproduction of ginseng saponin and polysaccharide by high-density cultivation of panax notoginseng cells. Biotechnol Prog 20(4):1076–1081

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Ping Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sabra, W., Zeng, A. (2009). Microbial Production of Alginates: Physiology and Process Aspects. In: Rehm, B. (eds) Alginates: Biology and Applications. Microbiology Monographs, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92679-5_7

Download citation

Publish with us

Policies and ethics